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Abstract :

The intermittency of the wind turbine power remains an important issue for the massive development
of this renewable energy. The power variability of the produced electricity are inherent to the wind va-
riations, thus the turbulence. The energy peaks injected in the electric grid produce a supplementary
difficulty in the energy distribution management. Hence, a correct forecast of the wind power in the
short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We
consider a statistical approach through the analysis and characterization of stochastic fluctuations. The
theoretical framework is the multifractal energy cascades. The tools and methods aim to study the in-
fluence of the fully developed turbulence on a horizontal three-blade wind turbine. Here, we consider
simultaneous input/output data coming from two wind turbines which have a Direct Drive technology.
Those turbines are producing energy in real exploitation conditions and allow to test our forecast models
of power production at a different time horizons. The spectral analysis first provide information about
the scaling properties observed in the wind and the power time series. Besides, the structure functions
describe the multifractal statistics by the characterization of the intermittency parameters. Finally, two
forecast models were developed based on two physical principles : the scaling properties on the one
hand and the intermittency in the power output increments on the other. The first tool is related to the
intermittency through a multifractal log-normal fit of the power fluctuations. The second tool is based on
an analogy of the power scaling properties with a fractional brownian motion. This last tool exploits an
inner long-term memory contained on both time series. The encouraging results present the first steps
for a unique forecast model based on a stochastic approach.

Keywords : Turbulence, forecast, intermittency, stochastic fluctuations, mul-
tifractal energy cascade

1 Introduction
The expansion of the installed wind turbine energy capacity is a result of the growing demand of power
sources with carbone dioxide low-emissions. One of the long-term challenges of the massive develop-
ment of wind turbines remains the wind power variability within the electric grid [1, 2]. Due to this power
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variability, also called intermittency, power production forecast is a challenge. An efficient prediction
system may allow an adaptation of the wind turbine with the aim of stability in the power delivered. The
yaw, the pitch, the cut-out, among other settings can be indeed adjusted accordingly, in order to optimize
and stabilize power production for its correct distribution.

Over the last thirty years, several forecasting methods have been published [3], based on statistical me-
thods, probabilistic learning methods or the survey of climate physical parameters. One can differentiate
two different forecasting approaches. On the one hand, the approach to forecasting that considers the
specific on-site conditions at the wind turbine farm emplacement. The recorded input parameters (tem-
perature, atmospheric pression, humidity, orography, roughness, among others) are completed by the
Numerical Weather Prediction (NWP) data for the refinement of the model by a downscaling method.
On the other hand, an alternative is statistical modeling, that requires an important historical series which
is used to build and to train the model. In many cases, a wind prediction is first commonly realized and
the wind power is then deduced through a function such as the law of 1/7 [4], cubic law of the power
curve [5, 6] or the combination of several models [7]. Here, we propose an statistical approach where
we prefer to directly focus on the power signal. We present two prediction models based on a scale in-
variance approach with a particular attention to the stochastic prediction of the power output of wind
turbines. We present first the theoretical framework. Besides, we show the forecasting methods that are
applied to the power measurements coming from two wind turbine power time series.

2 Dataset
The dataset come from two horizontal three-blade wind turbines manufactured by Enercon. The first
turbine is an on-shore turbine Enercon E-44 with a nominal power of 0.9 MW. The second turbine is
an on-shore E-82 that generates a nominal power of 2 MW. The data was recorded during one year,
producing energy in real exploitation conditions. Multiple simultaneous time series were recorded and
here we focus on the wind velocity V (t) recorded from the top of the hub and the power output P (t).

The sampling frequency represents 10 minutes average following the norm IEC 2000b [9]. Thus, the
statistical properties are limited to time scales larger than this data rate. However, this data rate will
allow to test our forecast models of power production at different time horizons. Both turbines present
a direct drive technology : it means that there is not a gear box multiplying the revolutions of the main
shaft. Further specifications of both turbines are provided in table 1 below.

