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Abstract

In this paper we present an arbitrary-order fully discrete Stokes complex on general
polygonal meshes. Based upon the recent construction of the de Rham fully discrete com-
plex |14] we extend it using the same principle. We complete it with other polynomial
spaces related to vector calculus operators and to the Koszul complex required to accom-
modate the increased smoothness of the Stokes complex. This complex is especially well
suited for problem involving Jacobian, divergence and curl, like e.g. the Stokes system or
magnetohydrodynamics. We show a complete set of results on the novelties of this complex
complementing those of [14]: exactness properties, uniform Poincaré inequalities and primal
and adjoint consistency. We use our new complex on the Stokes system and validate the
expected convergence rates with various numerical tests.

Keywords: Discrete Stokes complex, Discrete de Rham complex, compatible discretiza-
tion, polytopal methods

MSC2010 classification: 65N30, 656N99, 76D07

1 Introduction.

The exactness of the divergence free condition plays an important role in the numerical resolu-
tion of incompressible fluid equations, |6] provides a detailed review. This kind of conservation
requires the discrete spaces to reproduce relevant algebraic properties of the continuous spaces.
This exactness can be expressed as a differential complex.

R —2 HY(Q) % H(div,Q) —4 £2(Q) —2 {0} (1.1)

Many discrete counterparts of the complex have been developed. See [7] for a thorough
exposition and an extensive bibliography. Although many partial differential equations can
be expressed using the de Rham complex, the lack of smoothness can cause issues for some
equations. In particular with the Stokes equations (see [3]). So a smoother variant more suited
to the Stokes equations and called Stokes complex has been considered. It is written in two
dimensions: '

R —25 H2(Q) =% HY(Q) —9 £2(0) —2 {0} (1.2)
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The development of discrete counterparts of this smoother complex is much more complicated.
See [[7] Chapter 8.7] for a history. Although such construction exits (for example [5]) they
often have drawbacks. Recurrent problems can be a large minimal degree and thus numerous
unknowns as well as difficulties to enforce Dirichlet boundary conditions. The subject is very
active with many recent advances: [11,12]. Another issue of these constructions is that they are
frequently constrained to conformal simplicial meshes, which is limiting for some geometries as
well as on the possibility of refinement or agglomeration. A construction of the Stokes complex
in virtual finite elements on general meshes has also been recently developed (see [13]).

Our construction works on general polygonal meshes and for arbitrary degrees. The discrete
spaces consist of polynomial spaces on the elements of all dimensions: faces, edges and vertices.
Compared to the virtual finite element method, the basis functions are explicitly known but do
not live in a subspace of continuous functions. The discrete differential operators are therefore
necessarily different from the continuous operators. They are constructed according to inte-
gration by parts formulas and in a sense converge with the discrete spaces to the continuous
operators (see the consistency results of Section . A discretization of the de Rham complex
has been developed in detail by D. A. Di Pietro and J. Droniou [14]. One can find in
the introduction a very complete comparison of the different methods leading to discrete de
Rham complex on polytopal meshes. Our paper is a continuation of |14]: Our construction is
based upon it, and we add the necessary basis functions required by the increased smoothness
of the Stokes complex. We define and analyze in detail the Jacobian operator while checking
its compatibility with the complex.

More precisely we show the exactness of the complex, the existence of uniform Poincare
inequality and many consistency results as well as a discrete version of the right inverse for the
divergence for the discrete norm H'. This complex aims to be a building block for a three-
dimensional variation, but it is also perfectly usable for two-dimensional problems. Finally,
we apply this to the Stokes equations: we show the well-posedness, give an error estimate and
find an optimal convergence rate of order O(h**1), h being the size of the mesh and k > 0 the
chosen polynomial degree. We also explore other choices of boundary conditions and validate
numerically every result.

The remaining of the paper is organized as follows. In Section [2| we establish the general
setting. We define the discrete spaces and operators (interpolators, differential operators and
norms) in Section In Section [4| we show that we do indeed belong to a complex which is
exact for simply connected domains. Section[5]is dedicated to consistency properties. Including
primal and dual consistency. The Stokes equations are defined in Section [|and other boundary
conditions are studied in [/} We display our numerical results in Section |8} Finally we prove
technical propositions in the appendices: on polynomial spaces in appendix [A] and on various
lift in appendix [B}

2 Setting.

This section is dedicated to the introduction of the setting and various notations that will be
used throughout the paper.

2.1 Mesh and orientation.

In the following we consider a polytopal domain € C R? and keeping the notation of [14], for
any set Y C R?, we write hy := sup{|z — y| : =,y € Y} and |Y| its Hausdorff measure. We
consider on this domain a mesh sequence My = Fp U &, U Vy, parameterized by a positive



real parameter h € H. Where F;, is a finite collection of open convex polygon such that
Q = Uper, F and h = maxper, hp > 0, &, is the collection of open polygonal edges of the
faces, V}, the collection of edge vertices. This sequence must be regular in the sense of [[10]
Definition 1.9] with the regularity constant p.

We take k > 0 a fixed polynomial degree. In the following most inequalities are true up
to a positive constant. This constant depends only on some parameters, here on the chosen
polynomial degree k, on the regularity parameter of the mesh sequence p and on the domain
Q.

We denote the inequality up to a positive constant by

A<B

meaning there exists C' € R depending only on some parameters (here usually only on &, p
and Q) such that A < CB. We also write

A~B

meaning that A < B and B < A.

For a fixed h, we choose an orientation of the plane, and we fix for each edge F € &, an
orientation tz. We note by + the rotation of angle 7/2 in the oriented plane and ng = tJE-.
For any face F' € Fj, we fix a counter-clockwise orientation of its boundary dF. And for any
edge of this face £ € Ep we note wpp € {—1, 1} the value such that wpptg is oriented in the
opposite direction of 0F. We can then check that wpgng is the outgoing normal unit vector
of F. We also define ng as the outward pointing unit normal vector on the boundary 9f2.

2.2 Polynomial spaces.

For any entity X € {E, F}, we denote by P*(X) the set of polynomials of total degree at most
k on X, by P¥(F) the set of polynomials with vector value in R? on F, and by (P*(X))?
the set of pairs of polynomials on X forming the rows of a matrix. We use the conventions
P~HX) = {0} and P*¥(X) := {P € P¥(X) : [y P = 0}. We also define the broken
polynomial space

PF(A,) == {Py € L*(Xy) : VX € &y, Pyx € PH(X)}. (2.1)
As well as its continuous counterpart
PE(A) == {P, € CO(X) : VX € X}, Py x € PH(X)} (2.2)

Remark 1. Continuous polynomials can be characterized by their values at the interface and
their lower order moments on the elements. An explicit construction is deduced from in
the context of edges we can see the isomorphism between P**+2(&;,) and P*(&),) x RV»,

For the sake of readability we recall here two lemmas on the discrete spaces which will often
be used in the following, they are respectively the [[10] Lemma 1.28 and Lemma 1.32] (in a
slightly more restrictive setting):

Lemma 2. Let X be an element of Fp U&,. Let | be a positive integer and a real number
p € [1,00] be fized. Then, the following inequality holds: For all v € PY(X),

IVl Le(x)y S h)_(lHUHLP(X)a (2.3)

with hidden constant depending only on p, I and p.



Lemma 3. Let p € [1,00] be a fized real number and | > 0 be a fixed integer. Then for all
heH, al FeF,, all E €&, allv e P(F),

_1
[0l Loy S P o]l Lo (r) (2.4)
with hidden constant depending only on p, I and p.
We will also use Koszul complements (see [[14] Section 2.4]). We consider for any face
F € Fj, a point & such that B(xp,php) C F. Then we define the following subspace of
Pr(F):
GH(F) := grad PFHI(F), GK(F) := (@ — ap) " P*(F),

2.5
RF(F) :=rot PM*H(F), RF(F):= (x —xp)PL(F). 25)

These spaces are such that:
PH(F) = GH(F) & G°H(F) = RNF) & RO (F), (2:6)

however the sum is not orthogonal for the L? scalar product. We also have the following
isomorphisms:

rot : POF(F) —» RFY(F), (2.7)
div : ROF(F) — P*1(F). (2.8)

We may deduce from the discrete Poincare inequality [2| that |[rot|| < A1, ||div]| < A~! and
from [[14] Lemma 46] that |||(rot)~!||| < &, |||(div)~!||| < A
We define the local spaces of Nedelec and of Raviart-Thomas respectively by:

NFF) =G Y (F)o gk (F), RTHF):=RFFYF)® R*(F). (2.9)

These spaces are strictly contained between P*~1(F) and P*(F). Another important property
given in [[14] Proposition 45] is that for any face F' € Fj and any edge of this face E € Ep:

Yop € N¥(F), (vp) g - tp € PPH(E),

5 - (2.10)
Vwr € RTH(F), (wr) g - ng € PPH(E).
In order to fix the notation we write
’RC”“(F)
c,k 2 _
REME)? = (e ) 2.11)

And we take differential operators to be acting row-wise on matrix valued functions. We define
—ck
the space R (F) by
ROM(F) = {W € (ROF(F))? : Tt W = 0}. (2.12)
An explicit description of this space is given by (2.16). Let us now construct a complement to
this space. First noticing that Tr((R%*(F))?) = PY“*(F) we can consider the inverse operator
Pr.fPOR(F) = (ROF(F))2:
div?
k._
Pp" = <div1) ograd. (2.13)

Where div is the isomorphism from R&*(F) into P*~1(F) given by (2.8). Then we define the

space:
RY(F) = P POk (). (2.14)

Lemma (36| shows that the spaces ﬁCk(F) and R" (F') are complementary.



