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Abstract

In this paper we present an arbitrary-order fully discrete Stokes complex on general
polygonal meshes. Based upon the recent construction of the de Rham fully discrete com-
plex [14] we extend it using the same principle. We complete it with other polynomial
spaces related to vector calculus operators and to the Koszul complex required to accom-
modate the increased smoothness of the Stokes complex. This complex is especially well
suited for problem involving Jacobian, divergence and curl, like e.g. the Stokes system or
magnetohydrodynamics. We show a complete set of results on the novelties of this complex
complementing those of [14]: exactness properties, uniform Poincaré inequalities and primal
and adjoint consistency. We use our new complex on the Stokes system and validate the
expected convergence rates with various numerical tests.

Keywords: Discrete Stokes complex, Discrete de Rham complex, compatible discretiza-
tion, polytopal methods

MSC2010 classification: 65N30, 65N99, 76D07

1 Introduction.

The exactness of the divergence free condition plays an important role in the numerical resolu-
tion of incompressible fluid equations, [6] provides a detailed review. This kind of conservation
requires the discrete spaces to reproduce relevant algebraic properties of the continuous spaces.
This exactness can be expressed as a differential complex.

R H1(Ω) H(div,Ω) L2(Ω) {0}iΩ rot div 0 (1.1)

Many discrete counterparts of the complex (1.1) have been developed. See [7] for a thorough
exposition and an extensive bibliography. Although many partial differential equations can
be expressed using the de Rham complex, the lack of smoothness can cause issues for some
equations. In particular with the Stokes equations (see [3]). So a smoother variant more suited
to the Stokes equations and called Stokes complex has been considered. It is written in two
dimensions:

R H2(Ω) H1(Ω) L2(Ω) {0}iΩ rot div 0 (1.2)
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The development of discrete counterparts of this smoother complex is much more complicated.
See [[7] Chapter 8.7] for a history. Although such construction exits (for example [5]) they
often have drawbacks. Recurrent problems can be a large minimal degree and thus numerous
unknowns as well as difficulties to enforce Dirichlet boundary conditions. The subject is very
active with many recent advances: [11, 12]. Another issue of these constructions is that they are
frequently constrained to conformal simplicial meshes, which is limiting for some geometries as
well as on the possibility of refinement or agglomeration. A construction of the Stokes complex
in virtual finite elements on general meshes has also been recently developed (see [13]).

Our construction works on general polygonal meshes and for arbitrary degrees. The discrete
spaces consist of polynomial spaces on the elements of all dimensions: faces, edges and vertices.
Compared to the virtual finite element method, the basis functions are explicitly known but do
not live in a subspace of continuous functions. The discrete differential operators are therefore
necessarily different from the continuous operators. They are constructed according to inte-
gration by parts formulas and in a sense converge with the discrete spaces to the continuous
operators (see the consistency results of Section 5). A discretization of the de Rham complex
(1.1) has been developed in detail by D. A. Di Pietro and J. Droniou [14]. One can find in
the introduction a very complete comparison of the different methods leading to discrete de
Rham complex on polytopal meshes. Our paper is a continuation of [14]: Our construction is
based upon it, and we add the necessary basis functions required by the increased smoothness
of the Stokes complex. We define and analyze in detail the Jacobian operator while checking
its compatibility with the complex.

More precisely we show the exactness of the complex, the existence of uniform Poincare
inequality and many consistency results as well as a discrete version of the right inverse for the
divergence for the discrete norm H1. This complex aims to be a building block for a three-
dimensional variation, but it is also perfectly usable for two-dimensional problems. Finally,
we apply this to the Stokes equations: we show the well-posedness, give an error estimate and
find an optimal convergence rate of order O(hk+1), h being the size of the mesh and k ≥ 0 the
chosen polynomial degree. We also explore other choices of boundary conditions and validate
numerically every result.

The remaining of the paper is organized as follows. In Section 2 we establish the general
setting. We define the discrete spaces and operators (interpolators, differential operators and
norms) in Section 3. In Section 4 we show that we do indeed belong to a complex which is
exact for simply connected domains. Section 5 is dedicated to consistency properties. Including
primal and dual consistency. The Stokes equations are defined in Section 6 and other boundary
conditions are studied in 7. We display our numerical results in Section 8. Finally we prove
technical propositions in the appendices: on polynomial spaces in appendix A and on various
lift in appendix B.

2 Setting.

This section is dedicated to the introduction of the setting and various notations that will be
used throughout the paper.

2.1 Mesh and orientation.

In the following we consider a polytopal domain Ω ⊂ R2 and keeping the notation of [14], for
any set Y ⊂ R2, we write hY := sup{|x − y| : x,y ∈ Y } and |Y | its Hausdorff measure. We
consider on this domain a mesh sequence Mh = Fh ∪ Eh ∪ Vh parameterized by a positive
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real parameter h ∈ H. Where Fh is a finite collection of open convex polygon such that
Ω = ∪F∈Fh

F and h = maxF∈Fh
hF > 0, Eh is the collection of open polygonal edges of the

faces, Vh the collection of edge vertices. This sequence must be regular in the sense of [[10]
Definition 1.9] with the regularity constant ρ.

We take k ≥ 0 a fixed polynomial degree. In the following most inequalities are true up
to a positive constant. This constant depends only on some parameters, here on the chosen
polynomial degree k, on the regularity parameter of the mesh sequence ρ and on the domain
Ω.

We denote the inequality up to a positive constant by

A . B

meaning there exists C ∈ R∗+ depending only on some parameters (here usually only on k, ρ
and Ω) such that A ≤ CB. We also write

A ≈ B

meaning that A . B and B . A.
For a fixed h, we choose an orientation of the plane, and we fix for each edge E ∈ Eh an

orientation tE . We note by ⊥ the rotation of angle π/2 in the oriented plane and nE = t⊥E .
For any face F ∈ Fh we fix a counter-clockwise orientation of its boundary ∂F . And for any
edge of this face E ∈ EF we note ωFE ∈ {−1, 1} the value such that ωFEtE is oriented in the
opposite direction of ∂F . We can then check that ωFEnE is the outgoing normal unit vector
of F . We also define nΩ as the outward pointing unit normal vector on the boundary ∂Ω.

2.2 Polynomial spaces.

For any entity X ∈ {E,F}, we denote by Pk(X) the set of polynomials of total degree at most
k on X, by Pk(F ) the set of polynomials with vector value in R2 on F , and by (Pk(X))2

the set of pairs of polynomials on X forming the rows of a matrix. We use the conventions
P−1(X) := {0} and P0,k(X) := {P ∈ Pk(X) :

∫
X P = 0}. We also define the broken

polynomial space

Pk(Xh) := {Ph ∈ L2(Xh) : ∀X ∈ Xh, Ph|X ∈ Pk(X)}. (2.1)

As well as its continuous counterpart

Pkc (Xh) := {Ph ∈ C0(Xh) : ∀X ∈ Xh, Ph|X ∈ Pk(X)}. (2.2)

Remark 1. Continuous polynomials can be characterized by their values at the interface and
their lower order moments on the elements. An explicit construction is deduced from 39, in
the context of edges we can see the isomorphism between Pk+2

c (Eh) and Pk(Eh)× RVh .

For the sake of readability we recall here two lemmas on the discrete spaces which will often
be used in the following, they are respectively the [[10] Lemma 1.28 and Lemma 1.32] (in a
slightly more restrictive setting):

Lemma 2. Let X be an element of Fh ∪ Eh. Let l be a positive integer and a real number
p ∈ [1,∞] be fixed. Then, the following inequality holds: For all v ∈ P l(X),

‖∇v‖Lp(X) . h
−1
X ‖v‖Lp(X), (2.3)

with hidden constant depending only on ρ, l and p.
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Lemma 3. Let p ∈ [1,∞] be a fixed real number and l ≥ 0 be a fixed integer. Then for all
h ∈ H, all F ∈ Fh, all E ∈ Eh, all v ∈ P l(F ),

‖v‖Lp(E) . h
− 1

p

F ‖v‖Lp(F ) (2.4)

with hidden constant depending only on ρ, l and p.

We will also use Koszul complements (see [[14] Section 2.4]). We consider for any face
F ∈ Fh a point xF such that B(xF , ρhF ) ⊂ F . Then we define the following subspace of
Pk(F ):

Gk(F ) := gradPk+1(F ), Gc,k(F ) := (x− xF )⊥Pk−1(F ),

Rk(F ) := rotPk+1(F ), Rc,k(F ) := (x− xF )Pk−1(F ).
(2.5)

These spaces are such that:

Pk(F ) = Gk(F )⊕ Gc,k(F ) = Rk(F )⊕Rc,k(F ), (2.6)

however the sum is not orthogonal for the L2 scalar product. We also have the following
isomorphisms:

rot : P0,k(F )→Rk−1(F ), (2.7)

div : Rc,k(F )→ Pk−1(F ). (2.8)

We may deduce from the discrete Poincare inequality 2 that |||rot||| . h−1, |||div||| . h−1 and
from [[14] Lemma 46] that

∣∣∣∣∣∣(rot)−1
∣∣∣∣∣∣ . h,

∣∣∣∣∣∣(div)−1
∣∣∣∣∣∣ . h.

We define the local spaces of Nedelec and of Raviart-Thomas respectively by:

N k(F ) := Gk−1(F )⊕ Gc,k(F ), RT k(F ) := Rk−1(F )⊕Rc,k(F ). (2.9)

These spaces are strictly contained between Pk−1(F ) and Pk(F ). Another important property
given in [[14] Proposition 45] is that for any face F ∈ Fh and any edge of this face E ∈ EF :

∀vF ∈N k(F ), (vF )|E · tE ∈ Pk−1(E),

∀wF ∈RT k(F ), (wF )|E · nE ∈ Pk−1(E).
(2.10)

In order to fix the notation we write

(Rc,k(F ))2 =

(
Rc,k(F )

Rc,k(F )

)
. (2.11)

And we take differential operators to be acting row-wise on matrix valued functions. We define

the space Rc,k
(F ) by

Rc,k
(F ) := {W ∈ (Rc,k(F ))2 : TrW = 0}. (2.12)

An explicit description of this space is given by (2.16). Let us now construct a complement to
this space. First noticing that Tr((Rc,k(F ))2) = P0,k(F ) we can consider the inverse operator
PTr

k : P0,k(F )→ (Rc,k(F ))2:

PTr
k :=

(
div−1

div−1

)
◦ grad . (2.13)

Where div is the isomorphism from Rc,k(F ) into Pk−1(F ) given by (2.8). Then we define the
space:

Rk
(F ) := PTr

k P0,k(F ). (2.14)

Lemma 36 shows that the spaces Rc,k
(F ) and Rk

(F ) are complementary.
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Remark 4. By construction, we have: ∇·Rk
(F ) = ∇·PTr

k P0,k(F ) = grad Pk(F ).

Remark 5. These spaces are sequential since Rc,k ⊂Rc,k+1
,Rk ⊂Rk+1

.

We define a matrix valued equivalent to Raviart-Thomas space by

RT k
(F ) := Rc,k

(F )⊕Rk−1
(F )⊕ (Rk−1(F ))2. (2.15)

Remark 6. For q ∈ Pk(F ), we have qI ∈ Rk
(F ) ⊕ (Rk(F ))2. Indeed ∇· (PTr q − qI) = 0 so

PTr q − qI ∈ (Rk(F ))2 by the isomorphism (2.8) and (2.6).

Lemma 7. For xF ∈ F the point given by (2.5) we have ∇·Rc,k+1
(F ) = (x−xF )⊥Pk−1(F ).

