N

N
N

HAL

open science

A thermodynamics framework to describe bone
remodeling: a 2D study
Madge Martin, Thibault Lemaire, Guillaume Haiat, Peter Pivonka, Vittorio

Sansalone

» To cite this version:

Madge Martin, Thibault Lemaire, Guillaume Haiat, Peter Pivonka, Vittorio Sansalone. A thermody-
namics framework to describe bone remodeling: a 2D study. CFM 2017 - 23eme Congres Francais de

Mécanique, Aug 2017, Lille, France. hal-03465402

HAL Id: hal-03465402
https://hal.science/hal-03465402v1
Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03465402v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

23%me Congrés Frangais de Mécanique Lille, 28 au 1" Septembre 2017

A thermodynamics framework to describe bone

remodeling: a 2D study

M. MARTIN?, T. LEMAIRE?, G. HAIAT?, P. PIVONKAP,
V. SANSALONE?

a. Laboratoire Modélisation et Simulation Multi Echelle MSME UMR 8208 CNRS
e-mail: madge.martin @u-pec.fr; thibault.lemaire @univ-paris-est.fr; haiat@u-pec.fr;
vittorio.sansalone @u-pec.fr
b. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology
e-mail: peter.pivonka@qut.edu.au

Résumé :

Le remodelage osseux est un phénomeéne complexe traduisant le renouvellement continuel ainsi que
Uadaptation du tissu osseux. Cette évolution permanente est d’une importance majeure pour la ci-
catrisation et l'ostéo-intégration autour d’un implant. Dans ce travail, le tissu osseux est modélisé
comme un matériau orthotrope dont les axes principaux tournent au cours du temps. Le remodelage,
exprimé comme une rotation de la microstructure du matériau, est ainsi couplé avec les contraintes
macroscopiques. Ce modéle est ici appliqué a un élément macroscopique de tissu osseux afin de suivre

I’évolution de l'orientation locale du matériau jusqu’a l’équilibre.

Abstract :

Bone remodeling is a complex phenomenon that characterizes the lifelong turnover and adaptation of
bone tissue. This perpetual evolution is of major importance, as it governs healing as well as osseointe-
gration around implants. In this work, bone tissue is modeled as an orthotropic material whose principal
axes rotate over time due to changes of the mechanical environment. The remodeling process is repre-
sented in the form of a rotation of the bone microstructure which is linked to the macroscopic loading.
This model is applied here to a macroscopic unit of bone tissue in order to follow the evolution of the

local orientation of the material until equilibrium.

Keywords: bone; remodeling; rotation; thermodynamics

1 Introduction

Bone is a living material which is continuously reorganized by bone cells in response to their mechanical
and biochemical environment. This process, known as bone remodeling, is of major importance in
everyday life, in case of fractures and to allow osseointegration phenomena around implants. Bone
remodeling can be described as a stress- and chemistry-driven evolution of the mechanical properties of
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bone tissue. The interplay between mechanics and biochemistry, as well as the multiple scales involved
in this process, represent serious challenges for the development of realistic bone adaptation models
[1-5].

This study describes a novel, thermodynamically sound model of bone remodeling at the tissue scale
which, while being mechanistic in nature, is able to account for the above biological processes.

2 Materials and Methods

2.1 Description of the medium

In the present study, we model bone tissue as a microstructured continuum [5]. We model bone as a body
B experiencing remodeling as a rotation of its microstructure. The complete kinematical description of
a body point is thus provided by its position in space and a rotation tensor describing the orientation of
its microstructure.

When calculating the virtual power of internal and external forces, two virtual velocities are necessary to
fully describe the behavior of the body: one relative to the displacement © and another one relative to the
micro-rotation 1. We assume here the continuum to be a first gradient medium in ¢ and zero-gradient
in W. Consequently, the internal and external virtual powers read, respectively:

Pi(0, W) = {g(bi -5 —S-Vo+T-W),

. o (1)
Pe(0,W) =§gb-0+T-W)+{ 5ts-7,

where b; and b represent the inner and outer body forces, respectively, tg is the boundary traction, S is

the stress tensor, and 'i' and 'T' the inner and outer skew-symmetric remodelling couples.