Remark 4. By construction, we have: V-ﬁk( ) =V-Pp* PY#(F) = grad P*(F).
ck+1’ﬁk I lias

We define a matrix valued equivalent to Raviart-Thomas space by

Remark 5. These spaces are sequential since R C R

RT(F) =R*(F) o R (F) @ (RF-1(F))2 (2.15)

Remark 6. For ¢ € P*(F), we have qI € ﬁk(F) @ (R¥(F))2. Indeed V- (P1yq—qI) = 0 so
P, q—qI € (R¥(F))? by the isomorphism (2.8) and (2.6).
Lemma 7. For xp € F the point given by ([2.5) we have V- R" kH( F) = (x —xp)"PF1(F).

Proof. Indeed we have

—\r— - - - 2
R Py = < ( . jl(g)Qé/F)Q (a:—%p)(zi) i)@) ,Q € PFU(F), (2.16)

mektl, o (—(y—yr)3Q + (z —zr)0,Q + (v — yr)0,Q) k—
VR = < (2 - 2r)(B3Q + (2 — 27)2Q + (v — yr)DyQ) > QEPTHE).

3 Discrete complex.

We define now the discrete complex. We start by giving all the elements composing it with the
locations of their degrees of freedom. Then we define the discrete differential operators and
give some basic properties on them.

3.1 Complex definition.

We define four discrete spaces X% o b ¢ Xy p X ’zglF and X% X7> p. The diagram summarize

their connection with each other and with their continuous counterpart.

L*(Q) N
v
H2(Q) =% HY(Q) —4Y 12(Q)
| Is, || 2 (3.1)
k Ch k Dj; k
Xeoth — Xy — X2,
vt
.42} ’



Jon ,Pk_l(F) rot gk—l(F) « gc,k(F) _div ’Pk(F)

Pk+2(v>

Figure 1: Usage of the local degrees of freedom for the discrete differential operators.

Notice that the interpolators (defined in [3.2)) require more smoothness than the spaces shown
in [3.1] Discrete spaces are defined by:

Xioon ={a, = (az. ap)Bes,, (@v)vev,, (ar)rer,) : ae € PiT (&), (3.2)
qm € P¥(E),VE € &,
qy EREVV €V,
qr € P*H(F),VF € F},
X3¢, ={v, = (vB)es,, (vg,r,vG p)rer,) : ve € Pet (&),
vg,p € G*H(F),vG p € GSH(F),VF € Fy},

(3.3)

X3 =Wy, = (Wp)pee,, Wr)rer,) : Wi € PMHE)VE € &, (3.4)
WreRT T(F),VF € Fy),

X5 ={wy, = (wr)Fern) : wp € PH(F),YF € F}. (3.5)

Figure [1| summarize the involvement of the various degrees of freedom with the differential
operators.

For a given face F' we define the local discrete spaces X fot’ ry X ’%’ 7y X 22’ » and X ]ZJQFIF as
the restriction of the global one to F', i.e. containing only the components attached to F' and
those attached to the edges and vertices lying on its boundary. We define in the same way the
local discrete spaces attached to an edge F.

3.2 Interpolators.

In this section we define the interpolator linking discrete spaces to their continuous counterpart.
Since we project on objects of lower dimension (edges and vertices) we will need a somewhat
high smoothness for the continuous functions. For a vertex V € V, we define &y € R? to be
its coordinate. The interpolator on the space X' llfot’h is defined for any ¢ € C1(Q) by

Liotnd = (4B, 7 p(rot q - tr))ee,, (ot g(V))vev,, (mp 1 (0) rer,), (3.6)



where for any edge E € &, qg is such that W;“;El(qE) = Wf;é(q) and for any vertex V € Vg,

qe(zv) = q(zv). B
The interpolator on the space X%,h is defined for any v € C°(Q) by

— k
l]%,h'v = ((UE)EEEM (T‘J&,}%(v)v WE,F(U))FE}—;L)? (3.7)

where for any edge F € &, vg is such that 71'17,7E(12E) = ﬂ",;)’E(v) and for any vertex V € Vg,
vp(zy) = v(zy). _
The interpolator on the space X’Zglh is defined for any W € (C°(Q2))? by

llz{hw = ((W'];Dﬁ:le(W ’ tE))EEt‘fhv (ﬂ%—7F(W))FGFh)' (3'8)

The interpolator on the space X 7227 p 1s just 71';%1 7, the piecewise L?-orthogonal projection
on spaces P¥(F), F € Fy,.

3.3 Curl.

In the following sections we define the discrete operators starting from the discrete curl operator
Ql,?b. The operator Qfl is the collection of the local discrete operators ([3.11)) acting on the edges
and faces. For any edge E € &), we define the operator C%; : l’ﬁot’E — PF2(&,) such that
Vg, = (g8, qe, (qv)vevy) € Xioon
C%QE =vg. (3.9)
Where vg is such that n’%7E(vE) =qptp — qgnp and YV € Vg, vp(xy) = qyr. With ¢p the
derivative of ¢g along the edge E (oriented by tg).
For any face F € Fj, we define the operator C%. : Xﬁot,F — P¥(F) such that Vg, =

(g8, ap') Becr: (Qv)veve, ar) € Xioy p, VT € PH(F)

/CII%QF'TF :/QFrOtTF‘i' Z WFE/ qeTF - tE. (3.10)
F E

EecEF

The full operator C% : X' fot’ r— X ’%7 r is defined as the collection and projection of the

local operators. Explicitly for all q, € X ﬁot’h

Chrq, = ((Cha,)peer (6 #(Cha,). 78" (Cha,)). (3.11)

The global operator Q’Z is obtained by gathering the local operators Q]}, FeF.

3.4 Jacobian.

Likewise, we begin by defining the local operator on edges: V%H : X@}E — P*Y(E) such
that Vvg € X]%,E

Vit vg = bp. (3.12)
Where the derivative is taken along the tangent tg of the edge E.

We define the local operator on faces: VA& X’&F — ’RTkH(F) such that Vo € X’&F,

c ——=—k+1
VW =W+ Wg o+ WrreRT ' (F),

/v’;fl(vF):WF:/ 'vcgf-V-(W;{’F)/ vgr VW )+ 3 wFE/ wpW pnp.
F F F Ecép E

(3.13)



Remark 8. Since V-(R¥(F))? =0 by|§| we see that Vq € P*(F),

/V%H(Up)i(q 12,2)—/UgF grad g + Z wFE/ qUETNE
F

Eeér

The full and global operators y’;fl and y’,ffl are merely collections of local operator:
Vittop = (Vi vp)peer, Vi op), (3.14)

Vitly, = (Vi vg)pee,, (Vi vp)rer,). (3.15)

We prove a first commutative property:

Lemma 9. For all E € &, and all F' € Fy, the following relations hold:

Vi (I% pv) = w5 (9), Vv € H'(E). (3.16)
VER(IE o) = ’;;; ~(Vv), VveH'(F)NC’(F). (3.17)

Proof. The equation (3.16]) is deduced exactly as it is done for [[14] Equation 3.8]. Let prove
(3:17): For all v € H(F) N C°(F) and all W € ’R,TkH( F),

LV?I(I%F”):WF:—/F“?F( v) V(W )_/Fﬂ'gF’U V-(Wx )

ck:+2
+ Z wFE/ Tr’PE v)Weng
Ecér

__/Fv.v.(wc )—/FU-V'(WR,F))
+ Z wFE/ vWrng

Ecér

/'U V(WF Z wFE/’UWF’I’LE

Ecér
/V’U WF
c,k k— 1)

Where we used the definitions and 2.14{to remove the first two projections (ﬂ'g 1 and TG
the property - to remove the last projection and the integration by parts to conclude. [J

Any face F' € Fj, has several polynomials attached to it (on the face itself and on its
edges). In order to combine all these polynomials into a single one defined on F' we introduce a
reconstruction operator 'yk'H X ]%7 » — (P*1(F))? implicitly defined by the relation: YW 5 €
(RC k+2< )) 7VQF € XV,F?

