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Abstract :

In the context of robust shape optimization, the estimation cost of some physical models is reduce with
the use of a response surface. A procedure that requires the estimation of moment 1 and 2 is set up
for the robust optimization. The step of the optimization procedure and the partitioning of Pareto front
are already developed in the literature. However, the research of a criteria to estimate the robustness
of each solution at each iteration is not much explored. The function, the first and second derivatives is
given by the majority of industrial code. We propose a robust optimization procedure that based on the
prediction of the function and its derivatives predicted by a kriging with a Matern 5/2 covariance kernel.
The modeling of the second derivative and consequently the prediction of first and the second derivatives
are possible with this kernel. In this context we propose to consider the Taylor theorem calculated in each
point of the conception space to approximate the variation around these points. This criterion is used as
the replacement of the moment 2 usually employed. A Pareto front of the robust solutions (minimization
of the function and the robustness criteria) is generated by a genetic algorithm named NSGA-II. This
algorithm gives a Pareto front in an reasonable time of calculation. We show the motivations of this
method with an academic example.

Mots clefs : Robust optimization, Metamodel, Derivatives kriging, Taylor
theorem

1 Introduction
The aim of this paper is to construct an efficient metamodel used in robust optimization. In the context
of computer experiments, metamodels are largely used to represent the output of computers codes see
e.g. [9]. Gaussian process regression (kriging) is very efficient see e.g [7]. Lots of examples of the use
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Figure 1 – Example of two optima of a function. The optimum represented by a square is more robust
than the one represented by a circle. The gray points is given by a little perturbation of the black points
in direction x1.

of a metamodels can be found in literature see e.g. [1], [4] and [8]. Then, we can use the metamodel
to predict the moment 1 of the function see e.g. [5] and to find the optima see e.g.[6]. The idea of
these papers is to optimize with a classical genetic algorithm like NSGA II see e.g. [3] the Expected
Improvement (EI see e.g. [10]) of the prediction function. However, solutions to optimization problems
can be sensitivity to perturbations in the parameters of the problem. The idea of robust optimization is to
find an optimum that is the less perturbed as possible by the variation of parameters. The figure 1 shows
a 2D function with two optima. The optimum represented by a square is more robust in all direction than
the one represented by a circle. Indeed, a little perturbation in the first direction gives the gray points.
We notice that the loss for the robust optimum is really small compared to the non-robust optimum.
[9] propose to represent the robustness with the approximation of the variance function at an optimum
point. Lot of evaluations of the function are needed in each point of observation to catch this variance.
In our context, it is impossible to use directly the function to approximate the variance. In this paper we
propose to consider the Taylor approximation in each point of the conception space as the robustness
criterion. This criterion is used as the replacement of the variance.
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2 Theory

2.1 Derivative kriging metamodel
In this section we take a classical metamodel named kriging to model f : Rp → R be a 2 times dif-
ferentiable function. The difficulty is the modeling of the derivatives. First of all, we introduce the link
between the kernel of f and the kernel of its derivatives.

We take the process (Y (x))x∈Rp with a covariance function k(x, x̃), ∀(x, x̃) ∈ Rp × Rp. This process
is differentiable in mean square at point (x, x̃) if and only if ∂2k

∂xi∂x̃j
(x, x̃) exists ∀i, j ∈ {1, . . . , p} and

it finites at point (x, x̃) = (t, t) in addition :

cov

(
Y (x),

∂Y (x̃)

∂x̃j

)
=

∂k(x, x̃)

∂x̃j

cov

(
∂Y (x)

∂xi
,
∂Y (x̃)

∂x̃j

)
=

∂2k(x, x̃)

∂xi∂x̃j

We write the first derivatives of the process (Y (x))x∈Rp in direction i : (Yxi(x))x∈Rp =
(

∂Y
∂xi

(x)
)
x∈Rp

and the second derivatives in direction i, j :
(
Yxi,xj (x)

)
x∈Rp =

(
∂2Y

∂xi∂xj
(x)

)
x∈Rp

.
Let p be the number of input variables. Then each observation x is a vector with p coordinates, such
as x = (x1, . . . , xp), x ∈⊂ Rp. The outputs is denoted by y ∈ R, yxi ∈ R and yxi,xj ∈ R, where
i ∈ {1, . . . , p} and j ∈ {i, . . . , p} such as,

y = (y1, . . . , yn)′

yxi = (y1xi
, . . . , ynxi

)′

yxi,xj = (y1xi,xj
, . . . , ynxi,xj

)′

In kriging we assume that y, yxi and yxi,xj are d = 1 + 3p/2 + p2/2 vectors of n realizations of d
gaussian processes (Y (x))x∈Rp , (Yxi(x))x∈Rp and

(
Yxi,xj (x)

)
x∈Rp , i ∈ {1, . . . , p} and j ∈ {i, . . . , p},

at points (x1, . . . ,xn)
′ such as xk ∈ Rp, k ∈ {1, . . . , n}. We write the Gps as :

Y (x) = µ+ η(x)

