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Abstract: This paper introduces a novel methodology for minimizing the total cost of
ownership (TCO) of plug-in Hybrid Electric Vehicles (pHEVs) in the context of heavy duty
application. This approach enables the best powertrain components sizing to be determined
coupled with the optimal energy management. A detailed financial cost model of the truck
is developed to take into consideration the differences in spending from a conventional Diesel
vehicle. The introduction of eight design variables enables to explore both internal combustion
engine, electrical motor and battery alternative designs. Then, a coupled optimization problem
is formulated as a bi-level form with powertrain optimal energy management based on a
combinatorial problem formulation solved by Simplex algorithm and Branch & Bound in the
inner loop and exhaustive evaluation of the powertrain designs in the outer loop. The results
obtained from this new optimization framework show a 2% potential financial savings for a
pHEV operating by the end of the decade on a regional haul application while decreasing CO2
emissions by more than 38% compared to a conventional Diesel truck.

Keywords: total cost of ownership, optimization based design, plug-in hybrid electric vehicles,
component sizing, optimal energy management

1. INTRODUCTION

New European CO2 emission standards for heavy-duty
vehicles sets at least 30% average reduction from new lor-
ries in 2030 compared to a 2019-2020 reference period. In
addition zero-emission zones are planned to be introduced
in large European cities such as Paris in 2024 to restrict
or ban Diesel internal combustion engine (ICE) usage with
the aim of improving air quality.

In the meantime, minimizing the vehicles total cost of own-
ership (TCO) is constantly sought in the transportation
industry in order to improve the profitability of operations.
Plug-in Hybrid Electric Vehicles (pHEVs) can certainly
improve fuel economy benefits compared to a conventional
Diesel truck (Stockar, 2010), but the electrical charging
costs from the grid combined with the additional compo-
nents of the electric propulsion including the motor drive
systems, the battery pack and the on-board charger are
increasing the TCO of the vehicle. In order to minimize
the TCO of the pHEVs, the objective therefore consists
in optimizing the powertrain design as well as its energy
management strategy. (Silvas, 2015).

However, these studies combining design and energy man-
agement optimization often consider simplified total cost
of ownership formulation. (Pourabdollah et al., 2013; Sil-
vas et al., 2014). Nevertheless, other financial costs not
included in these papers can also differ between the two
types of vehicles such as the insurance, the maintenance,
the funding cost or the resale value which must also be

taken into account to better reflect the real expenses of
owning such a vehicle and to be able to draw a fair
comparison with a purely Diesel truck.

In Huin et al. (2021a), we developed an optimization based
methodology for the design of hybrid dedicated internal
combustion engines. The introduction of five design vari-
ables were used to perform parametric transformations of
the engine static efficiency and maximum torque charac-
teristics. This methodology was however limited to the
study of alternative engine designs. In order to optimize
even more the pHEVs powertrain, Pourabdollah et al.
(2013) and Silvas et al. (2014) proposed one additional
design variable for scaling linearly in torque the electric
machine (EM) static efficiency and maximal torque and
one for optimizing the number of battery cells. However,
this last sizing variable only allows to explore batteries of
the same family with identical ratio of maximum power
output to capacity performances (C-rate). In this paper,
we introduce a third design variable which, combined with
the second one, offers the opportunity of scaling indepen-
dently the battery number of cells and its C-rate.

Fathy et al. (2001) studied the different strategies that can
be used to solve design and control optimization problems.
Among the four possible approaches, only the bi-level
(or nested) and the simultaneous strategies can guaran-
tee optimality. However, this second strategy requires to
heavily re-formulate the problem as in Pourabdollah et
al. (2013) where the entire problem is formulated as a
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convex optimization problem. This leads to a lower fidelity
of component modeling and simplified energy management
without discrete variables such as the transmission selected
gear for example. Since this strategy strongly affects the
vehicle model fidelity, a bi-level approach is chosen in the
present work.

