
HAL Id: hal-03465754
https://hal.science/hal-03465754

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagation des incertitudes dans un modèle réduit
non-linéaire en élasto-acoustique interne.

Evangéline Capiez-Lernout, Christian Soize, Quentin Akkaoui, Roger Ohayon

To cite this version:
Evangéline Capiez-Lernout, Christian Soize, Quentin Akkaoui, Roger Ohayon. Propagation des incer-
titudes dans un modèle réduit non-linéaire en élasto-acoustique interne.. CFM 2017 - 23ème Congrès
Français de Mécanique, Aug 2017, Lille, France. �hal-03465754�

https://hal.science/hal-03465754
https://hal.archives-ouvertes.fr
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Résumé

La présente recherche concerne la propagation des incertitudes en élasto-acoustique interne en te-

nant compte des non-linéarités géométriques induites par les grands déplacements et les grandes

déformations de la structure. La structure est couplée à une cavité interne remplie d’un fluide acous-

tique linéaire. Dans un premier temps, un modèle réduit non-linéaire adapté au problème d’élasto-

acoustique interne est construit pour réduire le nombre d’inconnues du problème. La formulation

du problème est effectuée avec les inconnues de déplacement structure et de pression fluide. Les in-

certitudes sont implémentées avec l’approche probabiliste non-paramétrique à partir de ce modèle

réduit non-linéaire. En particulier, un opérateur de rigidité dédié contenant l’ensemble de l’informa-

tion relative aux termes linéaires et non-linéaires de rigidité est construit. Une attention particulière est

portée sur la modélisation de cet opérateur au travers d’une seconde réduction effectuée localement de

manière à ce que le germe aléatoire soit de taille raisonnable et soit le même dans le cas où les incer-

titudes portent sur les termes linéaires ou/et non-linéaires de la rigidité. La méthodologie est présentée

au travers d’un modèle numérique simple de coque cylindre remplie de fluide.

Abstract

The present research concerns the uncertainty propagation in elasto-acoustics, taking into account the

geometrical nonlinearities induced by the large displacements/deformations of the structure and assu-

ming the internal acoustic fluid occupying an internal cavity coupled to the structure to remain in a

linear range of vibration. The problem is formulated with structural displacements and fluid pressures

unknowns. Uncertainties are implemented from a mean nonlinear reduced-order model using the non-

parametric probabilistic approach. More particularly, a dedicated stiffness operator self-containing all

the information concerning both linear and nonlinear stiffness terms is constructed. A particular atten-

tion concerns the modeling of such stiffness operator through a second local reduction so that the size

of the random germ be of reasonable size and be identical whether uncertainties are investigated on

only linear or nonlinear stiffness terms. A numerical application is presented.

Keywords : Fluid-structure interaction, Geometric nonlinearities, Uncer-
tainty Quantification



23ème Congrès Français de Mécanique Lille, 28 au 1er Septembre 2017

1 Introduction

Nowadays, a major challenge in many industrial areas consists in developing advanced methodologies

in order to construct predictive numerical simulation tools, which are representative of the observed

dynamical behaviour of the mechanical systems. In particular, it is important to quantify how inherent

uncertainties propagate on the considered system. Furthermore, an essential aspect is to pay attention

to the various nonlinear effects that can subsequently modify the dynamical response of the response.

The present work proposes an extension of the uncertainty quantification for the nonlinear dynamical

response of fluid-structure systems, for which the structural part present consequent geometrical nonli-

near effects and for which the fluid is assumed to be a linear inviscid compressible fluid. First, we are

interested by constructing a nonlinear-reduced-order model [10, 8, 7, 6]. A nonlinear mean reduced-

order model of the coupled system is constructed by projecting the finite element operators on a chosen

projection basis [3]. Then, uncertainties are implemented through the nonparametric probabilistic ap-

proach [13, 9], which has been recently improved for the structural part of the nonlinear operators [1].

A numerical example is then presented.