Yxi(x) = ηxi(x)

Yxi,xj (x) = ηxi,xj (x)

for more convenience we write a processes vector of size d at point x :

Z(x) = (Y (x), Y (x)x1 , . . . , Y (x)xp , Y (x)x1,x1 , . . . , Y (x)xi,xj , . . . , Y (x)xp,xp)
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with i ∈ {1, . . . , p} and j ∈ {i, . . . , p}. Then, the modelisation became :

Z(x) = m+ ϵ(x) (1)

where m = (µ, 0, . . . , 0)′ ∈ Rd is the trend, the process (ϵ(x))x∈Rp is a centered gaussian process with
a stationary covariance function that depends to the vector of range parameters θ ∈ Rp

+. In this paper
the trend m is assumed to be constant.
We suppose that parameters (θ) are known and we want a linear prediction that minimizes the mean-
squared prediction error and that guarantees uniform unbiasedness. Under these two constrains, the
prediction (see [2]) at point x0 ∈ Rp is given by :

Ẑ(x0) = m̂+ cθ(x0)
′Σ−1

θ (z− m̂′Idn) (2)

and the mean square error (MSE) at point x0 ∈ Rp is given by :

ŝ(x0) = σ2 − cθ(x0)
′C−1

θ cθ(x0)
′ (3)

where Idn = (In, . . . , In)
′ ∈ Mn×dn, In ∈ Mn×n is the identity matrix, θ = (θ1, . . . , θp) ∈ Rp

+. σ2

is the variance of the process Y (x) such as cov(Y (x), Y (x)) = σ2. Σθ ∈ Mdn×dn is the covariance
matrix of the outputs at observation points such as,

Σ =


ΣY,Y ΣY,Yx̃j

ΣY,Yx̃j x̃k
ΣY,Y

x̃2
j

ΣYxi ,Y
ΣYxi ,Yx̃j

ΣYxi ,Yx̃j x̃k
ΣYxi ,Yx̃2

j

ΣYxixl
,Y ΣYxixl

,Yx̃j
ΣYxixl

,Yx̃j x̃k
ΣYxixl

,Y
x̃2
j

ΣY
x2
i
,Y ΣY

x2
i
,Yx̃j

ΣY
x2
i
,Yx̃j x̃k

ΣY
x2
i
,Y

x̃2
j


where i, j, k, l ∈ {1, . . . p} with l > i and k > j. For instance ΣYxi ,Yx̃j

= cov(Yxi , Yx̃j ) = ∂2k(x,x̃)
∂xi∂x̃j

.
cθ(x0) ∈ Mdn×1 the covariance vector between z(x0) and z. In practice θ are estimated by maximum
likelihood and plugged in the equation 2.

We notice that Ẑ = (Ŷ , Ŷx1 , . . . , Ŷxp , Ŷx1,x1 , . . . , Ŷxi,xj , . . . , Ŷxp,xp) ∈ Rdn and ŝ ∈ Rdn

2.2 Robustness criterion
In an industrial context, the products are constructed by the engines. Often, the engines make a gaussian
error in the construction with a specific variance. The experts gives the characteristics of the gaussian
law associate to each input parameter construct by the engines. Let x ∈ Rp, x represents an observation
of a p parameters vector. Let X the random variable associate. Then X ∼ N (x,∆2) where :

∆2 =


δ21 0 . . . 0

0 δ22
. . . 0

... . . . . . . ...
0 . . . 0 δ2p


We define the variance of the function f around x by σ2

f (x) = V ar (f(x)). A point x1 ∈ Rp is
considered less robust than a point x2 ∈ Rp if σ2

f (x1) > σ2
f (x2). This concept are illustrated in figure
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Figure 2 – Illustration of the robustness. The red points are less robust than the blue.

2. Usually, the variance σ2
f (x) is estimated by Monte Carlo. Let N realizations x1, . . . ,xN , xj ∈ Rp,

j = 1, . . . , N of X ∼ N (x,∆2) :

σ̂2
f (x) =

1

N − 1

N∑
j=1

(
f(xj)− f̄(x)

)2 (4)

where f̄(x) = 1
N

∑N
j=1 (f(xj)) is the mean. In the context of time consuming simulation, we can’t

directly estimate from the real function this variance by Monte Carlo, it is too expansive. The idea of
this paper is to use the Taylor approximation and the derivative metamodel to construct a robust criterion
realizable in this context. Let f : Rp → R be a 2 times differentiable function at the point x ∈ Rp. There
exists h ∈ Rp such that :

f(x+ h) = f(x) +∇f(x) · h+
1

2
hTH(x)h+ o(∥h∥2) (5)

Let H ∼ N (0,∆2) then (x+H) ∼ N (x,∆2). Let N realizations h1, . . . ,hN , xj ∈ Rp, j = 1, . . . , N

of H ∼ N (0,∆2) :

σ̂2
f (x) =

1

N − 1

N∑
j=1

(
f(x+ hj)− f̄(x+ h)

)2 (6)