Review and comparison of different optimal energy man-
agement strategies were performed. (Silvas et al., 2014).
Dynamic programming developed by Richard Bellman is
often implemented and used because it offers a global
optimum and deterministic solution to this mixed and
non-convex problem. However, this technique requires a
lot of storage memory for large scale problems and the
computation time increases exponentially with the number
of state variables. (Bellman, 1957). In addition it can
be difficult to integrate some of the constraints without
introducing penalty coefficients (Murgovski et al., 2010)
that require calibration leading to a lack of robustness.

Chauvin et al. (2015) proposed a re-formulation of the
original problem under several combinations of mixed-
integer linear problems which can be solved using Branch
& Bound algorithm. Commercial solvers such as Cplex
or Gurobi have good computational performances for this
type of problem ensuring acceptable resolution time. With
the same ability to find a global optimum as dynamic
programming, this approach enables to easily integrate
additional constraints in the problem formulation without
requiring calibration. Hence, we select this method as
it provides a fair evaluation of the potential achievable
TCO for each powertrain design. However, the proposed
approach have still some limitations regarding the com-
putation time for large problems. With the introduction
of all the different design variables previously mentioned,
the development of an improved optimization framework
has been conducted and is also one of the contributions of
this paper. Some integers constraints of the problem have
been relaxed in order to solve linear sub-problems faster
and heuristically sort the design to converge faster towards
the best solution.

This paper is organized as follows: Section 2 presents the
TCO calculation. Then, Section 3 introduces the problem
formulation and Section 4 presents the new optimization
framework. Section 5 describes the results achieved by the
methodology and the last section summarizes conclusions.

2. TCO CALCULATION

In this paper the optimization problem is defined as fol-
lows: from a predefined regional haul mission and a parallel
hybrid topology, we want to find the best powertrain com-
ponent sizes and the optimal energy management strat-
egy to minimize the total cost of ownership (TCO) also
called the objective function of our problem. It consists of
operational costs which are function of the mileage of the
vehicle: fuel and electricity costs but also fixed costs which
includes truck purchase, maintenance, insurance, funding
and resale costs.

2.1 Operational costs

Operational costs include both fuel and electrical grid
charging costs which form the energy consumption of

the pHEV truck. For the conventional vehicle, only fuel
cost is obviously considered. These financial charges are
calculated for the predefined vehicle duty cycle discretized
in N steps and then we assume to repeat this mission M
times over a total period of ownership. It can be expressed
as:

Jo =

N∑
k=1

M
(
c1ṁfuel(k) + c2ic(k)

)
∆t(k) (1)

with c1 and c2 constants to convert fuel and electricity
consumption to financial costs, ṁfuel the engine fuel mass
flow, ic the battery cell current and ∆t the sampling time
between two discretized steps. It should be noted that
the Diesel and electric energy consumption of the truck
is highly dependant of the sizing selected as well as the
energy management strategy defined.

2.2 Fixed costs

Fixed costs regroup the other vehicle expenses which are
assumed to be independent of the transportation missions.
First of all, the initial purchase of the vehicle consists of
the truck frame, cabin and combustion driveline for the
reference truck and is denoted as Jref

v . In addition the
pHEV truck powertrain is also equipped with a motor
drive system, a battery pack and an on-board charger.
Its combustion driveline and these components sizing are
to be found during the optimization. While the electric
machine cost is chosen linear with respect to its maximum
power, the battery price model is of the following form:

Jbat = a1Pbat + a2Ebat (2)

with a1 and a2 constant values to calculate with reference
battery costs, Pbat and Ebat the maximal power and
capacity of the battery considered. The total purchase cost
of the pHEV is designated as JpHEV

v . A loan with a rate
of r% must also be included in the TCO to finance the
initial purchase. This additional cost can be expressed as:

Jfi = JvrT (3)

where T corresponds to the total period of ownership in
years. Insurance cost for the reference vehicle is described

by Jref
i and a linear relationship is assumed to estimate

the pHEV insurance cost:

JpHEV
i =

Jref
i JpHEV

v

Jref
v

. (4)