Proof. Indeed we have

Rc,k+1
(F ) =

(
−(x− xF )(y − yF )Q −(y − yF )2Q

(x− xF )2Q (x− xF )(y − yF )Q

)
, Q ∈ Pk−1(F ), (2.16)

∇·Rc,k+1
(F ) =

(
−(y − yF )(3Q+ (x− xF )∂xQ+ (y − yF )∂yQ)
(x− xF )(3Q+ (x− xF )∂xQ+ (y − yF )∂yQ)

)
, Q ∈ Pk−1(F ).

3 Discrete complex.

We define now the discrete complex. We start by giving all the elements composing it with the
locations of their degrees of freedom. Then we define the discrete differential operators and
give some basic properties on them.

3.1 Complex definition.

We define four discrete spaces Xk
rot,F , Xk

∇,F , Xk+1
L2,F

and Xk
L2,F . The diagram 3.1 summarize

their connection with each other and with their continuous counterpart.

L2(Ω)

H2(Ω) H1(Ω) L2(Ω)

Xk
rot,h Xk

∇,h Xk
L2,h

Xk+1
L2,h

Ik
L2,h

rot

Ikrot,h

div

Ik
∇,h

∇

πk
P,Fh

Ck
h Dk

h

∇k+1
h

(3.1)
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F : Pk−1(F ) Gk−1(F )× Gc,k(F ) Pk(F )

E : Pk(E) RT k+1
(F )

Pk−1(E) Pk(E) Pk+1(E)

V : Pk+1(V ) Pk+2(V )

Pk+2(V )

rot div

∇

Id

rot ∇

Id

Figure 1: Usage of the local degrees of freedom for the discrete differential operators.

Notice that the interpolators (defined in 3.2) require more smoothness than the spaces shown
in 3.1. Discrete spaces are defined by:

Xk
rot,h :={q

h
= ((qE , qE′)E∈Eh , (qV ′)V ∈Vh , (qF )F∈Fh

) : qE ∈ Pk+1
c (Eh),

qE′ ∈ Pk(E),∀E ∈ Eh,
qV ′ ∈ R2, ∀V ∈ Vh,
qF ∈ Pk−1(F ),∀F ∈ Fh},

(3.2)

Xk
∇,h :={vh = ((vE)E∈Eh , (vG ,F ,v

c
G ,F )F∈Fh

) : vE ∈ Pk+2
c (Eh),

vG ,F ∈ Gk−1(F ),vcG ,F ∈ Gc,k(F ),∀F ∈ Fh},
(3.3)

Xk+1
L2,h

:={W h = ((WE)E∈Eh , (W F )F∈Fh
) : WE ∈ Pk+1(E), ∀E ∈ Eh,

W F ∈RT k+1
(F ),∀F ∈ Fh},

(3.4)

Xk
L2,h :={wh = ((wF )F∈Fh) : wF ∈ Pk(F ),∀F ∈ Fh}. (3.5)

Figure 1 summarize the involvement of the various degrees of freedom with the differential
operators.

For a given face F we define the local discrete spaces Xk
rot,F , Xk

∇,F , Xk
L2,F and Xk+1

L2,F
as

the restriction of the global one to F , i.e. containing only the components attached to F and
those attached to the edges and vertices lying on its boundary. We define in the same way the
local discrete spaces attached to an edge E.

3.2 Interpolators.

In this section we define the interpolator linking discrete spaces to their continuous counterpart.
Since we project on objects of lower dimension (edges and vertices) we will need a somewhat
high smoothness for the continuous functions. For a vertex V ∈ Vh we define xV ∈ R2 to be
its coordinate. The interpolator on the space Xk

rot,h is defined for any q ∈ C1(Ω) by

Ikrot,hq = ((qE , π
k
P,E(rot q · tE))E∈Eh , (rot q(V ))V ∈Vh , (π

k−1
P,F (q))F∈Fh

), (3.6)
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where for any edge E ∈ Eh, qE is such that πk−1
P,E(qE) = πk−1

P,E(q) and for any vertex V ∈ VE ,
qE(xV ) = q(xV ).

The interpolator on the space Xk
∇,h is defined for any v ∈ C0(Ω) by

Ik∇,hv = ((vE)E∈Eh , (π
k−1
G,F (v),πc,kG ,F (v))F∈Fh

), (3.7)

where for any edge E ∈ Eh, vE is such that πkP,E(vE) = πkP,E(v) and for any vertex V ∈ VE ,
vE(xV ) = v(xV ).

The interpolator on the space Xk+1
L2,h

is defined for any W ∈ (C0(Ω))2 by

Ik
L2,h

W = ((πk+1
P,E(W · tE))E∈Eh , (π

k+1
RT ,F

(W ))F∈Fh
). (3.8)

The interpolator on the space Xk
L2,h is just πkP,Fh

, the piecewise L2-orthogonal projection

on spaces Pk(F ), F ∈ Fh.

3.3 Curl.

In the following sections we define the discrete operators starting from the discrete curl operator
Ck
h. The operator Ck

h is the collection of the local discrete operators (3.11) acting on the edges
and faces. For any edge E ∈ Eh we define the operator Ck

E : Xk
rot,E → Pk+2

c (Eh) such that

∀q
E

= (qE , qE′ , (qV ′)V ∈VE ) ∈ Xk
rot,E

Ck
EqE = vE . (3.9)

Where vE is such that πkP,E(vE) = qE′tE − ˙qEnE and ∀V ∈ VE , vE(xV ) = qV ′ . With ˙qE the
derivative of qE along the edge E (oriented by tE).

For any face F ∈ Fh we define the operator Ck
F : Xk

rot,F → Pk(F ) such that ∀q
F

=

((qE , qE′)E∈EF , (qV ′)V ∈VF , qF ) ∈ Xk
rot,F , ∀rF ∈ Pk(F )∫

F
Ck
F qF · rF =

∫
qF rot rF +

∑
E∈EF

ωFE

∫
E
qErF · tE . (3.10)

The full operator Ck
F : Xk

rot,F → Xk
∇,F is defined as the collection and projection of the

local operators. Explicitly for all q
h
∈ Xk

rot,h

Ck
F qF = ((Ck

EqE)E∈EF , (π
k−1
G,F (Ck

F qF ),πc,kG ,F (Ck
F qF ))). (3.11)

The global operator Ck
h is obtained by gathering the local operators Ck

F , F ∈ Fh.

3.4 Jacobian.

Likewise, we begin by defining the local operator on edges: ∇k+1
E : Xk

∇,E → Pk+1(E) such

that ∀vE ∈Xk
∇,E

∇k+1
E vE = v̇E . (3.12)

Where the derivative is taken along the tangent tE of the edge E.

We define the local operator on faces: ∇k+1
F : Xk

∇,F →RT k+1
(F ) such that ∀vF ∈Xk

∇,F ,

∀W F = W c
R,F

+WR,F +WR,F ∈RT k+1
(F ),∫

F
∇k+1
F (vF ) :W F =−

∫
F
vcG ,F · ∇·(W c

R,F
)−

∫
F
vG ,F · ∇·(WR,F ) +

∑
E∈EF

ωFE

∫
E
vEW FnE .

(3.13)
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Remark 8. Since ∇·(Rk(F ))2 = 0 by 6 we see that ∀q ∈ Pk(F ),∫
F
∇k+1
F (vF ) :(q I2,2) =

∫
F
vG ,F · grad q +

∑
E∈EF

ωFE

∫
E
qvEnE

The full and global operators ∇k+1
F and ∇k+1

h are merely collections of local operator:

∇k+1
F vF = ((∇k+1

E vE)E∈EF ,∇
k+1
F vF ), (3.14)

∇k+1
h vh = ((∇k+1

E vE)E∈Eh , (∇
k+1
F vF )F∈Fh

). (3.15)

We prove a first commutative property:

Lemma 9. For all E ∈ Eh and all F ∈ Fh the following relations hold:

∇k+1
E (Ik∇,Ev) = πk+1

P,E(v̇), ∀v ∈H1(E). (3.16)

∇k+1
F (Ik∇,Fv) = πk+1

RT ,F
(∇v), ∀v ∈H1(F ) ∩C0(F ). (3.17)

Proof. The equation (3.16) is deduced exactly as it is done for [[14] Equation 3.8]. Let prove

(3.17): For all v ∈H1(F ) ∩C0(F ) and all W F ∈RT k+1
(F ),∫

F
∇k+1
F (Ik∇,Fv) :W F =−

∫
F
πc,kG,F (v) · ∇·(W c

R,F
)−

∫
F
πk−1
G,F v · ∇·(WR,F ))

+
∑
E∈EF

ωFE

∫
E
πc,k+2
P,E (v)W FnE

=−
∫
F
v · ∇·(W c

R,F
)−

∫
F
v · ∇·(WR,F ))

+
∑
E∈EF

ωFE

∫
E
vW FnE

=−
∫
F
v · ∇·(W F ) +

∑
E∈EF

ωFE

∫
E
vW FnE

=

∫
F
∇v :W F .

Where we used the definitions 7 and 2.14 to remove the first two projections (πc,kG,F and πk−1
G,F ),

the property (2.10) to remove the last projection and the integration by parts to conclude.

Any face F ∈ Fh has several polynomials attached to it (on the face itself and on its
edges). In order to combine all these polynomials into a single one defined on F we introduce a
reconstruction operator γk+1

∇,F : Xk
∇,F → (Pk+1(F ))2 implicitly defined by the relation: ∀W F ∈

(Rc,k+2(F ))2, ∀vF ∈Xk
∇,F ,∫

F
γk+1
∇,F (vF ) · ∇·W F = −

∫
F
∇k+1
F vF :W F +

∑
E∈EF

ωFE

∫
E
vEW FnE . (3.18)

The isomorphism (2.8) ensure the well-posedness.

Remark 10. The relation (3.18) also holds for all W F ∈ (Pk(F ))2. Indeed if W F belongs to
(Rk(F ))2 then ∇·W F = 0 and the left-hand side of (3.18) is null. And since (Rk(F ))2 ⊂
(Pk(F ))2 ⊂ RT k+1

(F ) we can apply (3.13) to show that the right-hand side is also zero.
Hence, the relation holds for all (Rk(F ))2 ⊕ (Rc,k+2(F ))2 ⊃ (Pk(F ))2.
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Lemma 11 (Consistency properties). For all F ∈ Fh the following relations hold:

γk+1
∇,F (Ik∇,Fv) = v, ∀v ∈ Pk+1(F ). (3.19)

πc,kG,F (γk+1
∇,FvF ) = vcG ,F ,

πk−1
G,F (γk+1

∇,FvF ) = vG ,F ,
∀vF ∈Xk

∇,F . (3.20)

Proof. Let us show (3.19): For any v ∈ Pk+1(F ), since∇v ∈ (Pk(F ))2 ⊂RT k+1
the equation

(3.17) gives ∇k+1
F (Ik∇,Fv) = ∇v. Moreover v|E is continuous of degree k+ 1 < k+ 2 so by the

definition (3.18) we have for all W F ∈ (RT c,k+2(F ))2:∫
F
γk+1
∇,F (Ik∇,Fv) =−

∫
F
∇v :W F +

∑
E∈EF

ωFE

∫
E
vW FnE

=

∫
F
v · ∇·W F .

Now to prove (3.20) we show that for all W F ∈Rc,k+1
(F ) ⊂ (Rc,k+2(F ))2,∫

F
πc,kG ,F (γk+1

∇,FvF ) · ∇·W F =

∫
F

(γk+1
∇,FvF ) · ∇·W F

= −
∫
F
∇k+1
F (vF ) :W F +

∑
E∈EF

ωFE

∫
E
vEW FnE

=

∫
F
vcG ,F · ∇·W F +

∑
E∈EF

ωFE

∫
E

(vE − vE)W FnE .

