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Abstract :

In some highly demanding fluid dynamics simulations, as for instance in inertial confinement fusion
applications, it appears necessary to simulate multi-fluid flows involving numerous constraints at the
same time, such as (and non-limitatively) : large numbers of fluids (typically 10 and above), both
isentropic and strongly shocked compressible evolution, large heat sources, large deformations, trans-
port over large distances, and highly variable or contrasted EOS stiffnesses.

Fulfilling such a challenge in a robust and tractable way demands that thermodynamic consistency
of the numerical scheme be carefully ensured. This is addressed here over an arbitrarily evolving
computational grid (ALE or Arbitrary Lagrangian—Eulerian approach) by a three-step mimicking de-
rivation using a GEEC (Geometry, Energy, and Entropy Compatible) procedure (see [2] for details) :
i) to ensure a compatible (approximately symplectic) exchange between internal and kinetic energies
under isentropic conditions, a variational least action principle is used to generate the proper pres-
sure forces in the momentum equations; ii) to generate the conservative internal energy equation, a
tally is performed to match the kinetic energy, and iii) artificial dissipation is added to ensure shock
stability, but other physical terms could also be included (drag, heat exchange, etc.).

Varied single-, two- and multi-fluid test cases show satisfactory behavior, including the 2D, close-to-
sonic, high volume-fraction convergence of eight Gaussian packets of different stiffened-gas fluids in
a background of perfect gas (under the sole pressure coupling).

Mots clefs : Direct-ALE, compressible fluid, multiphase flows, shocks

1 Introduction

Despite intensive research over the last five decades stimulated by wide-ranging academic and in-
dustrial applications, the development of numerical schemes for the simulation of multi-phase flows
remains a very active field. Numerous and recurring issues remain open or merely addressed for
specific flow types—depending on nature, strength, boundaries, sources, etc. Aside of the usual
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conservation laws (masses, momentum, and energy) fully general principles are few and sometimes
controversial : most emblematic is the forty years old dispute about the elliptic behavior of the “back-
bone” dissipation-free model which has haunted most works to date [1, and references therein].
However, there appears that thermodynamic consistency—i.e. compliance with the second law of
thermodynamics which forbids entropy reduction in a closed system—is seldom given the attention it
deserves in numerical schemes and could usefully complement the existing principles. It is generally
assumed, most often implicitly, that if a given physical model is thermodynamically consistent, so
will be its discretization up to some hopefully negligible numerical residue. In practice, this appears
quite acceptable for most of the “reasonable” single fluid schemes, and possible residual inconsis-
tencies are further expected to become insignificant by increasing numerical order. For multiphase
schemes however, a much less optimistic stance must be taken as was shown recently in a review
of Ransom test results from the literature [1] : it appears that six-equation two-phase schemes—i.e.
which integrate the energy equations—can often fare much worse than four-equation models—which
force thermodynamic consistency through an isentropic EOS closure of internal energies. This could
be attributed to “hidden” entropy residues of uncontroled sign.

The present work summarizes the main features and results in the design of a new multiphase scheme
named multiGEECS (multiphase GEEC Scheme) which complies with a stringent set of specifi-
cations : large numbers of fluids (typically 10 and above), both isentropic and strongly shocked
compressible evolution, large heat sources, large deformations, transport over large distances, and
highly variable or contrasted EOS stiffnesses. In view of the remarks above, it appeared early on in
this development that thermodynamic consistency would become the major critical element. Energy
transfers through pressure forces can be numerous in an N-phase flow—N (2N — 1) exchange terms
between N kinetic and N internal energies—but always balance each other and exactly cancel all
irreversible productions under isentropic evolution ; numerically however, these cancellations are only
approximate, even when energy is conserved, and can be of low order or outright inconsistent if not
carefully controled.

2 Summary of the GEEC schemes

For clarity, only summary of GEECS (single-fluid GEEC Scheme) and multiGEECS (multi-fluid
GEEC Scheme) are presented here. Detailed step-by-step derivations and detailed evolution equations
of these schemes can be found in [2] and [3] respectively. The two schemes are discretized using
the same three-step discrete derivation : i) a variational least action principle is used to derive the
momentum evolution equations—thus generating the proper pressure forces in the pressure gradient
terms ; — ii) a tally is performed to match kinetic and internal energies in order to obtain the discrete
evolution equations for the internal energy—thus ensuring the total energy conservation at discrete
level ; —and iii) a artificial dissipation term is added to the evolution equations—as a pressure-like
contribution—in order to capture shocks and to stabilize the schemes.