Vehicle resale percentage at the end of ownership with
respect to the purchase cost are denoted by rs and assumed
to be zero for the battery pack. Finally, maintenance costs
are assumed to be equivalent between the two vehicles
since the additional electric propulsion requires barely no
servicing during its lifetime. They are integrated into Je
which regroup all other equivalent costs such as the driver
salary, the toll and taxes or the trailer. The fixed costs can
then be summed up as:{
Jref
f = Jref

v (1 + rT − rs) + Jref
i + Je

JpHEV
f = JpHEV

v (1 + rT − rs) + Jbatrs + JpHEV
i + Je

(5)
with Jbat the battery cost of the pHEV truck. In the end
the total cost of ownership or the objective function of our
problem consists in minimizing:

J = Jo + JpHEV
f . (6)



3. PROBLEM FORMULATION

In order to find the sizing that minimizes the total cost
of ownership of the truck, an accurate evaluation of the
vehicle fuel consumption for each powertrain design must
be performed. Indeed, there is a strong coupling between
the sizing and the energy management strategy. (Fathy
et al., 2001). It thus requires a simultaneous resolution
of the complete problem. The assumptions made and the
chosen reformulation of this optimization problem to ease
the resolution are described in the next section and are
similar to Huin et al. (2021a).

3.1 Vehicle powertrain description modeling

The considered topology is a parallel plug-in hybrid elec-
tric truck as depicted in Fig. 1. The powertrain is mainly
composed of the internal combustion engine connected
to the transmission system by a clutch and the electric
propulsion which consists in the energy storage system
(battery), an on-board charger, the power electronics and
the electrical motor. The latter is connected to the counter
shaft of the gearbox by an additional reduction gear in
order to operate in higher efficiency areas while driving.
Using a backward modeling approach, we can deduce the

Fig. 1. Parallel plug-in hybrid topology considered

required traction force Ft to propel the vehicle at the
desired velocity and to overcome external forces:

Ft(k) = (mv + Iv(k))a(k) + Fr(k) + Fg(k) + Fa(k)

= (mv + Iv(k))a(k) +mvgcrr cosα(k)

+mvg sinα(k) +
1

2
ρaAfcdv

2(k),

(7)

with mv the vehicle mass which is dependent of the power-
train sizing, Iv the powertrain rotating parts inertia which
changes with engaged gear, a the vehicle acceleration, Fr

the rolling resistance, Fg the gravitational force, Fa the
aerodynamic drag force, g the gravitational constant, crr
the rolling resistance coefficient, α the road angle with
horizontal, ρa the air density, Af the frontal area, cd the
aerodynamic coefficient and v the vehicle speed. From the
traction force and the vehicle speed we can respectively
calculate the torque demand at the output shaft Td of the
transmission and its rotational speed ωd that the engine
and the electrical motor must meet in order to follow the
input trajectory:

ωd(k) =
v(k)Rfg

Rw
,

Td(k) =
Ft(k)Rw + Sf (v(k)Rfg)ef +D

Rfgη
sgn(Ft(k))
fg

(8)

with Rfg the final gear ratio, Rw the wheel radius, Sf

and ef speed dependent losses coefficients, D dry force
coefficient and ηfg the final gear efficiency. sgn refers to
the mathematical sign function. The 12-speed automated
manual gearbox is represented by gear-dependent ratios γi
for i ∈ [1, ..., 12]. With the choice of the following command
variables : the engine torque Tice , the gear selected γ, the
engine state stice and the clutch state stclu, we can then
deduce the relation of the power split between the two
actuators and write the expression of the electrical motor
(EM) torque Tem:

Tem(k) =
Td(k)

Rem(γ(k))ηem(γ(k))sgn(Tem(k))
+ Sgω

eg
d (k)

− Tice(k)Rice(γ(k))ηice(γ(k))sgn(Tice(k)),

(9)

with Rem and Rice the ratios of the EM and the ICE to the
output shaft of the gearbox, ηem and ηice the efficiencies
through the gearbox, Sg and eg speed dependent losses
coefficients. The Diesel engine and the electrical machine
are characterized by their static efficiency maps and max-
imum torque curves. Engine rotation speed is function
of the engine state (on or off), clutch state (engaged or
disengaged) and the gear selected:

ωice(k) =


0 if stice(k) = 0

ωidle if
(
stice(k), stclu(k)

)
= (1, 0)

ωd(k)Rice(k) otherwise,
(10)

where ωidle is the engine idle speed. The electrical machine
rotation speed is dependent of the gear selection:

ωem(k) = ωd(k)Rem(γ(k)) (11)

The following relation establishes the power demand on
the battery Pbat:

Pbat(k) = ωem(k)Tem(k) + Paux(k)

+ P losses
em

(
ωem(k), Tem(k), sem

)
,

(12)

with P losses
em the electric machine and power electronics

losses map, Paux the auxiliary power demand of the vehicle
and sem the EM sizing variable detailed further. The
battery is modeled using an equivalent circuit including
an ideal open-circuit voltage source Voc in series with an
internal resistance rc as in Guzzella and Sciarretta (2007)
expressing the cell current ic as:

ic(k) = sPbat

Voc −
√
V 2
oc −

4rcPbat(k)

sP
bat

nc

2rc
, (13)

where nc represents the number of cells in the battery pack
and sPbat is a battery sizing variable described in the next
section. Finally the state of charge SoC of the battery can
be expressed as:

dSoC

dt
=
sCbatic(k)

sPbatQc
(14)

with Qc the cell capacity and sCbat a second battery design
variable.

3.2 Sizing and command variables

As previously mentioned, the sizing optimization of the
powertrain components of the pHEV truck is one of the
levers that enables the total cost of ownership to be min-
imized. In a previous paper we develop an optimization



based methodology for hybrid electric vehicle dedicated
internal combustion engine design. (Huin et al., 2021a).
With the introduction of five sizing variables, we can ex-
plore alternative engine designs through parametric trans-
formations of engine static efficiency map and maximum
torque curve. These variables are then optimized in the
framework presented in the next section to find the most
suitable engine design for our problem.

In addition to this work, we introduce in this paper three
extra sizing variables for the electrical machine and the
battery designs. The first one denoted sem consists in scal-
ing linearly with respect to the torque a reference electric
machine efficiency map and its maximum torque curve
(both in propulsive and regenerative operating modes) as
in Pourabdollah et al. (2013) and Silvas et al. (2014). A
similar approach is used for the battery with sPbat which
scales the number of cells connected in parallel in the
battery pack at a given voltage. This variable enables
to explore different power outputs and capacity of the
battery.

Finally, the last design variable sCbat enables to investi-
gate different battery C-rates which correspond to the
maximum power the battery can discharge relatively to
its maximum capacity. In other words, it measures the
ratio between the battery maximum discharging power
and capacity. From a reference battery characteristics, sCbat
can be scaled to explore new battery capacity with a fixed
maximum power output:

Pnew
bat = sPbatP

ref
bat

Enew
bat =

sPbat
sCbat

Eref
bat

(15)

where Pnew
bat and P ref

bat are respectively the scaled and

reference battery maximum power output, Enew
bat and Eref

bat
the scaled and reference battery capacity. The vector of
design variables p is therefore set as:

p = {δω, δT, δdω, δdT, seng, sem, sPbat, sCbat}, (16)

with δω, δT , δdω, δdT and seng the five engine design
variables whereas the vector of command variables u(k) is
expressed as:

u(k) = {Tice(k), γ(k), steng(k), stclu(k)}. (17)

3.3 Constraints and performance requirements

As in Huin et al. (2021a), not only static operating con-
straints of the powertrain components such as maximum
and minimum speed and torque for the engine or the
electrical machine, limits on the current and the state
of charge of the battery are applied to our problem but
also additional constraints on the engine. Due to the air
management system and in particular the presence of a
turbocharger, the response dynamics of the engine is not
neglected and therefore the torque produced by the ICE
is constrained as:

Tice(k + 1)− Tice(k)

∆t(k)
−∆Tice ≤ 0 (18)

with ∆Tice the engine maximum positive change in torque
over time. Moreover, a constraint on the number of engine
state changes is added to the optimization problem to
prevent early degradation of ICE internal components

coming from excessive occurrences of ignition and shut-
down phases. This is expressed as:

1

2

N∑
k=1

|stice(k + 1)− stice(k)| −Nstice ≤ 0 (19)

where Nstice corresponds to the maximum number of
engine state changes possible during the cycle.