2 Mean nonlinear reduced-order model of the structural-acoustic

system

The structural-acoustic system under consideration is made up of a tank structure filled with a linear

inviscid compressible fluid. A linear elastic constitutive equation is considered for the structure. It is also

assumed that the structure undergoes sufficiently large deformations and large displacements in order

to consider the geometrical nonlinear effects, but also sufficiently moderate so that the fluid behavior

remains linear. A total lagrangian formulation around a static equilibrium state taken as a reference

configuration is used.

The three-dimensional bounded domain of the physical space R
3 occupied by the structure is denoted

by ΩS with boundary ∂ΩS = ΓS,0 ∪ ΓS ∪ Σ. The structure is subjected to a body force field fvol(x, t).

It is fixed on ΓS,0 and subjected to a surface force field fsurf(x) on ΓS . The internal fluid occupies a

three-dimensional bounded domain ΩF of R
3 with boundary ∂ΩF = ΓF ∪ Σ. It is coupled to the

structure through boundary Σ and has a free surface condition on ΓF . Let nS and nF be the outward

unit normals to ∂ΩS and ∂ΩF . Note that nS = −nF on Σ. Let x be the generic point of R
3. The forced

response is formulated in the time domain. A formulation in terms of displacements field u(x, t) for the

structure and in terms of pressure field p(x, t) for the internal fluid is chosen. The equations related to

the mean structural-acoustic system [11] are then written as

ρS
∂2u

∂t2
− div (F S) = fvol in ΩS , (1)

u = 0 on ΓS,0 , (2)

(F S) · nS = fsurf on ΓS , (3)

(F S) · nS = p nS on Σ , (4)

1

ρF c2F

∂2 p

∂ t2
−

1

ρF
∆p = 0 in ΩF , (5)

p = 0 on ΓF , (6)

1

ρF

∂p

∂nF
= −

∂2u

∂t2
· nF on Σ , (7)
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in which the deformation gradient tensor F is defined by Fij = ui,j+δij , in which δij is the Kronecker

symbol such that δij = 1 if i = j and δij = 0 otherwise, and where the second Piola-Kirchoff

symmetric stress tensor S is written, for a linear elastic material, as Sij = aijkℓEkℓ. The fourth-order

elasticity tensor a = {aijkℓ}ijkℓ satisfies the usual symmetry and positive-definiteness properties.

The Green strain tensor E = {Eij}ij is then written as the sum of linear and nonlinear terms such

that Eij = εij + ηij , in which εij = 1
2

(
ui,j + uj,i

)
and ηij = 1

2us,i us,j . Quantities ρS , ρF

and cF denote the mass density of the structure, the mass density of the fluid, and the sound velocity

respectively.

The structural-acoustic system is then discretized with the finite element method assuming that the finite

element meshes of the structure and of the internal fluid are compatible on the coupling interface Σ.

A mean nonlinear reduced matrix model of the structural-acoustic system is then constructed. Let u be

the C
nS -vector of the nS DOF of the structure and let p be the C

nF -vector corresponding to the finite

element discretization of the pressure field of the internal acoustic fluid. The projection basis of the

structural-acoustic problem is calculated as follows : (1) The NS structural modes related to the first

NS positive structural eigenfrequencies of the structure are stored in the nS × NS modal matrix [ΦS].

(2) The NF acoustic modes related to the first NF positive acoustic eigenfrequencies of the internal

fluid are stored in the nF × NF modal matrix [ΦF ]. The projection basis allowing the mean reduced

matrix model to be constructed is given by

[
u(t)

p(t)

]
=

[
[ΦS ] [0]

[0] [ΦF ]

] [
qS(t)

qF (t)

]
, (8)

in which qS and qF are the C
NS -vector and the C

NF -vector of the generalized coordinates related to the

structure and to the internal fluid. From such projection basis, the linear reduced operators [MS ], [MF ],

[KS] and [KF ] and the coupling reduced operator [C] are constructed and the nonlinear quadratic and

cubic reduced operators K
(2)
S,αβγ and K

(3)
S,αβγδ are explicitly constructed according [3] . The generalized

coordinates are then solution of the matrix equation

[
[MS ] 0

−[C]T [MF ]