2.3 Optimization procedure
The optimization problem is to find a robust minimum. We can write it as :

Find vectors x0 such as

x0 = argmin
x∈X is pareto optimal

{f, σ2
f}
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The approach to solve this optimization problem in the context of time consuming simulation is almost
the same as the one explain in [6]. The Step 0 generates the initial samples (n points) uniformly in the
p design variables space. The response surfaces is obtained with the derivative metamodel based on the
observations. Then, the optimization problem based on the prediction of the derivative metamodel is :

Find vectors x0 such as

x0 = argmin
x∈X is pareto optimal

{Ŷ , σ2
Ŷ
}

where σ2
Ŷ
= 1

N−1

∑N
j=1

(
Ŷ (x+ hj)− ¯̂

Y (x+ h)
)2

. The Step 1 searches for non-dominated solutions
on the response surfaces through the optimizations using NSGA II. Step 2 : Based on the stochastic
features expressed by Ẑ and ŝ, accuracy improvements in the present Kriging derivative model are
accomplished by iteratively adding points choosen in the Pareto front with maximum value of expected
improvement (EI). This value corresponds to the probability that the function approximation may achieve
a new global optimum on a response surface, which will be reconstructed with the additional point x.
In an f(x) minimization problem, the EI value of y and σ2

y is expressed, respectively, as :

EIy(x) = E
[
(min

x
(Y (X)− Y (x))+|Y (X) = y(X)

]
EIσ2

y
(x) = E

[
(min

x
(σ2

Y (X)− σ2
Y (x))

+|σ2
Y (X) = σ2

y(X)
]

To select several representatives points from the Pareto front,we perform cluster analysis using the k-
means method. This study determines the locations of cluster centroids and then employed the centroids
as additional sample points.The Step 3 consists in adding the sample points determined in the previous
step to the set of initial samples, the response surfaces are reconstructed and the multi-objective optimi-
zation is performed again. The sample set continues to be updated until obtaining a sufficient number of
samples points.

The size of the initial sample set, the number of updates and the number of points added in each up-
dates are to be given.

3 Application
The function studied is the well-known Six-Hump Camel, defined by :

f(x, y) =

(
4− 2.1x2 +

x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2, (x, y) ∈ [−2; 2]× [−1; 1]

In this application, we consider that the random variable associates to the input parameters follow a
gaussian law with a standard deviation of 0.15 i.e. X = (x+H) ∼ N (x, (0.15)2I2).

3.1 Bias introduced by the Taylor approximation
The Taylor approximation introduced an error of approximation. In the equation 5 the error is in a
o(∥h∥2). This approximation is correct if ∥h∥2 < 1. In our case H ∼ N (0, (0.15)2I2) , the proba-
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Figure 3 – Visualization of the Six_Hump Camel function. The points represent the robust optima with
the M2 criterion in black and the Taylor criterion in red. Where X = (x+H) ∼ N (x, (0.15)2I2)

bility :

P(∥h∥2 < 1) = ϕ(0.5)− ϕ(−0.5) = 0.9991

where ϕ in the distribution of N (0, (0.15)2). So, the approximation error will be small. This bias could
be quantify and visualizes in the Pareto front of the studied function. The figure 3 shows the location of
the robust optima given by the M2 criterion in red and the Taylor criterion in black. The figure 4 shows the
Pareto fronts obtained by the two criteria in the objectives and inputs space. We observe that the Taylor
approximation give good results, the euclidean distance to the front is 0.016. The important things to
understand is that with the derivative metamodel we could not be better than the Taylor approximation.

3.2 Results
We apply the procedure described previously in the Six-Hump Camel function. The initial sample set has
5 points. We make 9 updates and we add 5 points by update. We use the NSGA II optimizer coupled with
the kriging model. Using this optimizer, populations of 100 solutions evolve through 50 generations.

4 Conclusion
The method describes in this paper is use to find a robust optimum in the case of multiple inputs. We
propose a new criterion of robustness based on the Taylor approximation. This criterion is inspired by
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Figure 4 – The Pareto Front is represented in the objectives space (left) and in the inputs space (right)
for the M2 criterion ()black) and the Taylor criterion (red). Where X = (x+H) ∼ N (x, (0.15)2I2).
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Update 1 2 3 4 5 6 7 8 9
Sample size 10 15 20 25 30 35 40 45 50

Distance 0.929 0.36 0.025 0.023 0.022 0.020 0.020 0.020 0.019
Time 20.4 33.889 50.192 58.459 80.853 93.896 109.126 132.231 152.524

Table 1 – Sample size, mean distance to the points in the real Pareto front and estimation time for each
update .

the M2 criterion non-realizable in our context of time consuming simulation. However, the calculation
of the derivatives at the same evaluation point is less expensive than the calculation of a new point. Then,
we use a kriging derivative metamodel to model and predict the function (moment 1) and its derivatives.
The application in the Six_Hump Camel function gives good results in sense of Pareto front. The time
of estimation is quite long dues to the size of the covariance matrix. The application in the industrial
case is actually on work.
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