In the Lagrangian limit—i.e. no mass fluxes between cells—Xkinetic and internal energies are discreti-
zed to second-order in both space-and-time. As this work represents a proof of concept for the study
of variational direct ALE scheme, both GEECS and multiGEECS capture transport in a very similar
ways by a first-order upwind explicit scheme. The variational derivation leads to a non-standard down-
wind formulation of the pressure gradient, dual of the upwind transport operator. Both GEECS and
multiGEECS involve the following features : i) full conservation of masses, momenta, and total ener-
gies at discrete level—up to round-off errors; — ii) direct ALE formalism where mass, momentum,
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and internal energy fluxes at moving cell boundaries are directly taken into account in the evolution
equations—without separation between evolution phase and remapping procedure ; — iii) thermody-
namic consistenty of the pressure work—hence entropy—even when the grid is not moving at the fluid
speed ; iv) a CFL restricted evolution of the mesh that can be either arbitrarily specified at will by the
user or adaptatively constrainted on the fly to the flow characteristics ; and v) generic discrete mass,
momentum, and internal energy evolution equations are derived without any constraint on structure
or spatial dimension—however all the tests reported in Section 3 are restricted to structured meshes
of quadrangles in two-dimensions.

For multiGEECS, the pressure equilibrium is ensured through a simple and local (to the cells) pro-
cedure at the end of each time step.

3 Numerical results

The behavior of GEECS and multiGEECS is tested in two-dimensions by performing single- and
multi-phase test cases from the literature—including Sod’s shock tube, Sedov’s cylindrical blast
wave, water—air shock tube, Ransom’s water faucet problem, and crossing of heavy packets in a
surrounding light gas—with strenuous grid motion strategies. The results of these test cases confirm
the following properties : i) exact conservation of masses, momenta, and total energies at discrete level
up to round-off errors (on the capture of shock levels and shock velocities) ; ii) robust multi-material
like behavior with small residual volume fractions ; iii) stable multi-phase like behavior with drifting
between fluids ; and iv) versatility regarding grid motion strategies—including supersonic shearing,
near-Lagrangian evolution, randomly distorted grid, and shrink-then-stretch swirling mesh.

In all the test cases, perfect gas and stiffened gas equations of state are used for the description of
the fluids. The relationship between pressure, density and internal energy are given by

P =(y—1)pe, P=(y—1)pe—m. (1

where 7, P [Pa], p [kg/m?], and e [J/kg] are the isentropic coefficient, pressure, density, and inter-
nal energy of the fluid respectively. For water, the stiffened gas constant is supposed to be close to
7 =21.10% Pa.

The results section for both single-phase (GEECS) and multi-phase schemes (multiGEECS) is or-
ganized as follows : i) in Section 3.1, a variant of the single-phase Sod’s shock tube is performed
with GEECS on a sheared grid across the y direction. This sheared variant verifiy the ability of the
scheme to comply with the tilting of the fluid characteristics ; ii) in Section 3.2, Sedov’s cylindrical
blast wave is run with GEECS with near-Lagrangian grid velocity in order to remove almost com-
pletely the numerical diffusion; iii) in Section 3.3, the two-fluid water—air shock tube is performed
with multiGEECS on a sheared grid in the y direction. An infinite drag force term is set between the
fluids—the absolute velocity is averaged for each fluid at each cycle—in order to verify the ability of
the scheme to handle artificial interface problem ; iv) in Section 3.4, a two-fluid Ransom’s water faucet
problem is run with multiGEECS on a grid randomly distorted at each cycle; and v) in Section 3.5,
a nine-fluid crossing test of eight packets of heavy fluids in a surrounding light gas is performed with
multiGEECS on a shrink-then-stretch swirling ALE mesh.
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3.1 2D Sod’s shock tube on mesh sheared across the y direction

This classical Riemann problem for perfect gas (1)—whose initial conditions can be found in [7]—
produces an expansion fan, a contact discontinuity, and a shock of medium strength. The initial
domain is set to € = [0; 1] x [-0.3; 0.6]. Figure 1 represents a variant of Sod’s shock tube where the
grid velocity is given by w, = 5y and w, = 0. The grid is thus sheared across the y direction with
maximal and minimal values for the velocity of respectively w, = 3 at y = 0.6 and w, = —1.5 at
y = —0.3. This variant verifies the ability of GEECS to handle large grid distortions. In particular,
as the grid velocity goes from w, = 3 to w, = —1.5 it shifts the characteristics and the scheme must
capture precisely the position of the shock and contact discontinuity—black lines shown in Figure 1(a)
represent the Lagrangian and supersonic fluid velocities computed by :I:\/W + L.