] [
q̈S(t)

q̈F (t)

]
+

[
[DS] 0

0 [DF ]

] [
q̇S(t)

q̇F (t)

]
+

[
[KS ] [C]

0 [KF ]

] [
qS(t)

qF (t)

]
+

[
F

NL(qS(t))

0

]
=

[
FS(t)

0

]
,

(9)

in which the nonlinear reduced force FNL(qS) is defined from the nonlinear quadratic and cubic stiff-

ness operators such that

FNL
α (qS) = K

(2)
S,αβγ qS,β qS,γ + K

(3)
S,αβγδ qS,β qS,γ qS,δ . (10)

For the application presented in this paper, the damping model is written as [DS ] = bS [KS ] and

[DF ] = bF [KF ]. Furthermore, the vector FS(t) is the external reduced load vector of the structure, as-

suming that there is no external source for the fluid. The presence of the geometric nonlinearities yields

the equations of the mean nonlinear reduced-order model to be considered in the time domain. The for-

ced response of the structural-acoustic problem is then investigated in the time-domain by considering

an equivalent time-evolution problem with zero initial conditions over a finite time interval, which in-

cludes almost all of the signal energy of the excitation. The strategy is to simultaneously and uniformly

excite all the frequencies of a chosen frequency band of excitation so that only one computation of the

nonlinear dynamical problem is required.
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3 Stochastic nonlinear reduced-order model of the structural-

acoustic system

The uncertainty propagation of the nonlinear dynamical response of the structural-acoustic system is

then investigated by implementing the uncertainties through the nonparametric probabilistic approach

whose review can be found in [13]. More precisely, we are interested in the modeling of the stiffness

linear and nonlinear terms issued from the linear elasticity constitutive equation. The main idea intro-

duced in [9] consist in globally introducing the uncertainties on all linear and nonlinear stiffness terms

through a stiffness operator self-containing the linear, quadratic and cubic stiffness terms. Such reduced

operator is represented by the (P ×P ) real matrix [K] with P = NS(NS +1). It has been shown in [9]

that matrix [K] is a symmetric and positive-definite matrix. Consequently, the nonparametric probabi-

listic approach can be easily extended to the geometrically nonlinear context. The random matrix [K]

can be written as [K] = [LK ]T [GK(δK)] [LK ], in which the (P × P ) matrix [LK ] is issued from the

Choleski factorization of matrix [K] and where [GK(δK)] is a full random matrix with values in the set

of all the positive-definite symmetric (P × P ) matrices. The main drawbacks of this method is that the

dimension P of the random germ [GK(δK)] drastically increases with N and that a scale effect prevents

to compare the influence of the uncertainties on the nonlinear stiffness terms with respect to the linear

stiffness terms in the nonlinear dynamical analysis [4]. The main idea proposed in [1] is to use another

factorization of matrix [K], which involves a rectangular matrix of dimension (N × P ) with N ≪ P .

This is achieved by performing a reduction of matrix [K]. Let us then consider the eigenvalue problem

[K]�α = λα �α . (11)

Matrix [K] can then be approximated by the (P × P ) matrix [K̃] such that [K̃] = [L̃K ]T [L̃K ] , in

which [L̃K ] is the full (N × P ) matrix defined by [L̃K ] = [ΛN ]
1

2 [ΨN ]T , where [ΛN ] is the (N ×N)

diagonal matrix such that [ΛN ]αα = λα, where λ1 ≥ λ2 ≥ · · · ≥ λN and where the columns of

the (P ×N) matrix [ΨN ] are the eigenvector �α, α ∈ {1, . . . , N} related to eigenvalues λα. Random

matrix [K] is then replaced by the random matrix [K̃] such that

[K̃] = [L̃K ]T [G̃K(δK)] [L̃K ] +
(
[K̃]− [K]