/’y@’}l(v};) V'WF:—/ Vitlve: We+ > wFE/ vEW png. (3.18)
F Ee€r

The isomorphism ([2.8]) ensure the well-posedness.

Remark 10. The relation (3.18) also holds for all W € (P*(F))2. Indeed if W belongs to

(R¥(F))? then V- W = 0 and the left-hand side of (3.18) is null. And since (R¥(F))? c

(PH(F))? C ’R'TkH( F) we can apply (3.13) to show that the right-hand side is also zero.
Hence, the relation holds for all (R¥(F))? @ (R“F2(F))? > (PF(F))2.



Lemma 11 (Consistency properties). For all F' € Fy, the following relations hold:

7€+}(Iv ) =v, YoePHLF). (3.19)
c,k
g, F(Vv FUR) = VG P Vo k
vp € Xy p- (3.20)
21;(7?1}’”1?) = Vg, F,

Proof. Let us show (3.19): For any v € P**1(F), since Vv € (P*(F))? RT ' the equation
(13.17) gives V’;“(lva) = Vv. Moreover v|g is continuous of degree k +1 < k + 2 so by the

definition (3.18) we have for all W g € (RT*2(F))2:
/fy@—i_};bl VF'U /V'U We+ Z WFE/UWFTLE
Eeér
:/ v-V- WF.
F
Now to prove ([3.20) we show that for all Wr € R” kH( F) C (ROF2(F))?,

c,k
/FWQ,F(’Y€,+I;’UF) V-Wp = / (V@JF}QF) V- Wpg

F
/Vk—H vp) Wr+ Z wFE/ vEWrng
Ecép
/UgF V-Wpg+ Z wFE/ vg —vEp)Wrng.
Ectp

Where we used [7| to show the first equality, (3.18) for the second and (3.13]) and (2.12) for the
last hence, ﬂng(’y@‘%vF) = vcg . Likewise for all W € PF(F)Io9: we have V- P*(F) Iy =

GF1(F). Since the relation holds thanks to [10| and since P*(F) C ’R,TkH(F) we can

follow the same steps and show that TG F(y@ﬁ%’u r) = ﬂ'é - O

3.5 Divergence.
Finally, we define the discrete divergence operator, for all F' € Fy by:
D} = T V& € PR(F).

As in the continuous case the divergence is the trace of the gradient, but we can also define it
by a formula mimicking the integration by parts:

/FDf;voF :/FTY(VIJCJH’UF)WF
_/FV’;;—H’UFZU)FIQ,Q (3.21)

= /vg pgradwp + Y wFE/vE npwp
F

Ecér

Where we used that P¥(F)Iyo C ’RTkH(F) by @ We get the same definition as the one of
the de Rham complex of [14].



3.6 Discrete L?-product.

We build scalar product on discrete spaces. They are made of the sum of the L? scalar product
on each face and of a stabilization term taking the lower dimensional objects (edges and vertices)
into account. First we define them locally for all F' € F,: For all vy, wp € X ]%’ r we set

(Vp, Wr)y p = /FV@J}%F A pwp + sy r( vp, wp), (3.22)
sv,r( vp,wp) = Z hE(’Y@Jﬂ;QF —vg)- (V@T;QF —wp). (3.23)
Ecér
k+1
Forall V,, W, € XLQ 7 we set
Ve Wp)pe = / ViiWptspp(Vep, We). (3.24)
F

sp2p (Vp, Wp) = Z he(Vi-tg —VEg) (Wg-tg — Wg). (3.25)

Eetp

Global scalar products are then merely the sum of local scalar product over every face F' € Fp,.

For all vy € X ’%’ rpand Wrpe X ]ZJQIF the norm induced by this scalar product is denoted by:

1/2 1/2
lopllve = @p v Wellger = (Wp, W),

We also define norms built from the sum over the objects of every dimension. For all
4 € Xfot’F we define

2
llaall, = larl+ S b (sl + law s+ 3 holay ). 3.26)
’ Ecép VeVve

For all v, € X’%’F we define

2
loplle p = lvg FliE + lvg FlIF+ D hellvels. (3.27)
Ecér
For all W, € X1 we define

2

W pllZ2 g = IWElE+ > helWelE. (3.28)
Eeér

And for all pp € X’ZQ  we define

Iprlle = lpFl7- (3.29)

We show the equivalence between the norm induced by (3.22)) and (3.27) in lemma |14] and
the equivalence between those induced by (3.24) and (3.28]) in lemma
We define the global norms over €2 as the sum of the local norms over every face F' € Fy,

. 2 2
ie lvpllen = Xrer, lvrlls p

Lemma 12 (Inverse Poincaré inequality). For all F € Fj, and all vy € X%’F it holds:

Vit op| <A lvplly &

10



Proof. Let F' € Fp, and vp € X ]%7 - We use the discrete inverse inequality [[10] Lemma 1.28]
to show that:

| VA |2 = /F VEH gy VhH g,

_ k - k -1 k
Slvg plh I VE T vpll + g pllh I VE vpll + lloellh™2 || ViF vplle
_ 1
S VE T upl( > h2wgl).

Ecér
g
Lemma 13 (Boundedness of local potential). For all F' € Fj, and all vy € X%F it holds:
Irerorl S llerlly (3.30)

Proof. Let F € Fp, vy € X’%,F, since yetlvp € PH(F) there is Wr € (R9F2(F))? such
that V-Wp = 7@}121; hence:

k41 k+1
”’Y 9y UFH2 /’YV+F”F 'YVFU
/ 7@+;vF V-Wge
F

:/v’;;flvF We+ ) wFE/vEWF’nE
F

Eelp
k
<V opll (Wel + > lvelllWele
Ectp
—_ _ 1
S wplle fIW el +h7" Y k2 |lop||[Wellr
Eelp

SEHW Elllvelle,p-

Where we used the Cauchy-Schwarz inequality to get the fourth line,[12]for the fifth, the discrete
trace inequality [[10] Lemma 1.32] for the sixth. We can conclude since HWFH S thkav 7l
thanks to the upper bound on the operator norm of the isomorphism (2 ]

Lemma 14. It holds, for all F € F and all vy € X§ p,

lvplv,F~ H|QFH|V,F7VEF € X]%,F-

Proof. From the definitions (3.22]) and ( we have:

k
lorli.r = / Wop bt 3 helob ey - vpl?
Eectp

k k
Shetrurll® + Y he(IBorls + llvel?)
Eecép

k k — 2
Shesvel? + ) hethg' IV rerlE + hg vl £)
Eectp

2
Sllrlls, #-

11



Where we used on the first line and the trace inequality I on the second
Conversely, H

term of the right-hand side:

k
+1'UF”125’

Sllve — ’Y@J}l vplE + hFIH’Y@JF}UFHF

k
> hellvel? SIhvefvrld+ Y helve — & urlE
Ecép Ecér

k
lvelE <llve — 2w vrlE + I

The consistency property (3.20]) allows us to write:

k+1 k—1_k+1

k
WG rlI* + lvg.rll* = lIng p 1 pupll + Im§ #rervrl® < 2078 opl® S llvpll p

We conclude by combining (3.31)) and (3.32) to show that H|yF|||2VF < ||QFH2V7F.

Lemma 15. It holds, for all F € Fy, and all W € X’;;lF,

k
VWp € XLJQFle IWelpzr = IWellge r

Proof. Let Wy € XIZJQAF, we have:

Wil = [ WrsWrs S5 he [ (W te = W) - (W ts - W)
Eectp

SIWElF+ D he (IWrlE+ IWelE)
Eelr
2
SIW pllz2 5

v.r = |lvg, 3+ llvg plIF + > Been hellvel% by (3-27). We bound each

(3.31)

(3.32)

Where we use the triangular inequality and the discrete trace inequality [[10] Lemma 1.32].

Conversely, we have:

W e llz2 /WF We+ Y hE/ Wg -Wg
Ee€gr

/WF Wr+ Z he||Wp - tE—WEHE—i-hE”WF tEHE
Ecép

W el

4 Complex property.

In this section we regard the following sequence:

k c;, k Dj
Xrot,h Xv,h )(L2 he

(4.1)

We will show in [17|that (4.1]) is indeed a complex, but first we show that the interpolators form

a cochain morphism from a continuous de Rham complex into the sequence (4.1)).
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Lemma 16 (Local commutation properties). It holds for all F' € Fp,

CF( rot, FQ) ll%,F rot q, Vq € Cl (F)7 (4'23)
Vi (I pv) =I5y Vv, Vo € C(F), (4.2b)
DF(IV Fv) —W%F dive, Yove C'F)nH\(F). (4.2c)

Proof. Proof of (4.2a]). Let ¢ € C1(F) and q, = lfot’pq. We set v = QI}QF, and we see that
for all E € Fg of vertices with coordinates xy, and @y, for all r € PF(E),

/ Ger = — / qe” + qe(Tv)r(zv,) — qe(Tw)r(zy,)
E E

- /qu“ +q(xv,)r(zv) — g(@w)r(zv,)

:/ qr.
E
Where we used the continuity of pz and the fact that 7 € P¥~1(F) thus:

™ p(vE - (—1E)) = 5 = 7p p(grad ¢ - tg) = Tp g(rotq- (~np)).