Where we used 7 to show the first equality, (3.18) for the second and (3.13) and (2.12) for the

last hence, πc,kG ,F (γk+1
∇,FvF ) = vcG ,F . Likewise for all W F ∈ Pk(F ) I2,2: we have ∇·Pk(F ) I2,2 =

Gk−1(F ). Since the relation (3.18) holds thanks to 10 and since Pk(F ) ⊂ RT k+1
(F ) we can

follow the same steps and show that πk−1
G,F (γk+1

∇,FvF ) = πk−1
G,F .

3.5 Divergence.

Finally, we define the discrete divergence operator, for all F ∈ Fh by:

Dk
F := Tr∇k+1

F ∈ Pk(F ).

As in the continuous case the divergence is the trace of the gradient, but we can also define it
by a formula mimicking the integration by parts:∫

F
Dk
FvFwF =

∫
F

Tr(∇k+1
F vF )wF

=

∫
F
∇k+1
F vF :wF I2,2

=−
∫
F
vG ,F gradwF +

∑
E∈EF

ωFE

∫
E
vE · nEwF

(3.21)

Where we used that Pk(F ) I2,2 ⊂ RT k+1
(F ) by 6. We get the same definition as the one of

the de Rham complex of [14].
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3.6 Discrete L2-product.

We build scalar product on discrete spaces. They are made of the sum of the L2 scalar product
on each face and of a stabilization term taking the lower dimensional objects (edges and vertices)
into account. First we define them locally for all F ∈ Fh: For all vF ,wF ∈Xk

∇,F we set

(vF ,wF )∇,F =

∫
F
γk+1
∇,FvF · γ

k+1
∇,FwF + s∇,F ( vF ,wF ), (3.22)

s∇,F ( vF ,wF ) =
∑
E∈EF

hE(γk+1
∇,FvF − vE) · (γk+1

∇,FwF −wF ). (3.23)

For all V F ,W F ∈Xk+1
L2,F

we set

(V F ,W F )L2,F =

∫
F
V F :W F + sL2,F (V F ,W F ) . (3.24)

sL2,F (V F ,W F ) =
∑
E∈EF

hE(V F · tE − V E) · (W F · tE −WE). (3.25)

Global scalar products are then merely the sum of local scalar product over every face F ∈ Fh.
For all vF ∈Xk

∇,F and W F ∈Xk+1
L2,F

the norm induced by this scalar product is denoted by:

‖vF ‖∇,F = (vF ,vF )
1/2
∇,F , ‖W F ‖L2,F = (W F ,W F )

1/2

L2,F
.

We also define norms built from the sum over the objects of every dimension. For all
q
F
∈ Xk

rot,F we define

∣∣∣∣∣∣∣∣∣q
F

∣∣∣∣∣∣∣∣∣2
rot,F

= ‖qF ‖2F +
∑
E∈EF

hE

‖qE‖2E + ‖qE′‖2E +
∑
V ∈VE

hE |qV ′ |2
 . (3.26)

For all vF ∈Xk
∇,F we define

|||vF |||
2
∇,F = ‖vG ,F ‖2F + ‖vcG ,F ‖2F +

∑
E∈EF

hE‖vE‖2E . (3.27)

For all W F ∈Xk+1
L2,F

we define

|||W F |||
2
L2,F = ‖W F ‖2F +

∑
E∈EF

hE‖WE‖2E . (3.28)

And for all pF ∈Xk
L2,F we define

‖pF ‖2L2,F = ‖pF ‖2F . (3.29)

We show the equivalence between the norm induced by (3.22) and (3.27) in lemma 14 and
the equivalence between those induced by (3.24) and (3.28) in lemma 15.

We define the global norms over Ω as the sum of the local norms over every face F ∈ Fh,
i.e. |||vh|||

2
∇,h =

∑
F∈Fh

|||vF |||
2
∇,F .

Lemma 12 (Inverse Poincaré inequality). For all F ∈ Fh and all vF ∈Xk
∇,F it holds:

‖∇k+1
F vF ‖ . h−1|||vF |||∇,F .

10



Proof. Let F ∈ Fh and vF ∈ Xk
∇,F . We use the discrete inverse inequality [[10] Lemma 1.28]

to show that:

‖∇k+1
F vF ‖2 =

∫
F
∇k+1
F vF :∇k+1

F vF

.‖vcG ,F ‖h−1‖∇k+1
F vF ‖ + ‖vG ,F ‖h−1‖∇k+1

F vF ‖ + ‖vE‖h−
1
2 ‖∇k+1

F vF ‖F
.h−1‖∇k+1

F vF ‖( ‖vcG ,F ‖ + ‖vG ,F ‖ +
∑
E∈EF

h
1
2 ‖vE‖).

Lemma 13 (Boundedness of local potential). For all F ∈ Fh and all vF ∈Xk
∇,F it holds:

‖γk+1
∇,FvF ‖ . |||vF |||∇,F (3.30)

Proof. Let F ∈ Fh, vF ∈ Xk
∇,F , since γk+1

∇,FvF ∈ Pk+1(F ) there is W F ∈ (Rc,k+2(F ))2 such

that ∇·W F = γk+1
∇,FvF hence:

‖γk+1
∇,FvF ‖

2 =

∫
F
γk+1
∇,FvF · γ

k+1
∇,Fv

=

∫
F
γk+1
∇,FvF · ∇·W F

=−
∫
F
∇k+1
F vF :W F +

∑
E∈EF

ωFE

∫
E
vEW FnE

≤‖∇k+1
F vF ‖ ‖W F ‖ +

∑
E∈EF

‖vE‖‖W F ‖E

.h−1||| vF |||∇,F ‖W F ‖ + h−1
∑
E∈EF

h
1
2 ‖vE‖‖W F ‖F

.h−1‖W F ‖|||vF |||∇,F .

Where we used the Cauchy-Schwarz inequality to get the fourth line, 12 for the fifth, the discrete
trace inequality [[10] Lemma 1.32] for the sixth. We can conclude since ‖W F ‖ . h‖γk+1

∇,FvF ‖
thanks to the upper bound on the operator norm of the isomorphism (2.8).

Lemma 14. It holds, for all F ∈ Fh and all vF ∈Xk
∇,F ,

‖vF ‖∇,F ≈ |||vF |||∇,F , ∀vF ∈X
k
∇,F .

Proof. From the definitions (3.22) and (3.23) we have:

‖vF ‖2∇,F =

∫
F
γk+1
∇,FvF · γ

k+1
∇,FvF +

∑
E∈EF

hE‖γk+1
∇,FvF − vE‖

2

.‖γk+1
∇,FvF ‖

2 +
∑
E∈EF

hE(‖γk+1
∇,FvF ‖

2
E + ‖vE‖2)

.‖γk+1
∇,FvF ‖

2 +
∑
E∈EF

hE(h−1
F ‖γ

k+1
∇,FvF ‖

2
F + h−1

E |||vF |||
2
∇,F )

.|||vF |||
2
∇,F .

11



Where we used (3.30) on the first line and the trace inequality 3 on the second.
Conversely, |||vF |||

2
∇,F = ‖vcG ,F ‖2F + ‖vG ,F ‖2F +

∑
E∈EF hE‖vE‖

2
E by (3.27). We bound each

term of the right-hand side:

‖vE‖2E ≤‖vE − γk+1
∇,F vF ‖

2
E + ‖γk+1

∇,FvF ‖
2
E

.‖vE − γk+1
∇,F vF ‖

2
E + h−1

F ‖γ
k+1
∇,FvF ‖

2
F .∑

E∈EF

hE‖vE‖2 .‖γk+1
∇,FvF ‖

2
F +

∑
E∈EF

hE‖vE − γk+1
∇,FvF ‖

2
E

(3.31)

The consistency property (3.20) allows us to write:

‖vcG ,F ‖2 + ‖vG ,F ‖2 = ‖πc,kG,Fγ
k+1
∇,FvF ‖

2 + ‖πk−1
G,F γ

k+1
∇,FvF ‖

2 ≤ 2‖γk+1
∇,FvF ‖

2 . ‖vF ‖2∇,F . (3.32)

We conclude by combining (3.31) and (3.32) to show that |||vF |||
2
∇,F . ‖vF ‖2∇,F .

Lemma 15. It holds, for all F ∈ Fh and all W F ∈Xk+1
L2,F

,

∀W F ∈Xk+1
L2,F

, ‖W F ‖L2,F ≈ |||W F |||L2,F .

Proof. Let W F ∈Xk+1
L2,F

, we have:

‖W F ‖2L2,F
=

∫
F
W F :W F +

∑
E∈EF

hE

∫
E

(W F · tE −WE) · (W F · tE −WE)

.‖W F ‖2F +
∑
E∈EF

hE
(
‖W F ‖2E + ‖WE‖2E

)
.|||W F |||

2
L2,F

Where we use the triangular inequality and the discrete trace inequality [[10] Lemma 1.32].
Conversely, we have:

|||W F |||
2
L2,F =

∫
F
W F :W F +

∑
E∈EF

hE

∫
E
WE ·WE

.
∫
F
W F :W F +

∑
E∈EF

hE‖W F · tE −WE‖2E + hE‖W F · tE‖2E

.‖W F ‖2L2,F
.

4 Complex property.

In this section we regard the following sequence:

Xk
rot,h Xk

∇,h Xk
L2,h.

Ck
h Dk

h (4.1)

We will show in 17 that (4.1) is indeed a complex, but first we show that the interpolators form
a cochain morphism from a continuous de Rham complex into the sequence (4.1).
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Lemma 16 (Local commutation properties). It holds for all F ∈ Fh,

Ck
F (Ikrot,F q) =Ik∇,F rot q, ∀q ∈ C1(F ), (4.2a)

∇k+1
F (Ik∇,Fv) =Ik

L2(F )
∇v, ∀v ∈ C1(F ), (4.2b)

Dk
F (Ik∇,Fv) =πkP,F div v, ∀v ∈ C0(F ) ∩H1(F ). (4.2c)

Proof. Proof of (4.2a). Let q ∈ C1(F ) and q
F

= Ikrot,F q. We set vF = Ck
F qF , and we see that

for all E ∈ FE of vertices with coordinates xV1 and xV1 , for all r ∈ Pk(E),∫
E
q̇Er =−

∫
E
qE ṙ + qE(xV1)r(xV1)− qE(xV2)r(xV2)

=−
∫
E
qṙ + q(xV1)r(xV1)− q(xV2)r(xV2)

=

∫
E
q̇r.

Where we used the continuity of pE and the fact that ṙ ∈ Pk−1(F ) thus:

πkP,E(vE · (−nE)) = ˙qE = πkP,E(grad q · tE) = πkP,E(rot q · (−nE)).

Moreover, by definition πkP,E(v · tE) = πkP,E(rot q · tE), vE(xV ) = rot q(xV ). and for all

rF ∈N k(F ), using (2.10) we see that:∫
F
vF · rF =

∫
F
qF rot rF +

∑
E∈EF

ωFE

∫
E
qErF · tE

=

∫
F
q rot rF +

∑
E∈EF

ωFE

∫
E
qrF · tE

=

∫
F

rot q · rF .

Proof of (4.2b). Immediate consequence of (3.16) and (3.17).

Proof of (4.2c). Let v ∈ C0(F ) ∩ H1(F ), we set vF = Ik∇,Fv and qF = Dk
FvF . For all

wF ∈ Pk(F ), since gradwF ∈ Gk−1(F ) we have:∫
F
qFwF =−

∫
F
vG ,F gradwF +

∑
E∈EF

ωFE

∫
E
vE · nEwF

=−
∫
F
v gradwF +

∑
E∈EF

ωFE

∫
E
v · nEwF

=

∫
F

div vwF .