Vehicle performance requirements both in full electric
and hybrid modes are also taken into account in this
study. Gradeability, acceleration and range in zero-tailpipe
emission requirements are used to determine minimal
battery power and capacity as well as engine and electrical
power through backward approach and the vehicle model
presented in the previous section. These requirements then
act as a constraint on the values of the design variables
and help reducing the search space while ensuring that the
powertrain found will meet the expected performances.

4. OPTIMIZATION FRAMEWORK

As presented in the previous section, the optimization
problem has a strong coupling between the sizing and the
command variables and requires a simultaneous resolution
of the complete problem. In addition energy management
is written using mixed-integer and non convex mathe-
matical expressions making the problem difficult to solve.
A chosen reformulation of the problem based on a bi-
level strategy and derived from operational research is
selected in this study. (Gaoua et al., 2013; Chauvin et
al., 2015). After discretizing sizing and continuous com-
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Fig. 2. Optimization framework developed

mand variables, n combinatorial mixed integer linear sub-
problems (MILP) are formulated. In order to accelerate
the resolution time, integer constraints of these problems
are relaxed in a first step to enable a fast linear problem
(LP) resolution. The algorithm finds the command inputs
u∗
LP that globally minimizes the objective function for

each sizing combination and for the given drive cycle. This
optimal solution is found using a Simplex algorithm from
a commercial solver such as (Gurobi, 2021). It should be
noted that the parallelization of this task enables to speed
up even more the solving process. Then the solutions of
the different LPs are sorted with respect to their objective



function values in ascending order. The MILPs are then
solved starting by the lowest potential TCO obtained from
the LP resolution using a Branch & Cut algorithm and
the best value sol from u∗ is stored. Once a mixed-integer
solution has a lower objective value than the next LP, the
algorithm is stopped and the best solution found so far
corresponds to the optimal one denoted J∗(p∗,u∗). The
optimization approach is depicted in Fig.2.

The optimization process has been improved compared to
the work of Chauvin et al. (2015) in order to enable the
resolution of larger problems in acceptable computation
time. This approach has been selected and developed
because it has better computational performances than
dynamic programming for optimization problems with
multiple command variables and enables to more easily
take into account additional constraints.

5. SIMULATION AND RESULTS

The mission profile used in this study is the regional deliv-
ery cycle (see Fig. 3) developed by the European Commis-
sion to measure the CO2 emissions and fuel consumption
of heavy-duty vehicles in Vehicle Energy Consumption
Calculation Tool (VECTO).
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In order to take into account possible future regulations
in cities, we have included zero-emission zones at the
beginning and at the end of the cycle where the vehicle op-
erates at relatively low speeds. This additional constraint
compels the truck to operate in fully electric mode. Since
the vehicle has plug-in capability the cycle is assumed to
be performed four times in a row, i.e. 400km, every day
without charging events in order to simulate real depleting
scenario. Moreover this repetition of operating conditions
enables a faster resolution of the problem while provid-
ing a representative duty cycle. In addition a variable
time discretization of the cycle based on torque demand
and vehicle speed temporal variations is performed. It
enables to reduce even more the computational time and
maintain the fidelity level of the new discrete cycle. This
pre-processing of the duty cycle is necessary to obtain a
good trade-off between the resolution time and the results
quality and is similar as the one developed in Huin et al.
(2021a).

Table 1 presents a non-exhaustive list of the parameters
values used for this numerical application. The cost as-
sumptions used in this study are based on Volvo internal
projections for the end of the decade.

Table 1. Cost and vehicle parameters.