Moreover, by definition W;%E('v tg) = W%E(rotq -tg), vp(xy) = rotg(xy). and for all

rp € N¥(F), using (2.10) we sce that:

/’UF T'F—/CJFTO‘GTF+ Z WFE/(IETF lp
F

Ecér

/qrotrp+ Z wFE/qu tp

Eeér

:/ rotqg-rp.
F

Proof of (4.2bf). Immediate consequence of (3.16]) and (3.17]).

Proof of {#.2d). Let v € C°(F)n HY(F), we set vy = l]%f'u and gr = Dhwp. For all
wp € PF(F), since gradwp € GF¥1(F) we have:

/qupz—/'vg pgradwp + Y wFE/ Vg - MEWE
F

Ecér

/vgradwp+ Z wFE/v NgwWr
F

Ecér
:/ divowp.
F
O
Theorem 17 (Complex property). It holds:

Ifop 1R = Ker C}, (4.3a)
Im C§ c Ker DY, (4.3b)
Im Df = P*(F). (4.3¢)
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Proof. Proof of (4.3a)). The inclusion [ fot,hR C Ker Q’fl is immediate since for all F' € F};, and

all 7 € P¥(F), the continuous integration by parts gives

Jprotre + ZEegp wrg [prr-tg = 0. Conversely if q, € Xfot,h is such that Qigh = 0 then
for all B € &, gqpr = 0 and for all vertex V € Vy, gy = 0. Moreover ¢g = 0 so qg is constant
on each edge and since it is continuous on vertices and €2 has a single connected component
there is C' 6 ]R such that VE € &, qg = C. By (3.11)) and (3.10) we must have for all F' € F},
Vrp € N fF grrotrp + ZEesF WFE fE qerr -ty = 0. Substituting qg by C' and doing
an mtegratlon by parts we get fF qgr — C)rotrrp = 0. We can conclude that ¢r = C' since
rot N¥(F) — PF=1(F) is onto.

Proof of (4.3b)). Let p, € Kﬁomh and v, = Qﬁygh. For all F € Fj, and all wp € P¥(F) we have:

k .
/UE-nEwF:/ﬁREvE-nEwF:—/quF.
E E E

If we write g1 and g the coordinates of the vertices of the edge E, we have

—/ Jrwr =/ qrWr — qpwr(xE1) + qpwr(TE2).
B B

Where wg is the derivative along F so wp = grad wg-tg. Moreover ZEegp wrp(qgrwr(xp) —
grwr(xg1)) = 0 thanks to the continuity of ¢g so:

Z wFE/ VE  -NMEWE = Z wa/ quradwF tE (4.4)

Eeér Eeér

On the other hand we have:

—/vg,pgradwpz—/qprotgradwp— Z wFE/quradwF tp
F EcFp

= Z wFE/quradwF tg.

EeFgr

Summing with (4.4) we find D];,yF =0, for all F' € F,.

Proof of See lemma O

The complex is exact if and only is the inclusion (4.3b)) is in fact an equality. We can show
that this the same as asking for 2 to be contractible. The proof is a slight adaptation of [[9]
Section 4.3]. and will not be duplicated here.

5 Consistency results.

The last things we need to show in order to efficiently use this complex are consistency results.
First we show primal consistency results, controlling the error made when we use the interpo-
lators. Then we show some Poincare type results useful to show stability, including a discrete
counterpart to the right inverse for the divergence Finally we show adjoint consistency
results, which control the error made when we perform a discrete integration by parts.

We begin by recalling a result from [[1] Lemma 4.3.4]: Vp € (1,00), Vg € N such that
pq > 2, Yw € WTP(F),

1 4
lwlloy S hp? Y hplwlwrr (5.1)
r=0

14



Lemma 18 (Primal consistency). For all F' € Fj, it holds:
VAL o) — vl S B 2ol gen, Vo € HE2(F) 1 CO(P). (5.2)

Proof. For all F € Fp, (3.19) shows that 'kaIk v.r is a projection on PEL(F). Thus we just

have to show that ||7k+1(Iv )|l S vl + hllvl| g + B2 v] g2 to conclude with the lemma on

approximation properties of bounded projector [[10] Lemma 1.43]. And starting from (3.30))

we have

k+1(

H’V Iv FY)| 5’”1’%,1?1"”

V,F

Slagholle + s tolle + 37 A2k 2ol s
Ecér

Slvlle + helvl g gy

Where we used the continuous trace inequality [[10] Lemma 1.51] and the boundedness of L2
projectors. O

Lemma 19 (Stabilization forms consistency). For all F' € Fy, it holds:

sv.p( IS p v, 1% p 0)'7? S B2 (0| gere ), Yo € HP?(F) N CO(F), (5.3)

1/2 _
st,F( reiry Wolha W) S WHW g gy, YW € HFY(F)NCO(F).  (54)

Proof. Proof of (5.3). For all zp € P*1(F) we have 7& (IV pzr) = zp by (3.19) so for all
Wp € XkV,F’

sv.r( IS pzrwp) = Y hp(W'h IS pzr — zp) - (V& pwp —wp) = 0.
Eelr
Hence

k k k k k k k
SV,F(lV,F'UF7lV7FvF) = SV,F(lv,F(UF 7"fp+11w) IV,F<UF Wfpj%)) ~ HIV p(vFP— 7";}7)“ V,F:

We conclude by the norm equivalence [14] and [[10] Theorem 1.45].
Proof of (5.4). Let W € H*"Y(F) N C°(F), we have:

k k
sep (Lip (W Loy W) = 3 hpllmls AW -t — bl W -t}
Ectp

<) hp|W—aHL WG

RT.F
Ecér
k
< 3 hp(IW = b oW + [ oW — il W3
Eelr

SHEDW s + |W — 7 p W1

Where the second equality comes from ’R'TkH( F)-tp C (P*(E))? and where we used the
approximation properties on traces [[10] Theorem 1.45 Equation 1.75] on the first term and

the discrete trace inequality [[10] Lemma 1.32] on the second term to get the last equality. We
conclude with [[10] Theorem 1.45 Equation 1.74]. O
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5.1 Poincaré inequality.
We begin by stating two lemmas which will be useful to prove the Poincare inequality.

Lemma 20. For all F € Fy, and all vp € X%F it holds that

2
— k k
> hpIhe ey —vslE S || e (5.5)

L2.F
Ecép

Proof. For any F' € Fj, and vy € X]%,F set R? 3 Ay or = m ZEEgF fE v then (3.19)

: k+1/ 1k
gives Av,@F = 'YVJ’FF (lV,FAv,GF) and

— k k
> gt e —vslh < Y hg (W6 e — AvorlE + 1 Avor - vslE)
Eelp Ecér

Invoking a Poincare-Wirtinger inequality on the boundary dF we show that, since the Poincare
constant is bounded by the diameter:

2
S Bl dvor —vell S B 3 b Vi el S ||V e L 69)
Ecér Ecér ’

Take W € (ROFF2(F ))2 such that V- Wp = ’y@'}l(v}; I]%jFA,,,aF). Then by the estimate

on the operator norm of (2.8)) we have |[Wp| < hFH’ka('UF — I p Ay o). Moreover (3.17)
states that VkH I~ FA,,,ap =0so

e (v — I pAvor)|? = /VkH vp:Wp+ Z wFE/ (vE — Avor)WEng
Eesp

_1
SIWEVE vpll + WEllr D hy?llve — Avorlle
Eelp

k k k k
Shels T r = I pAvor)| (u Vi wpll + || 25|

L2,F> '

Where we used the discrete trace inequality |3| then the inequality (5.6). We conclude since for
any F € &p,

k k k
hp e — Avorls S gt er — I pAvor)le S | V5 2pl + || 25 er |,

Lemma 21. For all F € F, and all vy € X% p it holds that

k+1 —1~k k+1
IV &boel? + 3 hpt e - ol S |25 v, |
Eeép
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Proof. Let Wp = V’yv FvF, we have

|]V'yk+1vF|]2 /’y@ﬂlv}? V-Wpg+ Z wFE/ ’yVFvFWFnE
Eetp

/Vk—i-lvF We+ Z wFE/ ”)/VFUF—’UE)WFTLE
Ectp

1 1
k o~ k+1 2
<IVE wplIWel + 3 hgt b hor — vsllohi [Wrlle
Eeép

k _ k 1
SIVE Rl W el + W el (D hg' e hor — vellE)?
Eelp

k
SIVASFsllWEl.