Theorem 17 (Complex property). It holds:

Ikrot,hR = KerCk
h, (4.3a)

ImCk
h ⊂ KerDk

h, (4.3b)

ImDk
h = Pk(Fh). (4.3c)
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Proof. Proof of (4.3a). The inclusion Ikrot,hR ⊂ KerCk
h is immediate since for all F ∈ Fh and

all rF ∈ Pk(F ), the continuous integration by parts gives∫
F rot rF +

∑
E∈EF ωFE

∫
E rF · tE = 0. Conversely if q

h
∈ Xk

rot,h is such that Ck
hqh = 0 then

for all E ∈ Eh, qE′ = 0 and for all vertex V ∈ Vh, qV ′ = 0. Moreover ˙qE = 0 so qE is constant
on each edge and since it is continuous on vertices and Ω has a single connected component
there is C ∈ R such that ∀E ∈ Eh, qE = C. By (3.11) and (3.10) we must have for all F ∈ Fh,
∀rF ∈ N k(F ),

∫
F qF rot rF +

∑
E∈EF ωFE

∫
E qErF · tE = 0. Substituting qE by C and doing

an integration by parts we get
∫
F (qF − C) rot rF = 0. We can conclude that qF = C since

rotN k(F )→ Pk−1(F ) is onto.
Proof of (4.3b). Let p

h
∈ Xk

rot,h and vh = Ck
hph. For all F ∈ Fh and all wF ∈ Pk(F ) we have:∫

E
vE · nEwF =

∫
E
πkP,EvE · nEwF = −

∫
E
q̇EwF .

If we write xE1 and xE1 the coordinates of the vertices of the edge E, we have

−
∫
E
q̇EwF =

∫
E
qEẇF − qEwF (xE1) + qEwF (xE2).

Where ẇF is the derivative along E so ẇF = gradwF ·tE . Moreover
∑

E∈EF ωFE(qEwF (xE2)−
qEwF (xE1)) = 0 thanks to the continuity of qE so:∑

E∈EF

ωFE

∫
E
vE · nEwF =

∑
E∈EF

ωFE

∫
E
qE gradwF · tE . (4.4)

On the other hand we have:

−
∫
F
vG ,F gradwF =−

∫
F
qF rot gradwF −

∑
E∈FE

ωFE

∫
E
qE gradwF · tE

=−
∑
E∈FE

ωFE

∫
E
qE gradwF · tE .

Summing with (4.4) we find Dk
FvF = 0, for all F ∈ Fh.

Proof of (4.3c) See lemma 24.

The complex is exact if and only is the inclusion (4.3b) is in fact an equality. We can show
that this the same as asking for Ω to be contractible. The proof is a slight adaptation of [[9]
Section 4.3]. and will not be duplicated here.

5 Consistency results.

The last things we need to show in order to efficiently use this complex are consistency results.
First we show primal consistency results, controlling the error made when we use the interpo-
lators. Then we show some Poincare type results useful to show stability, including a discrete
counterpart to the right inverse for the divergence 24. Finally we show adjoint consistency
results, which control the error made when we perform a discrete integration by parts.

We begin by recalling a result from [[1] Lemma 4.3.4]: ∀p ∈ (1,∞), ∀q ∈ N such that
pq > 2, ∀w ∈W q,p(F ),

‖w‖C(F ) . h
− 1

2
F

q∑
r=0

hrF |w|W r,p(F ). (5.1)
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Lemma 18 (Primal consistency). For all F ∈ Fh it holds:

‖γk+1
∇,F (Ik∇,Fv)− v‖ . hk+2|v|Hk+2 , ∀v ∈Hk+2(F ) ∩C0(F ). (5.2)

Proof. For all F ∈ Fh, (3.19) shows that γk+1
∇,F I

k
∇,F is a projection on Pk+1(F ). Thus we just

have to show that ‖γk+1
∇,F (Ik∇,Fv)‖ . ‖v‖+ h‖v‖H1 + h2‖v‖H2 to conclude with the lemma on

approximation properties of bounded projector [[10] Lemma 1.43]. And starting from (3.30)
we have

‖γk+1
∇,F (Ik∇,Fv)‖ .

∣∣∣∣∣∣∣∣∣Ik∇,Fv∣∣∣∣∣∣∣∣∣∇,F
.‖πc,kG,Fv‖F + ‖πk−1

G,F v‖F +
∑
E∈EF

h
1
2
E‖π

k+2
P,Ev‖E

.‖v‖F + hF |v|H1(F ).

Where we used the continuous trace inequality [[10] Lemma 1.51] and the boundedness of L2

projectors.

Lemma 19 (Stabilization forms consistency). For all F ∈ Fh it holds:

s∇,F ( Ik∇,F v, I
k
∇,F v)1/2 . hk+2|v|Hk+2(F ), ∀v ∈H

k+2(F ) ∩C0(F ), (5.3)

sL2,F

(
Ik
L2(F )

W , Ik
L2(F )

W
)1/2

. hk+1|W |Hk+1(F ), ∀W ∈Hk+1(F ) ∩C0(F ). (5.4)

Proof. Proof of (5.3). For all zF ∈ Pk+1(F ) we have γk+1
∇,F (Ik∇,FzF ) = zF by (3.19) so for all

wF ∈Xk
∇,F ,

s∇,F ( Ik∇,FzF ,wF ) =
∑
E∈EF

hE(γk+1
∇,F I

k
∇,FzF − zF ) · (γk+1

∇,FwF −wF ) = 0.

Hence

s∇,F ( Ik∇,FvF , I
k
∇,FvF ) = s∇,F ( Ik∇,F (vF −πk+1

P,F ), Ik∇,F (vF −πk+1
P,F )) . ‖Ik∇,F (vF −πk+1

P,F )‖2∇,F .

We conclude by the norm equivalence 14 and [[10] Theorem 1.45].
Proof of (5.4). Let W ∈Hk+1(F ) ∩C0(F ), we have:

sL2,F

(
Ik
L2(F )

W , Ik
L2(F )

W
)

=
∑
E∈EF

hE‖πk+1
P,EW · tE − πk+1

RT ,F
W · tE‖2E

≤
∑
E∈EF

hE‖W − πk+1
RT ,F

W ‖2E

≤
∑
E∈EF

hE(‖W − πkP,FW ‖2E + ‖πkP,FW − πk+1
RT ,F

W ‖2E)

.h2(k+1)|W |Hk+1 + ‖W − πkP,FW ‖2F .

Where the second equality comes from RT k+1
(F ) · tE ⊂ (Pk+1(E))2 and where we used the

approximation properties on traces [[10] Theorem 1.45 Equation 1.75] on the first term and
the discrete trace inequality [[10] Lemma 1.32] on the second term to get the last equality. We
conclude with [[10] Theorem 1.45 Equation 1.74].
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5.1 Poincaré inequality.

We begin by stating two lemmas which will be useful to prove the Poincare inequality.

Lemma 20. For all F ∈ Fh and all vF ∈Xk
∇,F it holds that

∑
E∈EF

h−1
E ‖γ

k+1
∇,FvF − vE‖

2
E .

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣2
L2,F

. (5.5)

Proof. For any F ∈ Fh and vF ∈Xk
∇,F set R2 3 Av,∂F = 1∑

E∈EF

∫
E 1

∑
E∈EF

∫
E vE then (3.19)

gives Av,∂F = γk+1
∇,F (Ik∇,FAv,∂F ) and∑

E∈EF

h−1
E ‖γ

k+1
∇,FvF − vE‖

2
E ≤

∑
E∈EF

h−1
E

(
‖γk+1
∇,FvF −Av,∂F ‖2E + ‖Av,∂F − vE‖2E

)
.

Invoking a Poincare-Wirtinger inequality on the boundary ∂F we show that, since the Poincare
constant is bounded by the diameter:∑

E∈EF

h−1
E ‖Av,∂F − vE‖2E . h2

F

∑
E∈EF

h−1
E ‖∇

k+1
E vE‖2 .

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣2
L2,F

. (5.6)

Take W F ∈ (Rc,k+2(F ))2 such that ∇·W F = γk+1
∇,F (vF − Ik∇,FAv,∂F ). Then by the estimate

on the operator norm of (2.8) we have ‖W F ‖ . hF ‖γk+1
∇,F (vF −Ik∇,FAv,∂F )‖. Moreover (3.17)

states that ∇k+1
F Ik∇,FAv,∂F = 0 so

‖γk+1
∇,F (vF − Ik∇,FAv,∂F )‖2 =−

∫
F
∇k+1
F vF :W F +

∑
E∈EF

ωFE

∫
E

(vE −Av,∂F )W FnE

.‖W F ‖‖∇k+1
F vF ‖ + ‖W F ‖F

∑
E∈EF

h
− 1

2
E ‖vE −Av,∂F ‖E

.hF ‖γk+1
∇,F (vF − Ik∇,FAv,∂F )‖

(
‖∇k+1

F vF ‖ +
∣∣∣∣∣∣∣∣∣ ∇k+1

F vF

∣∣∣∣∣∣∣∣∣
L2,F

)
.

Where we used the discrete trace inequality 3 then the inequality (5.6). We conclude since for
any E ∈ EF ,

h
− 1

2
E ‖γ

k+1
∇,FvF −Av,∂F ‖E . h−1

E ‖γ
k+1
∇,F (vF − Ik∇,FAv,∂F )‖F . ‖∇k+1

F vF ‖ +
∣∣∣∣∣∣∣∣∣ ∇k+1

F vF

∣∣∣∣∣∣∣∣∣
L2,F

.

Lemma 21. For all F ∈ Fh and all vF ∈Xk
∇,F it holds that

‖∇ γk+1
∇,FvF ‖

2 +
∑
E∈EF

h−1
E ‖γ

k+1
∇,FvF − vE‖

2
E .

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣2
L2,F

. (5.7)
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Proof. Let W F = ∇ γk+1
∇,FvF , we have

‖∇ γk+1
∇,FvF ‖

2 =−
∫
F
γk+1
∇,FvF · ∇·W F +

∑
E∈EF

ωFE

∫
E
γk+1
∇,FvFW FnE

=

∫
F
∇k+1
F vF :W F +

∑
E∈EF

ωFE

∫
E

(γk+1
∇,FvF − vE)W FnE

≤‖∇k+1
F vF ‖‖W F ‖ +

∑
E∈EF

h
− 1

2
E ‖γ

k+1
∇,FvF − vE‖Eh

1
2
E ‖W F ‖E

.‖∇k+1
F vF ‖‖W F ‖ + ‖W F ‖(

∑
E∈EF

h−1
E ‖γ

k+1
∇,FvF − vE‖

2
E)

1
2

.‖∇ γk+1
∇,FvF ‖‖W F ‖.

Where we used W F ∈ (Pk(F ))2 with 10 on the second line, the discrete trace inequality 3 on
the third, and we concluded with 20.

Lemma 22. For all vh ∈Xk
∇,h such that

∑
F∈Fh

∫
F γ

k+1
∇,FvF = 0 it holds that

|||vh|||∇,h .
∣∣∣∣∣∣∣∣∣∇k+1

h vh

∣∣∣∣∣∣∣∣∣
L2,h

. (5.8)

Proof. For any vh ∈ Xk
∇,h we apply [[10] Theorem 6.5] to ((γk+1

∇,FvF )F∈Fh
, (πk+1

P,EvE)E∈Eh) to
get: ∑

F∈Fh

‖γk+1
∇,FvF ‖

2 .
∑
F∈Fh

‖∇ γk+1
∇,FvF ‖

2 +
∑
E∈EF

h−1
E ‖γ

k+1
∇,FvF − π

k+1
P,EvE‖

2
E

 .

Moreover, since γk+1
∇,FvF ∈ Pk+1(F ) we have:

‖γk+1
∇,FvF − π

k+1
P,EvE‖

2
E =‖γk+1

∇,FvF ‖
2
E − 2

∫
E
γk+1
∇,FvF · vE + ‖πk+1

P,EvE‖
2
E

≤‖γk+1
∇,FvF − vE‖

2
E ,

Hence by lemma 21 ∑
F∈Fh

‖γk+1
∇,FvF ‖

2 .
∣∣∣∣∣∣∣∣∣∇k+1

h vh

∣∣∣∣∣∣∣∣∣2
L2,F

.