Table 1 – Technical specifications.
E-44 E-82

Nominal power [MW] 0.9 2
Rotor diameter [m] 44 82
Hub heigh [m] 45 85
Swept area [m2] 1521 5281
Rotational speed [tr/min] Variable, 12-34 Variable, 6-18
Cut-out wind [m/s] 28-34 28-34
Wind class (IEC) IEC/NVN IA IEC/EN IIA
Generator annular, Direct-Drive annular, Direct-Drive
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Figure 1 – An example of 48 hours of the recorded data coming from a wind turbine Enercon E-82.
The wind and power are intermittent and seem to be related. Indeed, both curves present an analogous
outline following generally an ascending and decreasing pattern.

3 Methods

3.1 Multiscale energy cascades framework
The power variability of the produced electricity is linked to the wind variations, thus the turbulence. The
wind and power intermittency as seen in Fig.1 are indeed a consequence of the fully developed turbulence
on a horizontal three-blade wind turbine. These sudden fluctuations are manifested at different scales
and their properties are commonly studied in the framework of multifractal turbulence. We introduce
the multiscale energy cascades, a classic theoretical framework in the fully developed turbulence [11,
13, 12]. The power spectral density of the velocity will follow, with the hypothesis of homogeneous and
isotropic turbulence, a power law corresponding to a -5/3 power-law in the inertial range. Through the
Taylor frozen hypothesis, the Fourier power density spectrum S(f) is of the form [10] :

S (f) ∼ f−5/3 (1)

where f is the frequency. In figure 2, the power spectra show for both time series, a nice scaling with a
-5/3 slope from the lowest time scale of 10 minutes, to a frequency of 10−6 Hz that represents 2 days.
The wind power law scaling were already found in multiple works [17, 18, 16, 22]. Besides, the power
possesses as well a 5/3 scaling exponent : the wind intermittency properties are certainly transferred,
probably due to the Direct Drive technology. In [14] for example, the same power spectrum behavior
has been exposed without provide an explanation of such behavior.

The turbulence is a multiscaling phenomenon where there is an interaction between the different time-
space scales in the inertial range. The spectral properties of the multiscale fluctuations is known to
produce multifractal statistics, classically studied by the structure functions.
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Figure 2 – Power Spectra of wind velocity (blue) and wind turbine power output (red). The dashed line
represents a -5/3 slope as a reference. A vertical shift was applied with a plot purpose.

3.2 The structure functions
The multiscaling statistics indicates a memory in the processes due to the scale invariant cascade process
for the turbulent wind. In the framework of fully developed turbulence, the application of the statistic
moments on the velocity increment was first considered by Kolmogorov in 1941. If V is the wind velo-
city, the wind fluctuations are defined by ∆Vτ = V (t + τ) − V (t) for a time scale τ belonging to the
inertial scale. The structure functions of order q have a scaling behavior :

〈|∆Vτ |q〉 ≈ τ ζ(q) (2)

where 〈.〉means statistical average. The absolute value allows to considerate non integer q moments (for
q ≥ 0). The function ζ(q) is the scale invariant moment function that indicates the multifractal behavior
of the considered time series. Indeed, if ζ(q) is a linear function, the time series is considered a mo-
nofractal process. In the opposite, a non-linear and concave ζ(q) function corresponds to a multifractal
process. The more ζ(q) is concave, the more the time series fluctuates.

There are several multifractal models to fit such structure function [12, 15]. The log-normal model
remains a classical fit for the scale invariant moment function ζ(q). With the constraints ζ(0) = 0 and
ζ(1) = H , the quadratic function has the following form :

ζLN (q) = qH − µ

2

(
q2 − q

)
(3)

whereH is the Hust exponent (0 <H < 1) and µ is chosen here to verify µ = 2H − ζ(2).H defines the
degree of roughness or smoothness of the considered time series and µ (0 ≤ µ ≤ 1) is the intermittency
exponent. Figure 3 shows the scale invariant moment function for the wind and power output time series
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coming from the E-82 turbine. A similar behavior is as well observed for the E-44 turbine (not shown).
The concavity and non linearity of both ζ(q) functions indicate that theirs fluctuations obey multifractal
statistics. Table 2 provides the different log-normal model parameters (H,µ) estimated for each series.
In the present case, we obtain µ(P (t)) > µ(V (t)) for both turbines, hence the power time series show a
more fluctuating behavior in comparison to the wind time series. This is verified by the concavity of the
ζ(q) curve corresponding to the power output, the wind turbine seems to amplify the wind fluctuations
for which ζ(q) is less concave.

q
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ζ(
q

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ζ(q)
ζ

LN
(q)

ζ(q)
ζ

LN
(q)

ζ(q)=q/3

WIND

POWER

Figure 3 – The scale invariant moment function ζ(q) estimated for wind and power output series coming
from the turbine E-82. The log-normal models ζLN (q) are superposed for each curve : the fit is respected
for the lowest orders. The ζ(q) functions are concave and compared to the linear function q/3 (dashed
line) which indicate the multifractal properties.