Where we used W € (P*(F))? with [10|on the second line, the discrete trace inequality [3] on
the third, and we concluded with O

Lemma 22. For all v), € X%,h such that ZFefh fF 7@+]}QF = 0 ¢t holds that

Proof. For any v, € X]%,h we apply [[10] Theorem 6.5] to ((7@+;QF)F€}-}L, (W];p+éUE)Ee£h) to
get:

(5.8)

L2h

k k — k+1 k
Yo Inerl S Y [ I1Vherl® + Y hp' e — w5 pvsll
FeFy FeFy Eelr

Moreover, since 'yv FvF € P*1(F) we have:

k+1 k+1 ||2 k+1

k
Ity — w5 bwpll? =[Sl — / Vo v + e Lop| 3

<lhveror — vellh,

Hence by lemma

2
k+1 vk+1 H
2 In¥ipurl <[ e,
h

We conclude with [14] and [20] that respectively states:

lonllvn <l whllvn = Y W& poel? +sv.r( vevp) |
FeFy
sv.r( vp,vp) = Y helwiiep —velh S hi H)V'““ H
Eelp

O

Remark 23. When k > 1 the assumption ZFth I ’yv F’UF = 0 translates to ZFefh Jpvr=0
by - However this does not hold when k& = 0.
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We show that the fully discrete divergence is onto Qﬁ : X ’%7 h— X ’ZQ 5. The main difficulty
is to show the boundedness of the inverse with the discrete norms.

Lemma 24 (Right-inverse for the divergence). For all p, € XEQ , there is vy € X]%,h such

that Dw, = p, and [[oyllg,, + || V5o

L2 N ||Bh||L2,h-

Proof. Existence. Let p, = (pF)FerF, € Xlzgh and apply to find p € C°(Q) such that

VE € Fn, DiF € phrmaxn,pee, (1€6) (F), ﬂ%7Fﬁ = pr and [|pllz2() = lp, [lz2,5- Under the
assumption on the regularity of the mesh we have maxjy, peg, (|€r|) S1 ([[10] Lemma 1.12]) so
that the maximum degree is bounded independently of h. Since p is a piecewise polynomial,
continuous and of trace zero on the boundary, p € H}(2). We apply 42| to find v € H 2(Q)
such that divu = p, ||u| g2 S |[5lgr and ||u|| g1 < |[B] 2. We build v, € X’%ﬁ in such a way
that on each edge F € &, 71',];;.7EUE = ﬂ’,;,’Eu and on each vertex V' € Vg of coordinate zy/,
vE(zﬂv) =0.

Then on each face F € Fj, since grad : P%F(F) — G*1(F) is an isomorphism, we can
choose vg  such that Ywp € PYF(F),

—/ vg rgradwp + Z wFE/ UE'nEwF:/pFwF-
F E F

Eetp
Finally we set vg p = ﬂngu so that Ywr € POF(F), fF Dﬂ%yFwF = prFwF and Ywg €

PO(F),
/D%’UFU/F: > WFE/'UE‘nEwF:wF > wFE/u'nE
F E E

Eetp EecEF

:wp/divu:wF/ﬁ:/wFpF.
F F F

Where the second equality comes from VE € &, 71'07,7 pVE = 7r07,7 pu and the last equality from
VF € Fp, Tr%Fﬁ = W%Fpp. Thus we have Qﬁgh =D,
Boundedness. It remains to show that [|v,[lg , < llp, 22,6 For any face I € Fj, remind that

2
llorllY F = lvg rliF + g rliF + D hellvell:. (5.9)
Ecér

We estimate the last term of (5.9)) with:
lvele ~ |7 pvele = Inp pulle < llulle-

Where the first equality comes from [39] applied in one dimension. The continuous trace in-
equality [[10] Lemma 1.31] gives

1
hipllulle S lullpz2p) + brlul g ey S llull g )

To estimate the first term of (5.9) we take wrp € PU*(F) such that gradwp = vg p so
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|lwr|l < hrllvg r| and by construction:

/Ug,F "Ug,F:_/pFwF+ Z UJFE/ VE - MEWFR
F

Eecép

<lprlrllwellr+ Y hp 1hf;HUEHEh lwel e

Ectp
Slpelellwele + hpHlwelle > n pllveles
FEeér
(lpelle+ ) n elvels).
Ecér

Applying the same estimate on the boundary we find
lvg Fll% < lprllE + 1wl 3 g
Lastly for the middle term of (5.9):
g, rllr = llmgpullr < llullg2py < llllm e,
hence, summing over every face F' € Fj, gives
llenll% s <l li72n + el S lp, 17
Unlllv,n ~ 11Py11L2 0 HY(Q) ~ [1PyllL2 p

Now to estimate ‘HZIEHQ}ZH‘L? - let Wp = V’FFI v and gr € POF(F) such that V- Wrr=

)

grad gr and [lgp|| = [[Wx p[|. We have:

/FV?JUF:V]F_IUF__/F,UaF'V'W;%,F_/ng V- W’RF+ Z wFE/vEWF ng
Ecér

—/vch-V-WfRF%—/quF-i— Z wFE/UE Wpr—qrlp) ng.
F b

Eeér
Applying (2.10) gives
/ vE(Wpr —qrlg) -ng = / W]';DE’UE(WF —qrlyg) -ng= / u(Wpr —qrlys) -ng
E E E

so that after an integration by parts:

ZwFE/vE Wr—qrlp)- nE—/Vu (Wp—qrly2)+ /U'V'(WF—QF12,2)-
Ec€r F

Since V- (Wp —qrly2) = V- Wz . by (2.15)) we have:

/VIJC:HUF:V]}HUF:/’vcg,F-V.W’CR,F+/vu:(WFqFIM)Jr/u‘V.W%’F
F F o g
:/ Vu:(Wpr —qrlp),
F

thus
IV vpls S Vullpll Vi vp e (5.10)
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Let us now focus on the estimate over edges. The Poincare-Wirtinger inequality and [2]show that
for all polynomial r defined on E € &, ||r — % [e7llE ~ hig'||7| . Since |lvg — e Jpvels =

2 )
||'UE||2E — %(vaE) , ||7r1;;EvE||E ~ ||lvg|g and vaE = wa%EvE we have ||[vg|p ~

HW%EUE”& hence
loelle ~ |75 gvele = 7% gve — w4+ a|p < |7 gu — @)z + || Vulle.

1 .
By [|10] Theorem 1.45] we see that h%”ﬁ’fj,’Eu —ullp < [[ul g1y and by the continuous trace
inequality [[10] Lemma 1.31] that

1
hipl Vaulle SV ullr +hel| VVa|r,

SO
hellvell S lulle gy + hElullte g (5.11)
Combining ([5.10)), (5.11)) and summing over every face we get:
2
2ol < el + ¥l

We can conclude since [|uf| g1y < llp, l|lz2,n and
hllull g2 o) < PPl @) S 1Pl220) < Nl llz2 A

Where we used the inverse Poincare inequality on h2||;5|]§{1(9) = rer, h2||]5HH1(F). O

Remark 25. We can easily adapt lemma [24] to require ) pc 7, I P fy@j}lg r = 0. Simply define

k . k+1
v’y =v, — l%,h (ﬁ Srer, Ir ’)/V—:'_},EQF). It is clear from (3.19) that - pcz [ ’YVJ,FF"L,F =0,
from (16| that Qﬁg’ n = p, and from (3.30) that the estimate of [24{on the norm of v’}, still holds.

5.2 Adjoint consistency.
We define the adjoint consistency error for all W € C°(Q) N H}(Q) and all v, € X ]%7,1 by:
foaWoon) = 3 (LW T er) o+ [ VW eabioe). Ga2)
FeFy,
Theorem 26 (Adjoint consistency for the gradient). For all W € C°(Q) N H{(Q) such that
W € H"(F,) and dall v, € X%,

E9h (W 03)| S B (W] gices + [ W s (nvhmw + [ e

. 5.13
o) 61
Proof. Remarks |10 and [5| show that YW, € (RT*+1(F,))?,

/ 'y@?vF V-Wg +/ Vk—H Vp: Wg— Z WFE/ vpWrng = 0.
Eetp
Moreover, since W - ng = 0 on 02 and since the vg are single valued we have

Z Z wFE/ UEW’I’LE:O. (5.14)

FeF;, EcEr
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Hence we can write:

Ev (W, vy,) = Z </F(W ~Wpg): Vit +/FV‘(W -Wg)- ’Y@T;QF
FeF,

+ Z wFE/E’UE(W—WF)nE—{—SLz’F (l]zg(F)W,V’;jlyF)
Ecér

S S (W =Wl + [ V-W = Wa)l) (195 vl + n o)
FeF,

1/2 1/2
+ SLQ,F (li2(F)W’l]_ZQ(F)W) SLQ,F (V]F_l QF, V’;’H QF)

+ Z WFE/ ’UE(W—WF)TI,E.
Eelr E
Applying (5.4) and [15] gives:

1/2

1/2
Sp2 p (1122(F)Wal]z,2(F)W> Sp2 F (vaﬂﬂfw V’Zﬂ“%?) = hk+1|W|Hk+1(F)H‘YIZ“JFIQFH

L2 F

Using the approximation properties of the spaces RT*T1(F) given by a slight adaptation of
[[14] Lemma 43] we can find W € RT*1(F) such that

IW = Wl + | V-(W = W)l S B (IW g oy + W lggisa )

By (3.30) we see that

| 95 wpl + 0 bl S |5 s

o+l v

Lastly we use 40| to find R, € H!(F) such that

Z WFE/E'UE(W_WF)nE_ Z wFE/ERvF(W—WF)nE

Ecép Eetp
:/FVRUF (W - Wp) —i—/FRvF V(W - Wp).
Hence
1> wFE/ vp(W = Weng| S (W = We| + | V-(W = Wg)|) (I V Ry, || + || Ru, |])
Eerp E
and we conclude with 40| which gives the boundedness of R,,.. O

We can sharpen the estimate (5.12)) when W is the gradient of some field. Indeed, if were
to take W = Vw in we would see that a norm over H**3 appears in the estimate, which
is suboptimal.