We conclude with 14 and 20 that respectively states:

|||vh|||∇,h ≈‖ vh‖∇,h =

∑
F∈Fh

‖γk+1
∇,FvF ‖

2 + s∇,F ( vF ,vF )

 1
2

,

s∇,F ( vF ,vF ) =
∑
E∈EF

hE‖γk+1
∇,FvF − vE‖

2
E . h

2
F

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣2
L2,F

.

Remark 23. When k ≥ 1 the assumption
∑

F∈Fh

∫
F γ

k+1
∇,FvF = 0 translates to

∑
F∈Fh

∫
F vF = 0

by (3.20). However this does not hold when k = 0.
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We show that the fully discrete divergence is onto Dk
h : Xk

∇,h →Xk
L2,h. The main difficulty

is to show the boundedness of the inverse with the discrete norms.

Lemma 24 (Right-inverse for the divergence). For all p
h
∈ Xk

L2,h there is vh ∈ Xk
∇,h such

that Dk
hvh = p

h
and |||vh|||∇,h +

∣∣∣∣∣∣∣∣∣∇k+1
h vh

∣∣∣∣∣∣∣∣∣
L2,h
. ‖p

h
‖L2,h.

Proof. Existence. Let p
h

= (pF )F∈Fh
∈ Xk

L2,h and apply 39 to find p̃ ∈ C0(Ω) such that

∀F ∈ Fh, p̃|F ∈ Pk+maxh,E∈Eh (|EF |)(F ), πkP,F p̃ = pF and ‖p̃‖L2(Ω) ≈ ‖ph‖L2,h. Under the
assumption on the regularity of the mesh we have maxh,E∈Eh(|EF |) . 1 ([[10] Lemma 1.12]) so
that the maximum degree is bounded independently of h. Since p̃ is a piecewise polynomial,
continuous and of trace zero on the boundary, p̃ ∈ H1

0 (Ω). We apply 42 to find u ∈ H2(Ω)
such that divu = p̃, ‖u‖H2 . ‖p̃‖H1 and ‖u‖H1 . ‖p̃‖L2 . We build vh ∈ Xk

∇,h in such a way

that on each edge E ∈ Eh, πkP,EvE = πkP,Eu and on each vertex V ∈ VE of coordinate xV ,
vE(xV ) = 0.

Then on each face F ∈ Fh since grad : P0,k(F ) → Gk−1(F ) is an isomorphism, we can
choose vG ,F such that ∀wF ∈ P0,k(F ),

−
∫
F
vG ,F gradwF +

∑
E∈EF

ωFE

∫
E
vE · nEwF =

∫
F
pFwF .

Finally we set vcG ,F = πc,kG ,Fu so that ∀wF ∈ P0,k(F ),
∫
F D

k
FvFwF =

∫
F pFwF and ∀wF ∈

P0(F ), ∫
F
Dk
FvFwF =

∑
E∈EF

ωFE

∫
E
vE · nEwF = wF

∑
E∈EF

ωFE

∫
E
u · nE

=wF

∫
F

divu = wF

∫
F
p̃ =

∫
F
wF pF .

Where the second equality comes from ∀E ∈ Eh, π0
P,EvE = π0

P,Eu and the last equality from

∀F ∈ Fh, π0
P,F p̃ = π0

P,F pF . Thus we have Dk
hvh = p

h
.

Boundedness. It remains to show that |||vh|||∇,h . ‖ph‖L2,h. For any face F ∈ Fh remind that

|||vF |||
2
∇,F = ‖vG ,F ‖2F + ‖vcG ,F ‖2F +

∑
E∈EF

hE‖vE‖2E . (5.9)

We estimate the last term of (5.9) with:

‖vE‖E ≈ ‖πkP,EvE‖E = ‖πkP,Eu‖E . ‖u‖E .

Where the first equality comes from 39 applied in one dimension. The continuous trace in-
equality [[10] Lemma 1.31] gives

h
1
2
F ‖u‖E . ‖u‖L2(F ) + hF |u|H1(F ) . ‖u‖H1(F ).

To estimate the first term of (5.9) we take wF ∈ P0,k(F ) such that gradwF = vG ,F so

18



‖wF ‖ . hF ‖vG ,F ‖ and by construction:∫
F
vG ,F · vG ,F =−

∫
F
pFwF +

∑
E∈EF

ωFE

∫
E
vE · nEwF

≤‖pF ‖F ‖wF ‖F +
∑
E∈EF

h−1
E h

1
2
E‖vE‖Eh

1
2
E‖wF ‖E

.‖pF ‖F ‖wF ‖F + h−1
F ‖wF ‖F

∑
E∈EF

h
1
2
E‖vE‖E

.‖vG ,F ‖F (‖pF ‖F +
∑
E∈EF

h
1
2
E‖vE‖E).

Applying the same estimate on the boundary we find

‖vG ,F ‖2F . ‖pF ‖2F + ‖u‖2
H1(F )

.

Lastly for the middle term of (5.9):

‖vcG ,F ‖F = ‖πc,kG,Fu‖F ≤ ‖u‖L2(F ) ≤ ‖u‖H1(F ),

hence, summing over every face F ∈ Fh gives

|||vh|||
2
∇,h . ‖ph‖

2
L2,h + ‖u‖H1(Ω) . ‖ph‖

2
L2,h.

Now to estimate
∣∣∣∣∣∣∣∣∣∇k+1

h vh

∣∣∣∣∣∣∣∣∣
L2,F

letW F = ∇k+1
F v and qF ∈ P0,k(F ) such that∇·WR,F =

grad qF and ‖qF ‖ ≈ ‖WR,F ‖. We have:∫
F
∇k+1
F vF :∇k+1

F vF =−
∫
F
vcG ,F · ∇·W c

R,F
−
∫
F
vG ,F · ∇·WR,F +

∑
E∈EF

ωFE

∫
E
vEW F · nE

=−
∫
F
vcG ,F · ∇·W c

R,F
+

∫
F
pF qF +

∑
E∈EF

ωFE

∫
E
vE(W F − qF I2,2) · nE .

Applying (2.10) gives∫
E
vE(W F − qF I2,2) · nE =

∫
E
πkP,EvE(W F − qF I2,2) · nE =

∫
E
u(W F − qF I2,2) · nE

so that after an integration by parts:∑
E∈EF

ωFE

∫
E
vE(W F − qF I2,2) · nE =

∫
F
∇u :(W F − qF I2,2) +

∫
F
u · ∇·(W F − qF I2,2).

Since ∇·(W F − qF I2,2) = ∇·W c
R,F

by (2.15) we have:∫
F
∇k+1
F vF :∇k+1

F vF =−
∫
F
vcG ,F · ∇·W c

R,F
+

∫
F
∇u :(W F − qF I2,2) +

∫
F
u · ∇·W c

R,F

=

∫
F
∇u :(W F − qF I2,2),

thus
‖∇k+1

F vF ‖2F . ‖∇u‖F ‖∇k+1
F vF ‖F . (5.10)
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Let us now focus on the estimate over edges. The Poincare-Wirtinger inequality and 2 show that
for all polynomial r defined on E ∈ Eh, ‖r− 1

hE

∫
E r‖E ≈ h

−1
E ‖ṙ‖E . Since ‖vE − 1

hE

∫
E vE‖

2
E =

‖vE‖2E −
1
hE

(∫
E vE

)2
, ‖πkP,EvE‖E ≈ ‖vE‖E and

∫
E vE =

∫
E π

k
P,EvE we have ‖v̇E‖E ≈

‖ ˙πkP,EvE‖E , hence

‖v̇E‖E ≈ ‖ ˙πkP,EvE‖E = ‖ ˙πkP,EvE − u̇+ u̇‖E ≤ ‖ ˙πkP,Eu− u̇‖E + ‖∇u‖E .

By [[10] Theorem 1.45] we see that h
1
2
E‖

˙πkP,Eu− u̇‖E . ‖u‖H1(F ) and by the continuous trace
inequality [[10] Lemma 1.31] that

h
1
2
F ‖∇u‖E . ‖∇u‖F + hF ‖∇∇u‖F ,

so
hE‖ ˙vE‖2E . ‖u‖2H1(F )

+ h2
F ‖u‖2H2(F )

. (5.11)

Combining (5.10), (5.11) and summing over every face we get:∣∣∣∣∣∣∣∣∣∇k+1
h vh

∣∣∣∣∣∣∣∣∣2
L2,h
. ‖u‖2

H1(Ω)
+ h2‖u‖2

H2(Ω)
.

We can conclude since ‖u‖H1(Ω) . ‖ph‖L2,h and

h‖u‖H2(Ω) . h‖p̃‖H1(Ω) . ‖p̃‖L2(Ω) . ‖ph‖L2,h.

Where we used the inverse Poincare inequality on h2‖p̃‖2
H1(Ω)

=
∑

F∈Fh
h2‖p̃‖H1(F ).

Remark 25. We can easily adapt lemma 24 to require
∑

F∈Fh

∫
F γ

k+1
∇,FvF = 0. Simply define

v′h = vh − Ik∇,h
(

1∫
Ω 1

∑
F∈Fh

∫
F γ

k+1
∇,FvF

)
. It is clear from (3.19) that

∑
F∈Fh

∫
F γ

k+1
∇,Fv

′
F = 0,

from 16 that Dk
hv

′
h = p

h
and from (3.30) that the estimate of 24 on the norm of v′h still holds.

5.2 Adjoint consistency.

We define the adjoint consistency error for all W ∈ C0(Ω) ∩H1
0(Ω) and all vh ∈Xk

∇,h by:

Ẽ∇,h(W ,vh) =
∑
F∈Fh

((
Ik
L2(F )

W ,∇k+1
F vF

)
L2,F

+

∫
F
∇·W · γk+1

∇,FvF

)
. (5.12)

Theorem 26 (Adjoint consistency for the gradient). For all W ∈ C0(Ω) ∩H1
0(Ω) such that

W ∈Hk+2(Fh) and all vh ∈Xk
∇,h,

|Ẽ∇,h(W ,vh)| . hk+1
(
|W |Hk+1 + |W |Hk+2

)(
|||vh|||∇,h +

∣∣∣∣∣∣∣∣∣∇k+1
h vh

∣∣∣∣∣∣∣∣∣
L2,h

)
. (5.13)

Proof. Remarks 10 and 5 show that ∀W h ∈ (RT k+1(Fh))2,∫
F
γk+1
∇,FvF · ∇·W F +

∫
F
∇k+1
F vF :W F −

∑
E∈EF

ωFE

∫
E
vEW FnE = 0.

Moreover, since W · nΩ = 0 on ∂Ω and since the vE are single valued we have∑
F∈Fh

∑
E∈EF

ωFE

∫
E
vEWnE = 0. (5.14)
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Hence we can write:

Ẽ∇,h(W ,vh) =
∑
F∈Fh

(∫
F

(W −W F ) :∇k+1
F vF +

∫
F
∇·(W −W F ) · γk+1

∇,FvF

+
∑
E∈EF

ωFE

∫
E
vE(W −W F )nE + sL2,F

(
Ik
L2(F )

W ,∇k+1
F vF

)
.
∑
F∈Fh

(‖W −W F ‖ + ‖∇·(W −W F )‖)
(
‖∇k+1

F vF ‖ + ‖γk+1
∇,FvF ‖

)
+ sL2,F

(
Ik
L2(F )

W , Ik
L2(F )

W
)1/2

sL2,F

(
∇k+1
F vF ,∇k+1

F vF

)1/2

+
∑
E∈EF

ωFE

∫
E
vE(W −W F )nE .