Table 2 – Multifractal parameters.
Turbine Data H = ζ(1) ζ(2) µ

E-44 Wind velocity 0.41 0.78 0.046
Power output 0.41 0.76 0.094

E-82 Wind velocity 0.35 0.66 0.048
Power output 0.36 0.62 0.098

4 Forecasting Tools

4.1 1st forecasting model : Scaling memory
The forecasting model presented in this section is based on the intrinsic scale memory of the fractional
Brownian motion (fBm) process. Indeed, there is a long-range memory coming from the scale invariant
properties [19] observed in both turbine’s power output spectra. The fBm process is a Gaussian model
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at the stationary increments of covariance function Cov(Bt, Bs) = min(s, t), a standard model for a
stochastic process with a self-similarity property. The forecast approach is based in an analogy of the
power output P (t) with a fBm process of order H, with a Hurst index H < 1/2 (cf. table 2). The
long-range memory property of the power output time series can be exploited to realize a forecast. In
the mathematical literature, such forecast expression is written by expressing a conditional expectation
[20, 21] :

E [BH (T ) |σ (BH(s) : −∞ < s ≤ t1)] = C

∫ t1

−∞

(
T − t1
t1 − s

)α 1

T − s
BH(s)ds (4)

where C = 1/πsinπ(1/2−H) and α = 1/2 + H . The discretization of the equation 4 is written as
follows :

P̂ (t+ T0) = C
t−1∑

i=t−T1

(
T0

T1 − i

)αP (t− T1 + i)

T0 + T1 − i
(5)

where P̂ is the power prevision, t is the present time, T0 is the forecast horizon, T1 replace −∞ and
s = t− T1 + i. Indeed, the range [T1, t] correspond to the learning window necessary in the statistical
approach (cf. section 1). The indexH is chosen from the whole measured power data for better statistics
(cf. table 2).

time [x 1h.]
50 100 150 200 250 300 350 400 450 500

P
o

w
er

 o
u

tp
u

t 
[M

W
]

0

0.2

0.4

0.6

0.8

1
P (t) P̂ (t′ + T0)

Figure 4 – Example of the forecast model applied to the E-44 turbine. This is a running forecast, with
time t going from 0 to 500 and T0 fixed. The method is based on the long-range properties of invariant
scale processes. The method has been applied during a period of 500 hours where the forecast horizon
is T0 = 10 minutes and the learning window is T1 = 166 hours.

The application of such methodology is illustrated in the figure 4. The model runs during a period of
500 hours with a forecast horizon T0 = 10 minutes. The learning window T1 = 166 hours has been
chosen as approximative 1/3 of the considered period. The estimated power P̂ (t+ T0) follows the global
tendency of the real power output. One can remark that the forecast follows the upward and downward
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variations without capturing however, the peaks and sudden power changes. Besides, the power prevision
presents clear underestimation. This is a consequence of the mono-fractal character of the forecast model
since the equation 4 has been formulated for a fractional Brownian motion, a mono-fractal process. This
model does not take into account the multiscale fluctuations of the wind power that is characteristic of
a multifractal process.

The principal advantage of this method is the ability to estimate power with missing values since the
scalar memory depends on the learning window, hence T1. In the case of a dysfunction of the data
recording, this model is able to provide an information of the upward and downward power variations if
the missing values are negligible with respect to the considered window. One can increase the learning
window with an impact on the calculation time that remains below the data rate of 10 min.