T T
Exact solution
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(a) Two-dimensional density map (b) One-dimensional superposition of all points

Ficure 1 — Density map and profile for the two-dimensional Sod’s shock tube on y sheared grid. The grid
velocity is w,; = 5y and w, = 0. Maximums of grid velocity are supersonic relative to the
fluid flow. The black lines on the density profile correspond to the Lagrangian fluid velocity and
supersonic limits ++/vP/p + p. The black dot represents the shock velocity. The computations
are done with I = 320 x 290 cells, every displayed macro cell (white lines) corresponds to 10 x 10
numerical cells, and CFL = 0.8.

3.2 2D Sedov’s cylindrical blast wave test on near-Lagrangian
mesh

Sedov’s blast wave [6] represents an explosion in a cold perfect gas of zero-pressure (1). The initial
domain is set to = [0;1.2] x [0;1.2]. The initial conditions are characterized by (p, P, ) =
(1,10716,0) with the isentropic coefficient v = 5/3. An initial internal energy deposition is made at
the origin in the cell located at * = y = 0. The magnitude of the internal energy deposition can be
found in [6]. This large deposition of internal energy—prescribing the pressure at the origin through
the equation of state of the fluid—creates an “infinitely strong" divergent shock that propagates in the
numerical domain. Figure 2 represents the density map and the superposition of all density points for
a variant of Sedov’s blast wave in which the grid velocity is chosen so as to reduce the numerical
diffusion on the entire numerical domain, and especially in the shock area. However, following the
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fluid in a Lagrangian way involves large deformations in the first cells of the mesh. In order to capture
more accurately the exact solution without suffering critical mesh deformations, the grid velocity is
given by

e with n= (/107 ) (14 (t/10)?) . @)

NL
p

factor corresponding to the Eulerian to Lagrangian transition time. For the present two-dimensional

where w,, - is the near-Lagrangian grid velocity computed by the scheme, and 7 is a time increasing

Sedov’s blast wave, the Eulerian to Lagrangian transition time was chosen to be tg = 0.1.

Exact solution
GEECS

‘ o . .
0 V2 1 0 02 04 06 0.8 1 1.2

(a) Two-dimensional density map (b) One-dimensional superposition of all points

Ficure 2 — Two-dimensional view (left) and one-dimensional superposition of all the points (right) for the
ALE two-dimensional Sedov’s blast wave. The grid velocity is given by (2). The computations
are done with I = 40 x 40 cells, every displayed macro cell (white lines) corresponds to 1 x 1
numerical cells, CFL = 0.8, and an initial numerical area Q = [0;1.2] x [0; 1.2].

3.3 2D two-fluid water-air shock tube on mesh sheared across
the y direction

This two-phase Riemann problem represents a more challenging test than Sod’s shock tube done in
Section 3.1. The initial domain is set to = [0;1] x [—0.4;0.9]. The equations of state of water
and air are approximated by stiffened and perfect gases respectively (1). The initial conditions for
densities, volume fractions, velocities, and pressure are

P+ a4 a— pt ux P
x <07 1000 1—10"12 1012 0 0 10° 3)
x>07 1 1072 1—-1072 0 o0 10°

The grid velocity is w, = 4167y and w, = 0 with maximal and minimal values of respectively
wy; = 3750 at y = 0.9 and w, = —1667 at y = —0.4. The grid thus undergoes a shearing across
the y direction with a shifting of the characteristics. The number of cells in the = and y directions,
200 x 260, is chosen so that the initial cells are perfect squares and at final time ¢ = 0.00024 they
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are exact parallelograms with a 7/4 angle relative to the initial mesh.
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(a) Two-dimensional density map (b) One-dimensional superposition of all density
points

Ficure 3 — Density (top) and volume fraction (bottom) maps and profiles for the two-dimensional two-fluid
water—air shock tube on sheared grid across the y direction. The grid velocity is w,; = 4167y and
wy = 0. Maximums of grid velocity are supersonic relative to the fluid flow. The computations are
done with CFL = 0.4 and I = 200 x 260 cells, every displayed macro cell (white lines corresponds
to 10 x 10 numerical cells.