Applying (5.4) and 15 gives:

sL2,F

(
Ik
L2(F )

W , Ik
L2(F )

W
)1/2

sL2,F

(
∇k+1
F vF ,∇k+1

F vF

)1/2
. hk+1|W |Hk+1(F )

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣
L2,F

.

Using the approximation properties of the spaces RT k+1(F ) given by a slight adaptation of
[[14] Lemma 43] we can find W F ∈RT k+1(F ) such that

‖W −W F ‖ + ‖∇·(W −W F )‖ . hk+1
(
|W |Hk+1(F ) + |W |Hk+2(F )

)
By (3.30) we see that

‖∇k+1
F vF ‖ + ‖γk+1

∇,FvF ‖ .
∣∣∣∣∣∣∣∣∣∇k+1

F vF

∣∣∣∣∣∣∣∣∣
L2,F

+ |||vF |||∇,F .

Lastly we use 40 to find RvF
∈H1(F ) such that∑

E∈EF

ωFE

∫
E
vE(W −W F )nE =

∑
E∈EF

ωFE

∫
E
RvF

(W −W F )nE

=

∫
F
∇RvF

:(W −W F ) +

∫
F
RvF

· ∇·(W −W F ).

Hence

|
∑
E∈EF

ωFE

∫
E
vE(W −W F )nE | . (‖W −W F ‖ + ‖∇·(W −W F )‖)

(
‖∇RvF

‖ + ‖RvF
‖
)

and we conclude with 40 which gives the boundedness of RvF
.

We can sharpen the estimate (5.12) when W is the gradient of some field. Indeed, if were
to take W = ∇w in 26, we would see that a norm over Hk+3 appears in the estimate, which
is suboptimal.

We define the adjoint consistency error for all w ∈ H2(Ω) such that ∇w · nΩ = 0 and all
vh ∈Xk

∇,h by:

Ẽ∆,h(w,vh) =
∑
F∈Fh

(∫
F

∆w · γk+1
∇,FvF +

(
∇k+1
F Ik∇,Fw,∇k+1

F vF

)
L2,F

)
. (5.15)
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Remark 27. The assumption w ∈ H2(Ω) imply that w ∈ C0(Ω) in two dimensions (see e.g.
[[2] 12.60]).

Theorem 28 (Adjoint consistency for the Laplacian). For all w ∈H2(Ω) such that ∇w·nΩ =
0 and w ∈Hk+2(Fh) and for all vh ∈Xk

∇,h,

|Ẽ∆,h(w,vh)| . hk+1|w|Hk+2

∣∣∣∣∣∣∣∣∣∇k+1
h vh

∣∣∣∣∣∣∣∣∣
L2,h

. (5.16)

Proof. For any F ∈ Fh, (4.2b) gives:(
∇k+1
F Ik∇,Fw,∇k+1

F vG

)
L2,F

=

∫
F
πk+1
RT ,F

∇w :∇k+1
F vF + sL2,F

(
Ik
L2(F )

∇w,∇k+1
F v

)
.

With an integration by parts and since
∫
F π

k+1
RT ,F

∇w :∇k+1
F vF =

∫
F ∇w :∇k+1

F vF we have:

Ẽ∆,h(w,vh) =
∑
F∈Fh

(∫
F
∇w :(∇k+1

F vF −∇ γk+1
∇,FvF ) + sL2,F

(
Ik
L2(F )

∇w,∇k+1
F v

)

+
∑
E∈EF

ωFE

∫
E
γk+1
∇,FvF ∇wnE


Since we assume ∇w · nΩ = 0 we have∑

F∈Fh

∑
E∈EF

ωFE

∫
E
vE ∇w = 0 (5.17)

so by 10 it holds ∀wF ∈ Pk+1(F ),∫
F

∆wF · γk+1
∇,FvF +

∫
F
∇k+1
F vF :∇wF −

∑
E∈EF

ωFE

∫
E
vE ∇WnE = 0,

so ∫
F
∇wF :(∇k+1

F vF −∇ γk+1
∇,FvF ) +

∑
E∈EF

ωFE

∫
E

(γk+1
∇,FvF − vE)∇wFnE = 0.

This allows us to write for any wh = (wF )F∈Fh ∈ Pk+1(F ),

Ẽ∆,h(w,vh) =
∑
F∈Fh

(∫
F
∇(w −wF ) :(∇k+1

F vF −∇ γk+1
∇,FvF ) + sL2,F

(
Ik
L2(F )

∇w,∇k+1
F v

)

+
∑
E∈EF

ωFE

∫
E

(γk+1
∇,FvF − vE)∇(w −wF )nE

 ,

|Ẽ∆,h(w,vh)| .
∑
F∈Fh

(
‖∇(w −wF )‖F ‖∇k+1

F vF −∇ γk+1
∇,FvF ‖F

+
∑
E∈FE

‖γk+1
∇,FvF − vE‖E‖∇(w −wF )‖E + |sL2,F

(
Ik
L2(F )

∇w,∇k+1
F v

)
|

)
.

Applying 20 we get

‖γk+1
∇,FvF − vE‖E‖∇(w −wF )‖E .

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣
L2,F

h
1
2 ‖∇(w −wF )‖E .
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By (5.4) and 15 we get

|sL2,F

(
Ik
L2(F )

∇w,∇k+1
F v

)
| . hk+1| ∇w|Hk+1

∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣
L2,F

.

Hence, applying 21 we write:

|Ẽ∆,h(w,vh)| .
∑
F∈Fh

(∣∣∣∣∣∣∣∣∣∇k+1
F vF

∣∣∣∣∣∣∣∣∣
L2,F

(‖∇(w −wF )‖F + h
1
2 ‖∇(w −wF )‖E)

)
+ hk+1|w|Hk+2

∣∣∣∣∣∣∣∣∣∇k+1
F vh

∣∣∣∣∣∣∣∣∣
L2,F

.

We conclude by taking wF = π1,k+1
P,F w the elliptic projection on F (see [[10] Definition 1.39]),

then [[10] Theorem 1.48] gives:

‖w − π1,k+1
P,F w‖H1(F ) . h

k+1|w|Hk+2 ,

h
1
2 ‖w − π1,k+1

P,F w‖H1(E) . h
k+1|w|Hk+2 .

6 Stokes equations.

Finally, we illustrate this complex with the resolution of the Stokes equations. For the sake of
simplicity we use Neumann boundary conditions over the whole boundary, that it to say with
a free outlet condition. More general conditions are not difficult to enforce and are discussed
in Section 7. The solution is therefore determined only up to a constant vector field. The leads
to the introduction of a new space:

Xk
∇,h,? := {vh ∈Xk

∇,h :
∑
F∈Fh

∫
F
γk+1
∇,FvF = 0}. (6.1)

This is the discrete counterpart of L2
0(Ω).

Let µ be a constant viscosity, we define the symmetric bilinear form ah(vh,wh) ∈ Xk
∇,h ×

Xk
∇,h → R on all vh,wh ∈Xk

∇,h by

ah(vh,wh) := µ
(
∇k+1
h vh,∇k+1

h wh

)
L2,h

. (6.2)

We also define the bilinear form bh(vh, qh) ∈Xk
∇,h×Xk

L2,h → R on all vh ∈Xk
∇,h, qh ∈X

k
L2,h

by

bh(vh, qh) :=
∑
F∈Fh

∫
F
Dk
FvF qF . (6.3)

Then we define the bilinear form Ah((vF , ph), (wh, qh)) ∈ (Xk
∇,h,? × Xk

L2,h) × (Xk
∇,h,? ×

Xk
L2,h)→ R by

Ah((vh, ph), (wh, qh)) = ah(vh,wh)− bh(wh, ph) + bh(vF , qh). (6.4)

We define a suitable Sobolev-like norm on our discrete spaces such that ∀vh ∈Xk
∇,h,

‖vh‖µ,∇,1,h :=
(
‖vh‖2∇,h + ah(vh,vh)

)1/2
. (6.5)
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And for f ∈ L2(Ω) we set Lh : Xk
∇,h,? → R such that ∀vh ∈Xk

∇,h,

Lh(vh) :=
∑
F∈Fh

∫
F
γk+1
∇,FvF · f. (6.6)

We define the discrete problem:
Find (vh, ph) ∈Xk

∇,h,? ×Xk
L2,h such that for all (wh, qh) ∈Xk

∇,h,? ×Xk
L2,h

Ah((vF , ph), (wF , qh)) = Lh(vh). (6.7)

We show the well-posedness in lemma 30.
We consider the following Stokes problem:

Find u ∈H2(Ω) ∩L2
0(Ω), p ∈ H1

0 (Ω) such that

−µ∆u+ grad p =f, on Ω,

divu =0, on Ω,

∂u

∂nΩ
=0, on ∂Ω.

(6.8)

Let (u, p) solves (6.8) and let (vh, ph) solves (6.7). We assume that the continuous solutions u,

p have the additional smoothness u ∈Hk+2(Fh) and p ∈ Hk+2(Fh). We deduce the following
error estimate.

Theorem 29 (Error estimate for Stokes). Under the smoothness assumption on u and p it
holds that

‖vh − Ik∇,hu‖µ,∇,1,h + ‖p
h
− πkP,Fh

p‖L2,F . h
k+1

(
|u|Hk+2(Fh) + |p|Hk+1(Fh) + |p|Hk+2(Fh)

)
.

(6.9)

Proof. The proof is a direct application of the third Strang lemma (see [8]) to the estimates
given by 30 and 31.

Lemma 30 (Well-posedness.). For any (vh, ph) ∈Xk
∇,h,?×Xk

L2,h there is (wh, qh) ∈Xk
∇,h,?×

Xk
L2,h such that ‖wh‖µ,∇,1,h + ‖q

h
‖L2,F . ‖vh‖µ,∇,1,h + ‖p

h
‖L2,F and

Ah((vF , ph), (wF , qh)) & ‖vh‖2µ,∇,1,h + ‖p
h
‖2L2,F .

Proof. Let (vh, ph) ∈Xk
∇,h,? ×Xk

L2,h, we have

Ah((vF , ph), (vF , ph)) = ah(vh,vh) & ‖vh‖2µ,∇,1,h. (6.10)

Where the last inequality comes from 22. Moreover by 25 there is w′
h ∈ Xk

∇,h,? such that

Dk
hw

′
h = −p

h
and ‖w′

h‖µ,∇,1,h . ‖ph‖L2,F . Hence

Ah((vF , ph), (w′
F , 0)) =ah(vh,w

′
h) + ‖p

h
‖2L2,F

≥− 1

2
‖vh‖2µ,∇,1,h −

1

2
‖w′

h‖2µ,∇,1,h + ‖p
h
‖2L2,F

&− 1

2
‖vh‖2µ,∇,1,h +

1

2
‖p
h
‖2L2,F .

(6.11)

And we conclude by summing (6.10) and (6.11).
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We define the consistency error Eh : Xk
∇,h,? ×Xk

L2,h → R by

Eh((wh, qh)) = Lh(wh)−Ah((Ik∇,hu, π
k
P,Fh

p), (wh, qh)). (6.12)

Lemma 31. For all wh ∈Xk
∇,h,?, qh ∈X

k
L2,h,

Eh((wh, qh)) .hk+1
(
|u|Hk+2(Fh) + |p|Hk+1(Fh) + |p|Hk+2(Fh)

)
(
‖vh‖µ,∇,1,h + ‖p

h
‖L2,F

)
.