4.2 2nd forecasting model : Log-normal fluctuations
This second model runs using directly the hypothesis of lognormal multifractal fluctuations. In the log-
normal framework, we consider the fluctuation ∆PT0 = |P (t+ T0)− P (t)|, obeying a lognormal law
written as :

p(z) =
1

zσ
√

2π

[
−(log(x)−m)2

2σ2

]
(6)

where m = 〈logX〉 and σ is the standard deviation of logX . The method consists first into adjusting
the probability density function (PDF) of the fluctuations ∆P of the power time series with a forecast
horizon of T0. Through this PDF fit, the power estimation is then estimated as follows :

P̂ (t+ T0) = P (t)±∆PT0 (7)

where∆PT0 is a random variable obeying the PDF given in (6). Figure 5 illustrates the PDF of z = ∆PT0
for a forecast horizon of T0 = 10 min applied to the turbine E-82. The dashed line correspond to the
log-normal fit (cf. equation 6) wherem = 〈log z〉 and σ2 =

〈
(log z −m)2

〉
. Indeed, the values (m,σ2)

were estimated during the learning phase. Although this adjustment have a nice correspondence on the
interval x ∈ [20; 300], the fit is not representative for the extreme values.

Through this adjustment , the power prediction P̂ at the horizon T0 is written as follows :

P̂ (t+ T0) = P (t) + sZ (8)

where s is a sign, taking the value +1 or -1 according to a binomial distribution with a parameter 1/2.Z is
a log-normal random variable generated within the log-normal PDF adjustment. This is simply written
Z = exp(m+ σg) where g is a normal random variable with a zero mean and a variance equal to 1.

The application of this forecast model is shown in figure 6. There is a superposition of the measured
data P (t) and the stochastic predictions P̂ where the forecast horizon is T0 = 10 min. and t′ = t− T0.
We consider a learning window of 6 months and a 200 hours forecast period.

The general tendency is well followed, but the power energy pikes are not well predicted in general.
Indeed, one of the weakness of such statistical approach is the difficulty to well determine the sign (cf.
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Figure 5 – Probability density function p(x) applied to the power output increments of the E-82 turbine
at a time interval of 10 min. The log-normal fit (dashed line) is globally correct. Nevertheless, this
adjustment does not capture power increments less than 20 kW and higher than 300 kW. The extremes
are overestimated.
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Figure 6 – Example of the forecast model based on a log-normal distribution of the power increments
during a period of 200 hours. The method was applied to the power output coming from the E-82 turbine
with a forecast horizon T0 = 10 min.

s eq. 8) for a correct estimation of the value P (t). The information of the sign is lost by the applica-
tion of the method and the binomial distribution is not adapted for the fluctuations complexity. On the
other hand, the pikes represent overestimated values of P̂ due to the inadequate adjustment of the PDF
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extremes. One possible futur improvement of this approach is the fusion of the lognormal multifractal
properties with the long-range properties of invariant scale processes as seen in section 4.1.

5 Conclusion
We have consider two time series from two wind turbines. The data was recorded during one year at a
sampling frequency of 10 minutes which provides good statistics for the application of two forecasting
tools. In the framework of the multifractal energy cascades, the wind velocity and power output time
series possess scaling fluctuations since both spectra follow a -5/3 power law for scales from 10 mi-
nutes to 2 days. This could be possibly due to the Direct Drive technology that allows the intermittency
properties transfert.

The structure functions have allowed the analysis of the multifractal statistics through the observed mul-
tiscaling properties. The estimation of the scalingmoment functions ζ(q) reveals the fluctuating behavior
of wind and power time series. Larger fluctuating degree µ are is observed for the power output for the
two considered wind turbines. The privileged hypothesis of this phenomenon is an amplification of the
wind fluctuations by the wind turbine.

Two forecast models were developed based on the memory generating principles : the first forecasting
tool is based on an analogy of the power scaling properties with a fractional Brownian motion. The
second is related to the intermittency through a multifractal lognormal fit of the power fluctuations.
These are the first steps to a search of efficient forecasting approaches for grid adaptation facing the
wind energy fluctuations. Such methods are, to our knowledge, the first attempt to provide a forecast
stochastic model exploiting the inner data physical properties. Although both models show encouraging
results since a correct tendency of the signal is respected, multiple difficulties are to be managed before
a correct application in the field. Some obstacles could be solved through a combinaison of both forecast
methods, which will be considered in further works.

Finally, further studies will be realized in order to compare those methodologies with the existent ones,
specially with the persistance forecasting method, an elementary forecast method from which many me-
thods are classically compared. Actually, the error estimate over different forecast horizons will indicate
the performance of our models.
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