We define the adjoint consistency error for all w € H?*(Q) such that Vw - ng = 0 and all

k .
vy, € Xy, by:

Ean(w,vy) = > </F Aw- v por + (2’;7+1l]%,Fw72];7+1QF) . F> : (5.15)
FeF, ’
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Remark 27. The assumption w € H?(Q) imply that w € C°(Q) in two dimensions (see e.g.
2] 12.60)).

Theorem 28 (Adjoint consistency for the Laplacian). For allw € H*(Q) such that Vw-ng =
0 and w € H*2(F,) and for all v;, € Xl%,h’

Ean(w,vy)] S B w] e YﬁHQhH 2n (5.16)
Proof. For any F € Fy, (4.2b]) gives:
k+1 7k k+1 k+1 okt k k+1
(ZFJF lv,Fw7yF+ QG)LQF = Fﬂ%_7FVw.VF+ Vp+Sp2p (le(F) ijyFJr y) _

With an integration by parts and since fF W%,F Vw: V’}H vy = fF Vw: VI}H v we have:

o) = 2 (/F Vwi(Viop = Vaghpop) +5p2 (liz(F) Vw, Z'%JFIQ)
FeFh

k+1
+ Z WFE/’YVJ,FF'UFV"U”E
Ecér B

Since we assume V w - ng = 0 we have

Z Z wFE/E’UEV’wZO (5.17)

FeF), Eetr

so by [10/it holds Vwp € P*1(F),

/Awp"y@fr}vF—i—/V’}“vF:VwF— Z wFE/’UEVWnE:O,
F F Ecép E

SO

/pr:(V?lvF—V’y@T}vF)#— Z wFE/(v@T}vF—vE)VanE:O.
F Ecép E

This allows us to write for any wj, = (wr)pep, € PHHF),

Ean(w,vy) = Z </F V(w —wr) (Vi vp - V’V@TI%QF) tSp2p (lﬁz(F) Vw,YI;rJrlQ)
FEFh

+ > WFE/ (V& pop —vE) V(w —wp)ng |,
Eelp E
Eantwo) S Y (10w - we) ] Vi vp -~ Vo upllr

FeFh

+ Y W& e —velle| Vw — we)|e + g2 p <l’,§2(p) Vw,iﬁflﬂ) !) :
EeFE

Applying 20] we get

1
[vetive —ve|e| Viw —wp)|e < |||V v h2 || V(w — wr)| &
’ L2 F
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By (5.4) and [15| we get

sz (Lheey VoI5 0) | S 05 Vol oo ||| 2 o

Hence, applying [21| we write:

antw.n)l £ 3 ([ e, (1700 = wrlle + 1319w - wele))
FeFh ’

+ pktt "UJ‘HI@+2

ZIF—IQ}LH

L2 F
We conclude by taking wp = W;;k; Yw the elliptic projection on F (see [[10] Definition 1.39]),
then [[10] Theorem 1.48] gives:

1,k+1
flw — 7T'PF wHHl(F) S hk—H”w‘H’C“'%

~

W2 flw — w5 Wl gy S PP ] g

6 Stokes equations.

Finally, we illustrate this complex with the resolution of the Stokes equations. For the sake of
simplicity we use Neumann boundary conditions over the whole boundary, that it to say with
a free outlet condition. More general conditions are not difficult to enforce and are discussed
in Section |7} The solution is therefore determined only up to a constant vector field. The leads
to the introduction of a new space:

XG . ={v, € Xy, Z / ropur =0}, (6.1)
FeF,

This is the discrete counterpart of L3(2).
Let u be a constant viscosity, we define the symmetric bilinear form as (v, w;,) € X '%,h X

kaﬁ — Ron all v;,,w;, € X%,h by

an(wp, wy) = g (V5 vy, Vi, ) (6.2)

L2h

We also define the bilinear form bh(gh,gh) € X]%,h X XEQ , — Ronallv, € X’%Jb,gh € XEQ h
by

bn(vy, q,) = / Diwpqp. (6.3)
FeFy,

Then we define the bilinear form Ap((vp,p,), (wp,q,)) € (X’%’h’* x Xk, ) x (XVh* X
X}, ,) = Rby

An((p,p, ), (wh, q,)) = an(vy, wy) — br(wy,, p,) + br(vp, g, )- (6.4)
We define a suitable Sobolev-like norm on our discrete spaces such that Vv, € X kV,h’
2 1/2
lop w1 = (Hﬂh”v,h +an(vy,vp)) . (6.5)
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And for f € L*(Q) we set Ly, : X’%Ju* — R such that Vv, € X’%Jw

L = Flvs - f. 6.6
h(ﬂh) F;h/F’VvJ?'UF f ( )

We define the discrete problem:
Find (Qh,gh) € 1’%7,“ X X’ZQ ,, such that for all (Qh,gh) € X%,h,* X X’ZQ 5

An((©pp,)s (@p.4,)) = Lalwy). (6.7)

We show the well-posedness in lemma,
We consider the following Stokes problem:
Find uw € H?(Q) N L3(Q), p € H}(R) such that

—puAu+gradp=f, on €,

dgfu =0, on €, (6.8)
v =0, on 0f).
ong

Let (u,p) solves and let (vy,,p, ) solves (6.7). We assume that the continuous solutions u,

p have the additional smoothness w € H**2(F,) and p € H*?(F},). We deduce the following
error estimate.

Theorem 29 (Error estimate for Stokes). Under the smoothness assumption on w and p it
holds that

k k k
v, = IG pullvan + o, — 76 7Pl 2 e S B (\U|Hk+2(fh) + |pl g1 (g, + |P!Hk+2(fh)> :
6

(6.9)
Proof. The proof is a direct application of the third Strang lemma (see [8]) to the estimates
given by [30] and O

Lemma 30 (Well-posedness.). For any (v, p,) € X’%ﬁ’* XX’ZQJL there is (wy,,q,) € X%Jw X

legz,h such that |wp|lu,v1n + 19,27 S Opllevan + Py ll2 o and

An((@p,p,), (wp,q,)) 2 lwpllhvn + I, 172 0

Proof. Let (gh,;gh) € X’%,h,* X X'Zz ,» we have
An((wp,p,), g, p,)) = an(vy,vy) 2 vl v 10 (6.10)

Where the last inequality comes from Moreover by [25| there is w’;, € X kV,h, , such that
Dfw', = —p, and |[wyllv.1n < |12, 22 - Hence

An((p,p,), (W' p,0)) =an(vy, w'y) + [Ip, |72 1

1 2 1 2 2
> = §||Qh| AN T §||£,h”u,v71,h + ||£h||L2,F (6.11)
1 2 1 2
2= §|’Qh| wV.1,h §HBhHL2,F-
And we conclude by summing (6.10) and (6.11]). O
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We define the consistency error &, : X]%yh,* X Xlzz,h — R by

En((wh, 4,)) = La(wy) — AL pu, 75 7,p), (Wi, q,))- (6.12)

Lemma 31. For all w;, € XV hor 45, € XL2 e

Enl(wn,q,)) SET (Jul g i,y + ol () + Plisa,) )

(e

Proof. Let w;, € XV,H, q, € XLQ W

/L?V717h + HEhH[?,F) :

(i) = 3 [ Abp s - (UL T )
FeF, ’

+/ D}ngW%,Fp_/ Dlli“l]%,FUQF

Z /Vv FWE - gradp+/DFwF7TPFp
FeF,

([ e A (TEL T ) )

:gV,h(p Ipo, wy,) — Sp2.F <V’}+1wF, I, L2(F )(p I 2)) - MEA,h(uawh)

<|Evn(plag, wy)| +Isp2 p <y]}+1wF’z%+le) [
+lsge g <1122(F)(p1272),1122(F)(p12’2)> 12 4 p|Ean(u, w),)).