The principle of material frame-indifference to change in observer induces that the power of internal
forces is null in the vectorial space of rigid body velocities, which leads classically to b; = 0 and to
the symmetry of the tensor S. Moreover, the principle of virtual power enunciates that the total virtual
power, here the sum of the external and internal forces P(6, W) = P;(, W) + P. (%, W) should be null
for any admissible virtual velocity (0, W), leading to the following balance laws:

divS+b=0 onB, Snp =ty ondB,

P o ()
T+T=0 onB.

One can note that in the previous set of equations (2), b, t; and T are the fields that depict the impact of
the mechanical and biochemical environment on the medium.

A constitutive theory is then developed from the specification of a quadratic strain energy density :
1
v=CE :E, €)

where E is the infinitesimal strain tensor and C is the elastic tensor. This latter is assumed to be able
to evolve in time, which corresponds to material remodeling. Since we focus on rotary remodeling,
the actual elastic tensor C can be obtained through the action of a rotation tensor R (the state variable
describing material remodeling) on the initial elastic tensor Cy.
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A generalized dissipation principle is enforced to obtain thermodynamical restrictions on the constitutive
mappings of the inner actions S and 'i' No dissipation is assumed to be related to the gross (elastic)
deformation, leadingto S = 0W/JE = CE. (Note that S depends on both E—explicitly—and R—implicitly,
via C.) Then, the dissipation principle binds the micro-rotation velocity W = R.RT, the displacement
velocity v and the material properties via the statement of the positivity of the intrinsic dissipation D,

Dint = _pZ(UaW) - 1/} 2 Oa

pi(0, W) = =S -Vo+T-W = =S-E+T- (R.R), )
=1(S:E)y=S-E—[S,E]: (R.RT).

where p;(v, W) is the power of internal forces per unit volume and the double dot stands for tensor
double dot contraction (A,B) — A : B = A;;jB;;. Subsequently, we can exhibit from Eq. (4) a

structure for the inner remodeling couple T, involving the dissipation antisymmetric tensor D which
interprets as a resistance to remodeling:

Dint = ([S.E] = T) : (R.RT) = D (R.R") : (R.RT) >0 o
T =[S,E] - D(R.RT),

where the superimposed dot stands for time differentiation and the brackets denote the commutator
operator (A, B) — [A,B] = A.B — B.A.

2.2 Local behaviour

We study here the evolution of the material principal axes as a passive remodeling, which implies that the
outer remodeling couple '(I)' is null. We assume here that dissipation due to remodeling does not depend
on the strain E, the microrotation R nor the remodeling velocity R. Therefore, at a given position, D
is constant and equals D = Dg. Hence, the remodeling is coupled to local stress and strain by the
following equation:

Dy (R.RT) =[S, E]. (6)

In 2D, the rotation tensor is parametrized by a scalar (the angle o) and the vectorial space of fourth-order
tensors is Skw @ Skw = Vect(x ® #) where * = e; ® e] — e; ® ez. Hence, Dy is uniquely described
by a coefficient dg.

It follows that, with given initial material properties, the rotation rate ¢ only depends on the dissipation
do, the strain E and the orientation . Remodeling equilibrium is achieved when material properties no
longer evolve, corresponding to a stationary state of the rotation.

It is worth noting that this model predicts the principal axes of the strain and stress tensors to be lo-
cally collinear at the remodeling equilibrium [6]. Thus, a physically sound condition for remodeling
equilibrium [7] is recovered without any ad-hoc assumption.

2.3 Finite element model

The model presented here describes the 2D rotation of bone principal axes. In order to account for rotary
remodeling, we modeled cortical bone as an orthotropic material [8]. The values of the material elastic
properties are displayed in Table 1. We monitored the evolution of a square piece of bone subjected
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Ci Cao Ci2 Ce6 do
30 GPa 20.85 GPa 11.49 GPa 12.44 GPa 1.0 MPa.s

Table 1: Two-dimensional material properties

to a boundary load under plane strain with a finite element analysis. In order to both account for the
local response to the local stress field and update the material orientation, two overlapping meshes were
necessary.