3.4 2D two-fluid Ransom water faucet problem on randomly dis-
torted mesh

The water faucet problem of Ransom has become a basic benchmark for two-phase numerical schemes
[5]. It consists of a 12 m vertical pipe initially filled with a mixture of air (o, = 0.2 and p, =
1 kg.m~3) and water (., = 0.8 and p,, = 1000 kg.m~3). The boundary condition at the top of the
tube is a fixed 10 m.s~! water inflow on the volume fraction of 0.8 with no air flux. The bottom of the
tube is open to ambient pressure P = 10° Pa. With these conditions and under the action of gravity
g = 10 m.s~2, the water jet accelerates and stretches. In practice, the equations of state of water and air
are approximated by stiffened and perfect gases respectively (1). In the limit of incompressible water,
analytical solutions are known for the air volume fraction that allow the comparison of numerical
results. The different features of this test are mostly on advection and amplification of a volume
fraction discontinuity, with marginal compressibility effects. Figure 4 displays the volume fraction
map and profile for the Ransom’s water faucet problem performed on a dynamically and randomly
distorted mesh. The numerical domain € = [0; 12] x [0; 1.2] is initially meshed with a uniform coarse
Cartesian grid composed by 100 x 10 cells. This mesh is then dynamically distorted to the skewed
configuration by the grid velocity defined by w = (w,,w,) where w, and w, are random numbers
between —10~2 and +10~2. In Figure 4(b) all the points of the mesh are plotted for two mesh sizes
I =120 x 40 and I = 240 x 80.
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FiGURE 4 — Volume fraction map and profile for the two-dimensional Ransom’s water faucet problem on ran-
domly and dynamically distorted grid. Computations are performed with CFL = 0.8. The ALE
mesh on the volume fraction map (top) is I = 120 x 40, every displayed macro cell (white lines

corresponds to 1 x 1 numerical cells.

3.5 2D nine-phase crossing test

In this test, eight packets of heavy fluids p; = 1000 cross in a surrounding light gas p, = 1 at pressure

P = 10°. The gas is perfect with v = 1.4 and the heavy fluids are stiffened gases with y = 7. Initial
domain is = [—3; 3] x [—3; 3] with I = 480 x 480 cells. Initial volume fractions of the packets are
identical Gaussian profiles of amplitude 0.15 and variance 0.2 in both dimensions. Packets’ initial

positions and velocities are (notice matched + and F signs)

Ty i Iy
+1 0 F1000 0

0 +1 0  F1000
+2 0 F2000 O

0 4+2 0  F2000

“
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In order to demonstrate the stability and robustness of multiGEECS, the computation are carried out
on a shrink-then-stretch swirling grid with the corresponding grid velocity

wy = 3sin(mx) cos(mwy) — 1.5nx , (5a)
wy = —3 cos(mx) sin(my) — 1.5ny , (5b)

where 7 = 0.5 for t < 1072 and n = —0.5 for ¢ > 1073,

Figure 5 display the volume fraction profiles for the nine-phase crossing test on a shrink-then-stretch
swirling grid. At time ¢t = 1073, all the packets cross in the middle of the domain and the volume
fraction of the gas drops to ~ 0.04. At final time 2.1073, the packets are separated and only modified
by numerical diffusion—as there is no particular exchange term between phases, they only interact
via pressure forces. This test represents a starting point for the simulation of gas—particles flows in
CEA applications involving sprays of heavy droplets into light gas.
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FIGURE 5 — Volume fraction maps at time ¢ = 0 (top), ¢t = 10~3 (middle), and final time ¢ = 2.10~2 (bottom)
for the nine-fluids crossing test on a shrink-then-stretch swirling grid. Computations are performed

with CFL = 0.7 and I = 480 x 480, every displayed macro cell (white lines) corresponds to
20 x 20 numerical cells.
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