Where the second equality comes from we used f = — u Aw+ gradp, (4.2b) and divu = 0.
And the third equality comes from (5.12)), (5.15)) as well as:

/FD?WFW%,FPI/FTTV?H wFP:/FV]vawFi(PIM) :/FVIEHU’F W%-F(sz)-

We conclude inferring the estimates and the consistency (5.4). O

7 Alternative boundary conditions.

In this section we show how to extend the results of Section [6] when using Dirichlet boundary
conditions on X' 1%7 p- This is useful for common condition such as the no slip condition or forced
inlet condition and does not require much change.

7.1 Dirichlet boundary conditions.

We introduce the space X]%,h,o = {vy, € ka,h : VE € &y, E C 0Q,vg = 0}. The continuous
and discrete problem are then pretty much the same: they take the same expression but on a
different domain. Since the pressure is only defined up to a constant value, we introduce the
natural space: X’ZQ’}M = {q, € XIEQ,h : Y rer, Jpar = 0}. Then we define the bilinear form:

An((p,p,), (W, q,)) € (XG0 X Xia,,) X (XG50 % XFa ), ) = R by

An((vp:p,)s (Wh, q,)) = an(vy, wy) — bp(wy,p, ) +br(vp, q,). (7.1)
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With a; and by, defined by (6.2), , we also keep the same definition of the source
term L. So the discrete problem is:

Find (v, p,) € X’%,h,o X XIZQ,h,* such that for all (wy,,q,) € Xl%,h,o X X’ZQJM*

An((@pspy,), (Wr, 4,)) = Ln(vy)- (7.2)

The Stokes problem becomes:
Find w € H}(Q) N H*(Q), p € HY(Q) N L(Q) such that

—uAu+gradp =f, on

. (7.3)
divu =0, on .

Theorem 32. Under the same assumption as[29 we obtain the well-posedness of the problem
(7.2) and a convergence toward the continuous solution of problem ([7.3|) with the same error
estimate as (29)).

Proof. As stated before there is not much to adapt, namely: We need a suitable version of
and we can expect v;, € X%,h,o if P, € X’Ez,h,* by substituting the use of theorem
by theorem in the proof of The consistency errors and required respectively
W € H}(Q) and Vw - ng = 0. However we can check that this is only used to get and
both of which also hold if v;, € X]%,h,o instead, so that vy = 0, VE C 0f). Finally, we
relied on [22]to show that Ay, is weakly coercive. This too can readily be adapted if we use [[10]
Lemma 2.15] instead of [|[10] Theorem 6.5] in the proof of With these tree results we can
proceed exactly in the same manner as we did for O

7.2 Mixed boundary conditions.

We can also use Dirichlet conditions on a subset of the boundary and Neumann conditions
elsewhere. Explicitly we write I'p a relatively open subset of 9) with a non-zero measure and
'y =00\ I'p. We also assume that each boundary edge 092 D E € &, is either contained in
'y or in I'p but not in both (either ENTp =0 or ENTx = () and that both contained at
least one edge (else we degenerate to pure Neumann or pure Dirichlet with have already been
deals with). The boundary defined by I'p will expectedly be where we use Dirichlet boundary
conditions and 'y where we use Neumann boundary conditions. So that the Stokes problem
is:

Find u € H?(Q), p € H'(Q) such that

—puAu+gradp =f, on (),

divu =0, on €,

u =0, on I'p, (7.4)
87u =0, on I'y
ong ’

p =0, on I'y.

We introduce the discrete space X]%,h,D = A{vy, € X’%’h : VE € &, E C T'p,vg =0} and as
before define: Ax((vp,p,), (W, q,)) € (X]%,h,D X X’Z]Q,h) X (X%,h,D X X];ﬂ,h) — R by

An((@p,p,), (wh,q,,)) = an(vy, wy,) = ba(wy, p,) +br(vp, q,)- (7.5)

The discrete problem becomes once again:
Find (v, p,) € X’%’h?D X X’EQ,}L such that for all (wy,,q,) € X’%,h,D X X’EQ’h

An((vp,p,): (Wp.q,)) = Ln(vy). (7.6)
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Remark 33. In practical implementation we store continuous polynomials on edge by their
lower order moment on each edge and their values on vertices. If a boundary edge is part of
the Dirichlet boundary: E C I'p we must set to zero all associated unknowns, including those
on the vertices of this edge.

Remark 34. Although we took homogeneous boundary conditions for the sake of simplicity
this is by no means a limitation. For inhomogeneous Dirichlet simply write w = ug + wp with
ug € X ’%7}17 p and up given by the value on the boundary and solve for ug.

8 Numerical tests.

We display the numerical results for the Stokes problem with Neumann boundary conditions
, with Dirichlet boundary conditions and with mixed boundary conditions . This
was implemented with the HArDCore C++ framework (see https://github.com/jdroniou/
HArDCore), using the linear algebra facilities from the Eigen3 library (see https://eigen.
tuxfamily.org). An implementation of the spaces and operators defined in this paper as well
as a Stokes solver can be found at https://github.com/mlhanot/HArDCore2D-Stokes!

We used a constant viscosity 4 = 1 and measure the rate of convergence for various poly-
nomial degrees k € {0,1,2,3}. We compute the error by

k k
lvp — Iy pullpv,1n + ||13h — 7P 7, Pl L2 b

We expect the error to decrease at a rate O(h¥*1) thanks to theorem [29| and These tests
are done on various mesh sequences which can be seen in Figure [2| showing the flexibility of
the method. We show our results in Figure We always obtain results consistent with the
theory and the various features of the meshes do not deteriorate the convergence toward the
exact solution.

A Results on polynomial spaces.

We begin by showing a few results to complete the introduction of spaces (2.12)) and ([2.14)).
Lemma 35. For any F € Fy, it holds ﬁCk(F) ﬂﬁk(F) = {0}.

Proof. If w € PY#(F) and W € (R%*(F))? are such that Tt W = 0 and V-W = gradw
then W = 0 and w = 0. Indeed assuming xp = 0 without loss of generality any element

—ck ) ) zyPjaty!  yPPjatyl i k—2
W e R"(F tten W = I IT T ) Py gy F). So that
€ (F') is written <_$2Pi’j-rly] “ayP iy ) 52’y € PPT2(F). So tha

(2+i+7)P 12"y’ )

VW= <—(2 +i+4 j)Pimy ity

On the other side for w = wi,jﬂziyj € Po’k(F),

g« ()
(J + Dwi j12'y’

Hence, V- W = grad w if and only if for all 4,5 > 0,

< (L4i+j)Pi1-1 ) _ (iwi,j>
—(1+i+j)Pi-1,-1 Jwij)
This is only satisfied for w = 0. O
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) "Hexa” mesh. b) ”Square” mesh. ¢) "Square 2” mesh.

(d) " Tilted” mesh. (e) "Tilted 2” mesh. ) "Hexa anisotropic” mesh.

Figure 2: Families of mesh used.

Lemma 36. For any F € Fy,, it holds (R (F))? = ﬁCk(F) @ ﬁk(F)
Proof. Lemma |35 already shows that R (F)n ﬁk(F ) = {0}. It is enough to compare the

dimension of these spaces:
k! k(k —1)
2(k —2)! 2
(k+2)(k+1) | _ k*+3k+2-2
2 B 2 '
The sum of both is % = k(k + 1), which is the same as

(k + 1)k
2

dimﬁc’k(F) dim P*2(F) =

dimR"(F) = dim PO*(F) =

dim (R%(F))? = 2dim PF1(F) = 2 = k(k+1).

Next we show some lemmas on convex polytopes.

Lemma 37. Let F € Fy, xp defined as in ((2.5)), if B = B(xp,hp) C F with hg 2 hp and
Q € PH(F) then ||Q| o< () = [|Ql|oo-

Proof. Let h, € R such that ' C B(xp,h,) and h, < hp (h, exists by the regularity
assumption on the mesh sequence My). Let v by any vector such that ||v| = 1, then Yo > 0
such that xp + av € F,

ko oi
Q(zr +av) =) %Q(@r) o,

7!
i=0
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SO

0LQ| e .

Q(zp + av)| < 27” iz
By the discrete Poincare inequality [2| we have Vi, ||04Q|| o (p) S héiHQHLw(B)- Lastly zf +
av € F s0 a < hy and |Q(xzr + aw)| S [|Q|p(m hbhp ', Since h, < hp we can conclude
1Qlloe S 1Rl ()- O

Any F € Fj is a convex, open polygon. Let (E;);<|c,| be the set of its edges, each of
normal vector ng. For all E; there exists P; € P!(R?) such that E; C Ker(P;), moreover we
can normalize P; such that € € FF = P;(x) > 0 (since F' is convex) and |On, FP;| = 1.