A coarse mesh defined the rotation of the material axes on specified points 7 € I. From these points, a
linear interpolation enabled the creation of an orientation field throughout the material. A finer mesh
specified the elements of the finite element analysis.

An initial orientation was given to the macroscopic continuum structure. At each step n € N, the
orientation field established from the coarse mesh {c; ,, }icr leads to a finite element analysis built from
the new material properties. The calculated strain field E,, obtained from the analysis is then used to
update the orientation of the material axes on the coarse mesh, according to the following equation
deriving from Eq. (6).

VYneN, Viel, Qjpt+l = Qjpn + f(ai,ny do, En)At @)

Note that the function f in Eq. (7) qualifies the approximation method used. In this study, fourth-order
Runge-Kutta approximation was preferred to Euler-Cauchy method in order to optimize the computa-
tional cost.

Hence, the orientation of the material on the coarse mesh interpolation points is determined by the pre-
vious orientation, the strain field E and a fixed time step At¢. Therefore, the time step represents the
response time of the material to a new mechanical environment. On the other hand, the finite element
study was chosen to be stationary. Hence, the change in material properties instantaneously impacts the
strain field.

We considered the following criterion to characterize equilibrium:

sup |di,neq| < Qerit- )]
1€l
In other words, the material has reached equilibrium if and only if none of the coarse mesh interpolation
points ¢ € I are evolving. This criterion is consistent with the definition of remodeling equilibrium
established in Section 2.2.

3 Results and Discussion

3.1 Homogeneous boundary conditions

We imposed displacements to achieve uniform stress/strain conditions to the microstructured continuum.
The system underwent rotary remodeling until achieving equilibrium. Remodeling equilibrium states
were found to correspond to strain energy minima. In Figure 1, we subjected the material to a constant
longitudinal strain E = e; ® e; while varying the initial orientation of the medium. When subjecting
the material to a longitudinal strain, the medium tends to minimize the strain energy to reach equilib-
rium. Two equilibrium states are observed in the present loading configuration: one corresponds to an
alignment of the elastic principal axes with the loading direction (a0 = 0), and the other corresponds
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Figure 1: Evolution of the strain energy of a 2D body under constant longitudinal strain, with varying
initial states {cvg,0 = k5, k € {0,1,2,3,4,5,6}}.

to a rotation towards the normal to that direction (g 0 = g).

Furthermore, the minimization of strain energy in these imposed strain configurations reads as a mini-

mization of potential energy. Therefore, we have here a sensible condition to the achievement of equi-
librium.

3.2 Finite element study

Symmetry axis

NN

Figure 2: 2D body under boundary traction. White lines represent material orientation before (bottom)
and after (top) remodeling. Left: strain energy density (color map, arbitrary units). Right: Von Mises
stress (color map, arbitrary units).

Finite element analyses depicted the elastic principal axes of the material in response to prevailing
stresses until a steady state was reached. Figure 2 displays the adaptation of the material when sub-
jected to a boundary load. When changing the orientation, the change of material properties leads to an



23%me Congrés Frangais de Mécanique Lille, 28 au 1" Septembre 2017

evolution of the strain energy as well as von Mises stress.

The prediction of the rotation of the principal axes of the material in simple loading configurations is
consistent with the superimposed boundary conditions. These results confirm the ability of the model
to simulate the material response to non-uniform stress configurations.

4 Conclusion

A novel, thermodynamically sound model of bone remodeling was proposed. A toy problem was used
to investigate the rotary remodeling of bone at the tissue scale. Elastic principal axes of bone tissue were
observed to rotate according to the superimposed mechanical forces, which is interpreted as a reorien-
tation of the material microstructure. Preliminary results obtained in 2D are promising and show the
potential of this approach. Model predictions for in vivo biomechanical loading configurations need to
be further tested. Suitable experimental data will be identified. The particular case of tissue surrounding
an implant will be also studied. Our model can also integrate the mechanobiological phenomena regu-
lating bone remodeling. However, this would require a reliable description of the biochemical stimuli
of bone remodeling. This matter is out of the scope of this paper and will be addressed in future works.
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