Proof. Let wh ∈Xk
∇,h,?, qh ∈X

k
L2,h,

Eh((wh, qh)) =
∑
F∈Fh

∫
F
γk+1
∇,FwF · f − µ

(
∇k+1
F Ik∇,Fu,∇k+1

F wF

)
∇,F

+

∫
F
Dk
FwFπ

k
P,F p−

∫
F
Dk
F I

k
∇,FuqF

=
∑
F∈Fh

∫
F
γk+1
∇,FwF · grad p+

∫
F
Dk
FwFπ

k
P,F p

− µ
(∫

F
γk+1
∇,FwF ·∆u+

(
∇k+1
F Ik∇,Fu,∇k+1

F wF

)
∇,F

)
=Ẽ∇,h(p I2,2,wh)− sL2,F

(
∇k+1
F wF , I

k
L2(F )

(p I2,2)
)
− µẼ∆,h(u,wh)

≤|Ẽ∇,h(p I2,2,wh)| + |sL2,F

(
∇k+1
F wF ,∇k+1

F wF

)
|1/2

+ |sL2,F

(
Ik
L2(F )

(p I2,2), Ik
L2(F )

(p I2,2)
)
|1/2 + µ|Ẽ∆,h(u,wh)|.

Where the second equality comes from we used f = − µ ∆u+ grad p, (4.2b) and divu = 0.
And the third equality comes from (5.12), (5.15) as well as:∫

F
Dk
FwFπ

k
P,F p =

∫
F

Tr∇k+1
F wF p =

∫
F
∇k+1
F wF :(p I2,2) =

∫
F
∇k+1
F wF :πk+1

RT ,F
(p I2,2).

We conclude inferring the estimates 26, 28 and the consistency (5.4).

7 Alternative boundary conditions.

In this section we show how to extend the results of Section 6 when using Dirichlet boundary
conditions on Xk

∇,h. This is useful for common condition such as the no slip condition or forced
inlet condition and does not require much change.

7.1 Dirichlet boundary conditions.

We introduce the space Xk
∇,h,0 := {vh ∈ Xk

∇,h : ∀E ∈ Eh, E ⊂ ∂Ω,vE ≡ 0}. The continuous
and discrete problem are then pretty much the same: they take the same expression but on a
different domain. Since the pressure is only defined up to a constant value, we introduce the
natural space: Xk

L2,h,? := {q
h
∈Xk

L2,h :
∑

F∈Fh

∫
F qF = 0}. Then we define the bilinear form:

Ah((vF , ph), (wh, qh)) ∈ (Xk
∇,h,0 ×Xk

L2,h,?)× (Xk
∇,h,0 ×Xk

L2,h,?)→ R by

Ah((vh, ph), (wh, qh)) = ah(vh,wh)− bh(wh, ph) + bh(vF , qh). (7.1)
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With ah and bh defined by (6.2), (6.3), we also keep the same definition (6.6) of the source
term Lh. So the discrete problem is:
Find (vh, ph) ∈Xk

∇,h,0 ×Xk
L2,h,? such that for all (wh, qh) ∈Xk

∇,h,0 ×Xk
L2,h,?

Ah((vF , ph), (wF , qh)) = Lh(vh). (7.2)

The Stokes problem becomes:
Find u ∈H1

0(Ω) ∩H2(Ω), p ∈ H1(Ω) ∩ L2
0(Ω) such that

−µ∆u+ grad p =f, on Ω,

divu =0, on Ω.
(7.3)

Theorem 32. Under the same assumption as 29 we obtain the well-posedness of the problem
(7.2) and a convergence toward the continuous solution of problem (7.3) with the same error
estimate as (29).

Proof. As stated before there is not much to adapt, namely: We need a suitable version of
24, and we can expect vh ∈ Xk

∇,h,0 if p
h
∈ Xk

L2,h,? by substituting the use of theorem 42
by theorem 43 in the proof of 24. The consistency errors 26 and 28 required respectively
W ∈H1

0(Ω) and ∇w ·nΩ = 0. However we can check that this is only used to get (5.14) and
(5.17) both of which also hold if vh ∈ Xk

∇,h,0 instead, so that vE ≡ 0, ∀E ⊂ ∂Ω. Finally, we
relied on 22 to show that Ah is weakly coercive. This too can readily be adapted if we use [[10]
Lemma 2.15] instead of [[10] Theorem 6.5] in the proof of 22. With these tree results we can
proceed exactly in the same manner as we did for 29.

7.2 Mixed boundary conditions.

We can also use Dirichlet conditions on a subset of the boundary and Neumann conditions
elsewhere. Explicitly we write ΓD a relatively open subset of ∂Ω with a non-zero measure and
ΓN = ∂Ω \ ΓD. We also assume that each boundary edge ∂Ω ⊃ E ∈ Eh is either contained in
ΓN or in ΓD but not in both (either E ∩ ΓD = ∅ or E ∩ ΓN = ∅) and that both contained at
least one edge (else we degenerate to pure Neumann or pure Dirichlet with have already been
deals with). The boundary defined by ΓD will expectedly be where we use Dirichlet boundary
conditions and ΓN where we use Neumann boundary conditions. So that the Stokes problem
is:
Find u ∈H2(Ω), p ∈ H1(Ω) such that

−µ∆u+ grad p =f, on Ω,

divu =0, on Ω,

u =0, on ΓD,

∂u

∂nΩ
=0, on ΓN ,

p =0, on ΓN .

(7.4)

We introduce the discrete space Xk
∇,h,D := {vh ∈ Xk

∇,h : ∀E ∈ Eh, E ⊂ ΓD,vE ≡ 0} and as

before define: Ah((vF , ph), (wh, qh)) ∈ (Xk
∇,h,D ×Xk

L2,h)× (Xk
∇,h,D ×Xk

L2,h)→ R by

Ah((vh, ph), (wh, qh)) = ah(vh,wh)− bh(wh, ph) + bh(vF , qh). (7.5)

The discrete problem becomes once again:
Find (vh, ph) ∈Xk

∇,h,D ×Xk
L2,h such that for all (wh, qh) ∈Xk

∇,h,D ×Xk
L2,h

Ah((vF , ph), (wF , qh)) = Lh(vh). (7.6)
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Remark 33. In practical implementation we store continuous polynomials on edge by their
lower order moment on each edge and their values on vertices. If a boundary edge is part of
the Dirichlet boundary: E ⊂ ΓD we must set to zero all associated unknowns, including those
on the vertices of this edge.

Remark 34. Although we took homogeneous boundary conditions for the sake of simplicity
this is by no means a limitation. For inhomogeneous Dirichlet simply write u = u0 +uD with
u0 ∈Xk

∇,h,D and uD given by the value on the boundary and solve for u0.

8 Numerical tests.

We display the numerical results for the Stokes problem with Neumann boundary conditions
(6.7), with Dirichlet boundary conditions (7.2) and with mixed boundary conditions (7.6). This
was implemented with the HArDCore C++ framework (see https://github.com/jdroniou/

HArDCore), using the linear algebra facilities from the Eigen3 library (see https://eigen.

tuxfamily.org). An implementation of the spaces and operators defined in this paper as well
as a Stokes solver can be found at https://github.com/mlhanot/HArDCore2D-Stokes.

We used a constant viscosity µ = 1 and measure the rate of convergence for various poly-
nomial degrees k ∈ {0, 1, 2, 3}. We compute the error by

‖vh − Ik∇,hu‖µ,∇,1,h + ‖p
h
− πkP,Fh

p‖L2,h.

We expect the error to decrease at a rate O(hk+1) thanks to theorem 29 and 32. These tests
are done on various mesh sequences which can be seen in Figure 2 showing the flexibility of
the method. We show our results in Figure 3. We always obtain results consistent with the
theory and the various features of the meshes do not deteriorate the convergence toward the
exact solution.

A Results on polynomial spaces.

We begin by showing a few results to complete the introduction of spaces (2.12) and (2.14).

Lemma 35. For any F ∈ Fh, it holds Rc,k
(F ) ∩Rk

(F ) = {0}.

Proof. If w ∈ P0,k(F ) and W ∈ (Rc,k(F ))2 are such that TrW = 0 and ∇·W = gradw
then W = 0 and w = 0. Indeed assuming xF = 0 without loss of generality any element

W ∈Rc,k
(F ) is written W =

(
xyPi,jx

iyj y2Pi,jx
iyj

−x2Pi,jx
iyj −xyPi,jxiyj

)
, Pi,jx

jyj ∈ Pk−2(F ). So that

∇·W =

(
(2 + i+ j)Pi,j−1x

iyj

−(2 + i+ j)Pi−1,jx
iyj

)
.

On the other side for w = wi,jx
iyj ∈ P0,k(F ),

gradw =

(
(i+ 1)wi+1,jx

iyj

(j + 1)wi,j+1x
iyj

)
.

Hence, ∇·W = gradw if and only if for all i, j ≥ 0,(
(1 + i+ j)Pi−1,j−1

−(1 + i+ j)Pi−1,j−1

)
=

(
iwi,j
jwi,j

)
.

This is only satisfied for w ≡ 0.
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(a) ”Hexa” mesh. (b) ”Square” mesh. (c) ”Square 2” mesh.

(d) ”Tilted” mesh. (e) ”Tilted 2” mesh. (f) ”Hexa anisotropic” mesh.

Figure 2: Families of mesh used.

Lemma 36. For any F ∈ Fh, it holds (Rc,k(F ))2 = Rc,k
(F )⊕Rk

(F ).

Proof. Lemma 35 already shows that Rc,k
(F ) ∩Rk

(F ) = {0}. It is enough to compare the
dimension of these spaces:

dimRc,k
(F ) = dimPk−2(F ) =

k!

2(k − 2)!
=
k(k − 1)

2
,

dimRk
(F ) = dimP0,k(F ) =

(k + 2)(k + 1)

2
− 1 =

k2 + 3k + 2− 2

2
.

The sum of both is k2+3k+k2−k
2 = k(k + 1), which is the same as

dim (Rc,k(F ))2 = 2 dimPk−1(F ) = 2
(k + 1)k

2
= k(k + 1).

Next we show some lemmas on convex polytopes.

Lemma 37. Let F ∈ Fh, xF defined as in (2.5), if B = B(xF , hB) ⊂ F with hB & hF and
Q ∈ Pk(F ) then ‖Q‖L∞(B) ≈ ‖Q‖∞.

Proof. Let ho ∈ R∗+ such that F ⊂ B(xF , ho) and ho . hF (ho exists by the regularity
assumption on the mesh sequence Mh). Let v by any vector such that ‖v‖ = 1, then ∀α > 0
such that xF + αv ∈ F ,

Q(xF + αv) =

k∑
i=0

∂ivQ(xF )

i!
αi,
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(a) ”Hexa” mesh.
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(b) ”Square” mesh.
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(c) ”Square 2” mesh.

10−1 10−0.8 10−0.6

10−3

10−2

10−1

100

101

1

1

1

2

1

3

1

4

(d) ”Tilted” mesh.
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(e) ”Tilted 2” mesh.
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(f) ”Hexa anisotropic” mesh.

Figure 3: Absolute error estimate in discrete norm ‖ · ‖µ,∇,1,h + ‖ · ‖L2,h vs. mesh size h.
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so

|Q(xF + αv)| ≤
k∑
i=0

‖∂ivQ‖L∞(B)

i!
αi.

By the discrete Poincare inequality 2 we have ∀i, ‖∂ivQ‖L∞(B) . h−iB ‖Q‖L∞(B). Lastly xF +

αv ∈ F so α < ho and |Q(xF + αv)| . ‖Q‖L∞(B)h
i
oh
−i
B . Since ho . hB we can conclude

‖Q‖∞ . ‖Q‖L∞(B).

Any F ∈ Fh is a convex, open polygon. Let (Ei)i≤|EF | be the set of its edges, each of
normal vector nE . For all Ei there exists Pi ∈ P 1(R2) such that Ei ⊂ Ker(Pi), moreover we
can normalize Pi such that x ∈ F =⇒ Pi(x) > 0 (since F is convex) and |∂nEPi| = 1.