Lemma 38. Set P = [[;cic, P, @0 € F such that By = B(xo,hp/2) C F and B =
- Er|
B(ao, hi/4) then infyep P(a) > (ETF) " and | Pl| ey S HER

~

Proof. For any ¢ < |Ep|, the value P;(x) at any point x is the distance between & and the
straight line defined by E; and is positive on F'. For any @ € B, x is a least at a distance hp/4
of any edge since By C F. We obtain the lower bound by taking the product over all edges.
Conversely, using the mesh regularity we can find h, > 0, h, < hp such that F is inscribed
in a circle of diameter h,. Then Vi < |Ep|, V& € F, it holds 0 < Pj(x) < h, < hp. Again we
conclude by taking the product over all edges. ]

Lemma 39. For any F € F, and q¢ € P*(F) there is P € PFHEFI(F) such that Pap =0,
mppP = q and | P ~ |lq].

Proof. Let P =TIQ with II given by [38{and @ € P¥(F). The application

PEF) > Q — ()\ — /FP)\> e PH(F) (A1)

is linear and between two spaces of same dimension thus it is enough to check that it is injective.
Let Q € P*(F) such that YA € P*(F), [TIQA = 0 hence [,.11Q? = 0. However since on
F, II > 0 we can define the function vII € L?*(F) and have [, (fQ) = [|VIIQ|?> = 0.

So VIIQ = 0 and Q = 0 which prove that (A1) is injective thus prove the existence of a
polynomial P € P*HEFI(F) such that Par = 0 and W%’FP = q. Let us show that P also
satisfy the norm equivalence: In particular we must have

/F(P—Q)Q=0

/FHQ2=/FqQ

IVIQI? < llalllQll < lalhrlQlls.

Therefore the discrete Sobolev inequality [[10] Lemma 1.25] gives
IVIQIZ, =~ hp? IVIQI? < At Qllsclall-

On the other consider B = B(xg, hp/4) given in it holds infpep VII(z) > h‘lfFW. Thus by
37
IVIIQlloe > IVTIQ| o= (5) 2 g™ Qo) = Mg [ QUL
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£ —1 E
Hence AEFN Q1% < hp'1Qllsollall, Q)0 S hp' ¥ g]| and

£
Q|| ~ hrlTQlls < he Mool Qllse S PE Q)00 < lall-

B Trace lifting.

In order to prove consistency results we often need functions of Sobolev spaces with suitable
properties. We construct them in this section.

Theorem 40. For all vy € X%F there is Ry, € H'(F) such that
Ry, =vg on OF,

(B.1)
IR, |l + 1V Ro i Slloplly e + |25 0r

This lift is built upon [[2] Theorem 18.40]: Let @ C RY, N > 2 be an open set whose
boundary 0f? is uniformly Lipschitz continuous of parameters €, L and M (see [[2] Definition
13.11]). Then for all g € B/>2(8Q), there is ¢ € R depending only on N and a function
u € H'(2) such that Tr(u) = g,

[l r20y < M2 gl 1200 (B.2)

and

lgradulg2q) < eM (1 + L)* N2 2||g|| 2 ag) + eM (1 + L)*FNFD2|g0 (B.3)

1/2,2 BQ)'

With the Besov seminorm defined by (see [[2] Definition 18.36]):

9(2) — gw)?
g = dydx . B.4
9151122000 = ([)Q/893> FEr B4

Proof of theorem[{0 We apply the above-mentioned theorem [[2] Theorem 18.40] to = F
and g a component of vg,. Here N = 2 and for the open cover of OF (see [[2] Definition 13.11])
we take a ball centered at each vertex of radius half the length of the shortest adjacent edge as
well as a ball centered on middle of each edge of radius half the length of the edge. This way
we have L =1, M = 2 and € = hr. We conclude with the estimate on the Besov seminorm

Indeed, let Ry, be such that Tr(R,,) = ve, and that R, satisfy and (B.3). Let g
be a component of vg, and u be given by and . Without loss of generality we assume
that faFg = 0: Else we take instead g = faFg and u = g so gradu = 0 and ||u||z2(p) ~ hZ|g),
191l L2(or) = hr|g| and u, g satisfy (B.1). We reduce to the case [,.¢ =0for ¢ =g—3.

Equation gives | Ry, |lF < lvplly p since € & hp. Applying the Poincare-Wirtinger
inequality to OF (since g is continuous and assumed to have zero average) we get ||g| r29r) <
hellgllz2or) hence

_1
H graduHLZ(Q) ShF2 HQHL2(8F) + ’9’031/2’2(89)
_1 1
Shp?hellgllzeor) + hilldlzor)
1
Shillgllpzor)-

Recalling definitions (3.28) and (3.14]) we get the expected results. O
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Lemma 41. Keeping the notations of the proof of [{0, it holds

1
19002000 S P90 (B.5)

Proof. We know that g is a continuous piecewise polynomial. Let E € £r. Far away from the
vertices, i.e. for € E such that B(x,e) N Vg = 0 it holds Vy € B(z,¢€), 3c € B(x,€) such that

T — 2
o(@) = glu) + )z — v) + ey T2
Hence .
l9(z) = g@)IP _19() (@ — y) + () S22
=yl BRIk
() + (o) S

SI9WP + lgllocl (@ = g2

If xy is the curvilinear coordinate of a vertex of E, the formula still holds for g(z) — g(xy)
since ¢ is continuous on [z,zy] and C* on |z,zy|[. Thus the formula holds for all z, y using
the triangular inequality if x and y are not on the same edge. Moreover, since € ~ hr and
Jor 1~ hp it holds:

. . 4 .
| ] Jillolta = ) < 13 [ 56 < lglEh
2€OF JycdFNB(z,¢€) r€OF

_1
We have e S by §lz2or) by [[10] Lemma 1.25], gl 20 S Rpldllzaor by ] so
1912 % P 1912 o and

/ / illocl (@ = )P S hrllglZa o
z€QF JycOFNB(z,€)

On the other hand by Fubini-Tonelli it holds

/ / G2 = / / 190) P10 (4)
2€OF JyedFNB(x,e€) z€0F JyeoF
- / 9(y)? / 1o (1).
yeOF z€IOF

However [ _or 1Bz (y) < hr thus

/ / 902 < helldlZa o,
x€0F JyedFNB(z,e€)

O]

Theorem 42. If p € H}(Q) then there is w € H*(Q) such that divu = p, ||ullge < ||pllm
and |lul[ g < [lpll >

Proof. Consider a smooth bounded extension (at least C*!) B of Q. For all function g €
H~Y(B), following [[4] Theorem II1.4.1] there is a unique solution f € H}(B) to the equation
Af = gin B. Moreover this solution satisfy || f|lz1 < ||gllgz-1 and [[4] Theorem III.4.2] shows
that if B is C**11 &k > 0 and g € H¥(B) then ||| gr+2 < ||lgllge- Since p € HL() we can
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extend p by zero and define p € Hy(B) with ||| gr(py = [Pl gr+(q)- Hence if we take f € Hg(B)
such that Af = divgrad f = p we have f € H*(B) since p € H'(B) with || f||g2(5) S llpll L2
and ||fllgssy < pllgr- Let u = grad fio then we have divu = pin Q and the expected
bounds. O

We can adapt the theorem to cover other boundary conditions.

Theorem 43. If p € H}(Q) such that [,p = 0 then there is w € H{(Q) N H?(Q) such that
divu =p, lullgz S llpllgr ond [ullg < ol e

Proof. Consider B an open bounded extension C%! of Q) such that Q C B and such that any
point of 92 can be connected by a path staying in B\ €2 to 9B. This is a mild assumption
that prevent B from filling holes of 2. We construct w in the same manner as in using
[[4] Theorem IIT.4.3] which is possible since the extension by zero of p on B, p satisfy [5p =
Jop = 0. This time we have f € H'(B) such that Af = p on B and 0,f = 0 on OB with the
increased smoothness f € H*(B), || fllgr+2 S ol ge, k € {0,1}. Let w = grad fio, u € H*(Q),
divu = p on  and satisfy the bounds on norms. It only remains to show that w € Hg(Q).
Since grad f € H?(B) the Sobolev imbedding theorems give grad f € C(B). Moreover since
p = 0 outside 2 we have divgrad f = 0 and in general rot grad f = 0 thus on each connected
component of B\ Q there is C € R? such that grad f = C on this component. The boundary
condition of f on OB requires grad f - n = 0 with n the normal vector. Hence, C' -n = 0
and since the boundary is not reduced to a single straight line there must be n; and ngs two
normal vectors of OB taken at two different locations that span a basis of R?. Thus C = 0,
grad f =0 on B\ Q and by continuity we must have u = grad f = 0 on 0. O
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