)
, (12)

in which [G̃K(δK)] is a (N×N) random matrix with values in the set of the symmetric positive-definite

matrices. Note that Eq. (12) ensures that stiffness operator [K̃] is almost surely positive definite. The

construction of the random generator of each random (N×N) matrix related to each operator is detailed

in [12, 13]. Finally, the uncertainty level of the coupled fluid-structure system is entirely controlled by

the R
7-valued hyperparameter δ = (δMS

, δDS
, δC , δMF

, δDF
, δKF

, δK), belonging to the admissible

set ∆
7. Concerning the numerical procedure for computing the response of the stochastic nonlinear

reduced-order model in the time domain, the Monte Carlo numerical simulation is used with an im-

plicit and unconditionally stable integration scheme (Newmark method with the averaging acceleration

scheme) combined with either the fixed point method or with an adapted efficient algorithm based on

the arc-length method [5, 4, 2], depending on the nonlinearity rate. A posterior nonlinear dynamical

analysis is then performed in the frequency domain by using Fast Fourier Transform.
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4 Numerical application

The fluid-structure coupled dynamical system under consideration is a cylindrical tank partially filled

with a linear inviscid acoustic fluid that is described in a global cartesian coordinate system (O, e1, e1, e3),

where O is the center of the cylinder basis and where the cylinder axis is defined along e3. Its geometry

is characterized by the mean radius rm = 0.93m, thickness e = 0.14m, h = 2m, and bottom

thickness hb = 0.5m. The bottom of the cylindrical shell is clamped. The material is a linear isotropic

homogeneous elastic material for which the Young modulus E = 2.1 × 1011 N ×m−2, the Poisson

ratio ν = 0.3, and the mass density ρS = 7860Kg × m−3. The internal fluid occupies a cylindri-

cal volume with radius rf = 0.86m and height hF = 0.75m. It has a free surface. The fluid has

mass density ρF = 1000Kg.m−3 and sound velocity cF = 1480m× s−1. The finite element model

of the system has 1024 three-dimensional solid finite elements with 8 nodes with nS = 3750 Dofs.

The finite element model of the fluid has 768 three-dimensional fluid finite elements with 8 nodes with

nF = 819 Dofs and is represented by Fig. 1. The structure is subjected to a transverse load such that

all the nodes located at the top of the cylindrical shell are uniformly excited along e2. The damping

model is characterized by bS = 1.5× 10−5 and bF = 10−5.

FIGURE 1 – Finite element model of the mean fluid-structure system.

The frequency band of excitation is Bexc = [200 , 1 400]Hz such that s = 2/3 and ∆ν = 1200Hz

according to Eq.(14). The stochastic reduced-order model is constructed with NS = 50 and NF = 40,

for which a convergence analysis concerning the displacements of the structure and the pressure in the

fluid has been made. The chosen observations are the displacements Ux, Uy, Uz along directions e1, e2,

e3 of the point of coordinates (−1, 0, 2) located at the top of the structure and the pressure P of the point

of coordinated (−0.64, 0, 1), located in the fluid. Figures 2 and 3 compare the confidence region of the

nonlinear stochastic response of the fluid-structure system at these observation points when uncertainty

is located on the stiffness structure only δK = 0.2 or on the stiffness fluid only δKS
= 0.2.

5 Conclusion

A numerical method for computing the nonlinear dynamical behaviour of an uncertain coupled fluid-

structure system has been presented. A numerical application demonstrates the feasability of the pro-

posed method.
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FIGURE 2 – For δKS
= 0.2, graph of the deterministic response (thick line), the mean response (thin

dashed line) and of the confidence region related to (a) displacement Ûx(ν), (b) displacement Ûy(ν),

(c) displacement Ûz(ν), (d) pressure P̂ (ν).
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FIGURE 3 – For δKF
= 0.2, graph of the deterministic response (thick line), the mean response (thin

dashed line) and of the confidence region related to (a) displacement Ûx(ν), (b) displacement Ûy(ν),

(c) displacement Ûz(ν), (d) pressure P̂ (ν).
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