Lemma 38. Set P =
∏
i≤|EF | Pi, x0 ∈ F such that B0 = B(x0, hF /2) ⊂ F and B =

B(x0, hF /4) then infx∈B P (x) >
(
hF
4

)|EF |
and ‖P‖L∞(F ) . h

|EF |
F .

Proof. For any i ≤ |EF |, the value Pi(x) at any point x is the distance between x and the
straight line defined by Ei and is positive on F . For any x ∈ B, x is a least at a distance hF /4
of any edge since B0 ⊂ F . We obtain the lower bound by taking the product over all edges.
Conversely, using the mesh regularity we can find ho > 0, ho . hF such that F is inscribed
in a circle of diameter ho. Then ∀i ≤ |EF |, ∀x ∈ F , it holds 0 < Pi(x) < ho . hF . Again we
conclude by taking the product over all edges.

Lemma 39. For any F ∈ Fh and q ∈ Pk(F ) there is P ∈ Pk+|EF |(F ) such that P|∂F = 0,

πkP,FP = q and ‖P‖ ≈ ‖q‖.

Proof. Let P = ΠQ with Π given by 38 and Q ∈ Pk(F ). The application

Pk(F ) 3 Q→
(
λ→

∫
F
Pλ

)
∈ Pk(F )′ (A.1)

is linear and between two spaces of same dimension, thus it is enough to check that it is injective.
Let Q ∈ Pk(F ) such that ∀λ ∈ Pk(F ),

∫
F ΠQλ = 0 hence

∫
F ΠQ2 = 0. However since on

F , Π > 0 we can define the function
√

Π ∈ L2(F ) and have
∫
F

(√
ΠQ
)2

= ‖
√

ΠQ‖2 = 0.

So
√

ΠQ ≡ 0 and Q ≡ 0 which prove that (A.1) is injective thus prove the existence of a
polynomial P ∈ Pk+|EF |(F ) such that P|∂F = 0 and πkP,FP = q. Let us show that P also
satisfy the norm equivalence: In particular we must have∫

F
(P − q)Q = 0∫

F
ΠQ2 =

∫
F
qQ

‖
√

ΠQ‖2 ≤ ‖q‖‖Q‖ . ‖q‖hF ‖Q‖∞.

Therefore the discrete Sobolev inequality [[10] Lemma 1.25] gives

‖
√

ΠQ‖2∞ ≈ h−2
F ‖
√

ΠQ‖2 . h−1
F ‖Q‖∞‖q‖.

On the other consider B = B(x0, hF /4) given in 38, it holds infx∈B
√

Π(x) & h|EF |/2F . Thus by
37:

‖
√

ΠQ‖∞ ≥ ‖
√

ΠQ‖L∞(B) & h
|EF |/2
F ‖Q‖L∞(B) ≈ h

|EF |/2
F ‖Q‖∞.
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Hence h
|EF |
F ‖Q‖2∞ . h−1

F ‖Q‖∞‖q‖, ‖Q‖∞ . h
−1−|EF |
F ‖q‖ and

‖ΠQ‖ ≈ hF ‖ΠQ‖∞ ≤ hF ‖Π‖∞‖Q‖∞ . h|EF |+1
F ‖Q‖∞ . ‖q‖.

B Trace lifting.

In order to prove consistency results we often need functions of Sobolev spaces with suitable
properties. We construct them in this section.

Theorem 40. For all vF ∈Xk
∇,F there is RvF

∈H1(F ) such that

RvF
=vE on ∂F,

‖RvF
‖F + ‖∇RvF

‖F .|||vF |||∇,F +
∣∣∣∣∣∣∣∣∣∇k+1

F vF

∣∣∣∣∣∣∣∣∣
L2,F

.
(B.1)

This lift is built upon [[2] Theorem 18.40]: Let Ω ⊂ RN , N ≥ 2 be an open set whose
boundary ∂Ω is uniformly Lipschitz continuous of parameters ε, L and M (see [[2] Definition
13.11]). Then for all g ∈ B1/2,2(∂Ω), there is c ∈ R depending only on N and a function
u ∈ H1(Ω) such that Tr(u) = g,

‖u‖L2(Ω) ≤M1/2ε1/2‖g‖L2(∂Ω) (B.2)

and

‖gradu‖L2(Ω) ≤ cM(1 + L)3+N/2ε−1/2‖g‖L2(∂Ω) + cM(1 + L)2+(N+1)/2|g|♦
B1/2,2(∂Ω)

. (B.3)

With the Besov seminorm defined by (see [[2] Definition 18.36]):

|g|♦
B1/2,2(∂Ω)

:=

(∫
∂Ω

∫
∂Ω∩B(x,ε)

|g(x)− g(y)|2

‖x− y‖N
dydx

)1/2

. (B.4)

Proof of theorem 40. We apply the above-mentioned theorem [[2] Theorem 18.40] to Ω = F
and g a component of vEF . Here N = 2 and for the open cover of ∂F (see [[2] Definition 13.11])
we take a ball centered at each vertex of radius half the length of the shortest adjacent edge as
well as a ball centered on middle of each edge of radius half the length of the edge. This way
we have L = 1, M = 2 and ε ≈ hF . We conclude with the estimate on the Besov seminorm 41.

Indeed, let RvF
be such that Tr(RvF

) = vEF and that RvF
satisfy (B.2) and (B.3). Let g

be a component of vEh and u be given by (B.2) and (B.3). Without loss of generality we assume
that

∫
∂F g = 0: Else we take instead g =

∫
∂F g and u = g so gradu = 0 and ‖u‖L2(F ) ≈ h2

F |g|,
‖g‖L2(∂F ) ≈ hF |g| and u, g satisfy (B.1). We reduce to the case

∫
∂F g

′ = 0 for g′ = g − g.
Equation (B.2) gives ‖RvF

‖F . |||vF |||∇,F since ε ≈ hF . Applying the Poincare-Wirtinger
inequality to ∂F (since g is continuous and assumed to have zero average) we get ‖g‖L2(∂F ) .
hF ‖ġ‖L2(∂F ) hence

‖gradu‖L2(Ω) .h
− 1

2
F ‖g‖L2(∂F ) + |g|♦

B1/2,2(∂Ω)

.h
− 1

2
F hF ‖ġ‖L2(∂F ) + h

1
2
F ‖ġ‖L2(∂F )

.h
1
2
F ‖ġ‖L2(∂F ).

Recalling definitions (3.28) and (3.14) we get the expected results.
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Lemma 41. Keeping the notations of the proof of 40, it holds

|g|♦
B1/2,2(∂Ω)

. h
1
2
F ‖ġ‖L2(∂Ω). (B.5)

Proof. We know that g is a continuous piecewise polynomial. Let E ∈ EF . Far away from the
vertices, i.e. for x ∈ E such that B(x, ε) ∩ VF = ∅ it holds ∀y ∈ B(x, ε), ∃c ∈ B(x, ε) such that

g(x) = g(y) + ġ(y)(x− y) + g̈(c)
(x− y)2

2
.

Hence

|g(x)− g(y)|2

‖x− y‖2
=
|ġ(y)(x− y) + g̈(c) (x−y)2

2 |2

‖x− y‖2

=|ġ(y) + g̈(c)
(x− y)

2
|2

.|ġ(y)|2 + ‖g̈‖∞|(x− y)|2.

If xV is the curvilinear coordinate of a vertex of E, the formula still holds for g(x) − g(xV )
since g is continuous on [x, xV ] and C∞ on ]x, xV [. Thus the formula holds for all x, y using
the triangular inequality if x and y are not on the same edge. Moreover, since ε ≈ hF and∫
∂F 1 ≈ hF it holds:∫

x∈∂F

∫
y∈∂F∩B(x,ε)

‖g̈‖∞|(x− y)|2 ≤ ‖g̈‖∞
∫
x∈∂F

4

3
ε3 . ‖g̈‖2∞h4

F .

We have ‖g̈‖∞ . h
− 1

2
F ‖g̈‖L2(∂F ) by [[10] Lemma 1.25], ‖g̈‖L2(∂F ) . h−1

F ‖ġ‖L2(∂F ) by 2 so

‖g̈‖2∞ . h−3
F ‖ġ‖2L2(∂F ) and∫

x∈∂F

∫
y∈∂F∩B(x,ε)

‖g̈‖∞|(x− y)|2 . hF ‖ġ‖2L2(∂F ).

On the other hand by Fubini-Tonelli it holds∫
x∈∂F

∫
y∈∂F∩B(x,ε)

|ġ(y)|2 =

∫
x∈∂F

∫
y∈∂F

|ġ(y)|21B(x,ε)(y)

=

∫
y∈∂F

|ġ(y)|2
∫
x∈∂F

1B(x,ε)(y).

However
∫
x∈∂F 1B(x,ε)(y) . hF thus∫

x∈∂F

∫
y∈∂F∩B(x,ε)

|ġ(y)|2 . hF ‖ġ‖2L2(∂F ).

Theorem 42. If p ∈ H1
0 (Ω) then there is u ∈ H2(Ω) such that divu = p, ‖u‖H2 . ‖p‖H1

and ‖u‖H1 . ‖p‖L2.

Proof. Consider a smooth bounded extension (at least C2,1) B of Ω. For all function g ∈
H−1(B), following [[4] Theorem III.4.1] there is a unique solution f ∈ H1

0 (B) to the equation
∆f = g in B. Moreover this solution satisfy ‖f‖H1 . ‖g‖H−1 and [[4] Theorem III.4.2] shows
that if B is Ck+1,1, k ≥ 0 and g ∈ Hk(B) then ‖f‖Hk+2 . ‖g‖Hk . Since p ∈ H1

0 (Ω) we can
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extend p by zero and define p̃ ∈ H1
0 (B) with ‖p̃‖Hk(B) = ‖p‖Hk(Ω). Hence if we take f ∈ H1

0 (B)

such that ∆f = div grad f = p̃ we have f ∈ H3(B) since p̃ ∈ H1(B) with ‖f‖H2(B) . ‖p‖L2

and ‖f‖H3(B) . ‖p‖H1 . Let u = grad f|Ω then we have divu = p in Ω and the expected
bounds.

We can adapt the theorem to cover other boundary conditions.

Theorem 43. If p ∈ H1
0 (Ω) such that

∫
Ω p = 0 then there is u ∈ H1

0(Ω) ∩H2(Ω) such that
divu = p, ‖u‖H2 . ‖p‖H1 and ‖u‖H1 . ‖p‖L2.

Proof. Consider B an open bounded extension C2,1 of Ω such that Ω ⊂ B and such that any
point of ∂Ω can be connected by a path staying in B \ Ω to ∂B. This is a mild assumption
that prevent B from filling holes of Ω. We construct u in the same manner as in 42, using
[[4] Theorem III.4.3] which is possible since the extension by zero of p on B, p̃ satisfy

∫
B p̃ =∫

Ω p = 0. This time we have f ∈ H1(B) such that ∆f = p̃ on B and ∂nf = 0 on ∂B with the
increased smoothness f ∈ H3(B), ‖f‖Hk+2 . ‖p‖Hk , k ∈ {0, 1}. Let u = grad f|Ω, u ∈ H2(Ω),
divu = p on Ω and satisfy the bounds on norms. It only remains to show that u ∈ H1

0 (Ω).
Since grad f ∈ H2(B) the Sobolev imbedding theorems give grad f ∈ C(B). Moreover since
p̃ = 0 outside Ω we have div grad f = 0 and in general rot grad f = 0 thus on each connected
component of B \Ω there is C ∈ R2 such that grad f = C on this component. The boundary
condition of f on ∂B requires grad f · n = 0 with n the normal vector. Hence, C · n = 0
and since the boundary is not reduced to a single straight line there must be n1 and n2 two
normal vectors of ∂B taken at two different locations that span a basis of R2. Thus C = 0,
grad f = 0 on B \ Ω and by continuity we must have u = grad f = 0 on ∂Ω.
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