Parameter Value Unit

Possession time 5 Years
Price of Diesel 1.30 EUR/L
Price of electricity 0.16 EUR/kWh
Reference vehicle mass 28 146 kg
Reference engine maximum power 370 kW
Reference EM peak power 350 kW
Reference battery pack capacity 65 kWh
Minimal ZEZ range requirements 50 km

In order to evaluate the total cost of ownership of the
reference Diesel vehicle, we perform a first optimization of
the powertrain energy management. In this case the opti-
mization is limited to the selection of the transmission gear
at each time step. From this fuel consumption result, the
TCO of this vehicle can then be easily calculated. Then the
coupled optimization of the 8 design variables and energy
management is performed leading to a search space of more
than 32000 different pHEV configurations since between 3
and 5 values are considered for each design variable. This
exhaustive design research ensures that the best solution
will be found among these different combinations. At the
end of the process, the couple (p∗,u∗

opt) minimizing the
pHEV’s TCO is identified. The problem with a size of 8
design variables, 444 command variables for each of the
2000 steps of the cycle is solved using Matlab 2017b in 6.5
hours on a personal computer with 16-GB random access
memory and a 2.90 GHz processor. The TCO results are
detailed in Fig.4.
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Fig. 4. Comparison of Total Cost of Ownership for oper-
ating Diesel reference vehicle and optimal pHEV on
Regional Haul application.

As anticipated the pHEV has higher vehicle ownership
and fixed costs compared to the reference Diesel truck
of about 6% because of the additional electric propulsion
that increases both the insurance, the truck purchase
and its financing. However, the operational costs which
consists in the fuel and electricity consumption are much
lower for the electrified vehicle. From a contribution of
25% of the energy consumption in the Diesel vehicle, the
optimized pHEV decreases these expenses to less than 17%
by globally increasing the powertrain efficiency from 37%
to 62 % thanks to the electric propulsion and reducing
the fuel consumption with the battery charging from the
grid. As a result, the hybridation of this vehicle can lead
to a potential gain on total cost of ownership of almost 2%
by the end of the decade on this regional haul cycle for a
five years ownership while decreasing tank to wheel CO2
emissions by over 38%.



The best sizing obtained by the optimization process is
depicted in Fig. 5. The first observation we can make

Fig. 5. Comparison of tank to wheel CO2 emissions and
powertrain sizing between the reference Diesel vehicle
and the optimal pHEV.

is that the internal combustion engine is downsized by
almost 40%. Indeed, the additional source of power from
the electrical motor can be used when the power demand
is high making the reference engine inappropriate in this
new powertrain. More detailed results on the new engine
design are presented in Huin et al. (2021a). The obtained
EM sizing is mainly due to the full electric operating
points in the zero-emission zones in addition to the re-
generative abilities to maximize energy recovery during
braking phases. Conclusions are similar for the battery
maximal power as this component operates in tandem
with the electric machine. However, the optimal battery
capacity is a compromise between weight, cost and fuel
saving as it fulfills extensively the minimal range in full
electric requirements by over 20%.

These results clearly highlight the potential financial sav-
ings of a plug-in hybrid electric truck operating by the end
of the decade on a regional haul application while signifi-
cantly decreasing CO2 emissions and energy consumption
as well as having the ability to run in full electric mode.
The methodology developed provides a robust optimiza-
tion framework for minimizing total cost of ownership of
hybrid electric trucks.

6. CONCLUSION

In this paper, a detailed total cost of ownership minimiza-
tion based-methodology has been developed for sizing the
powertrain of a plug-in hybrid electric truck. The good
computational performances of this approach enable to
address a large problem with multiple design variables
with an acceptable resolution time. The right sizing of
the internal combustion engine, the electrical motor and
the battery of the vehicle could provide a potential TCO
reduction of almost 2% for the pHEV compared to a
reference Diesel vehicle by the end of the decade on a
regional haul mission with a five years possession time.
In addition, the electrified vehicle offers a CO2 emissions
reduction of over 38% while bringing the possibility of a
full electric mode for urban operations.

Further work will involve the development of a sensitivity
analysis methodology to measure the robustness of the
solution resulting from the optimization but also to un-
derstand the impacts of input parameters variations on

the results such as the drive cycle, the powertrain design
or the vehicle characteristics (Huin et al., 2021b).
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