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An accelerated level-set method for inverse scattering problems

Lorenzo Audibert∗ Houssem Haddar† Xiaoli Liu‡

Abstract

We propose a rapid and robust iterative algorithm to solve inverse acoustic scattering problems
formulated as a PDE constrained shape optimization problem. We use a level-set method to represent
the obstacle geometry and propose a new scheme for updating the geometry based on an adaptation
of accelerated gradient descent methods. The resulting algorithm aims at reducing the number of
iterations and improving the accuracy of reconstructions. To cope with regularization issues, we pro-
pose a smoothing to the shape gradient using a single layer potential associated with ik where k is the
wave number. Numerical experiments are given for several data types (full aperture, backscattering,
phaseless, multiple frequencies) and show that our method outperforms a non accelerated approach
in terms of convergence speed, accuracy and sensitivity to initial guesses.

Keywords: inverse scattering problem, shape optimization, level-set method, Nesterov acceler-
ated gradient.

1 Introduction

We are interested in inverse acoustic obstacle scattering problems with far field measurements. Motivated
by applications, several types/settings of the data are considered, such as full or partial far field data,
backscattering data, phaseless data and multiple frequency data. The corresponding inverse problems
are put in an unified framework of a PDE constrained shape optimization problem. To fix ideas, we
restrict ourselves to Dirichlet obstacles but the methodology can be easily extended to other models of
scattering problems.

Many inversion algorithms have been developed for this inverse problem and we can refer to [12, 13]
for recent overviews of different class of methods to solve this severely ill posed problem. Roughly
speaking, for a qualitative and fast imaging methods one can rely on linearization approaches as in [3, 4]
and the references therein or sampling methods as in [5, 10, 23] and the references therein. A compu-
tationally more involved but potentially more accurate reconstruction methods, which we are going to
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discuss in this paper, are based on the inversion of the full model, by either reformulating the inverse
problem as a PDE constrained shape optimization problem (see for instance [8] in the context of inverse
scattering problems) or using a Newton-type technique (the literature is richer in inverse scattering com-
munity and we synthetically refer to [12, 22, 18, 20] and references therein). The latter is a tool of choice
if one posseses a reliable predefined parametrization of the geometry with a relatively small number of
parameters to preserve computational effectiveness. In the case of large parameters, regularization of the
Jacobian matrix is needed leading to inexact Newton methods. We refer to [25] for the analysis of this
type of methods. When the pseudo inverse is approximated with few iterations of a conjugated gradient
method, the adjoint state can advantageouly be used to speed up iterations [11, 18]. Although not theo-
retically proved, due to regularization issues, these methods usually require a relatively small number of
iterations to achieve reasonable accuracy.

We here adopt a more flexible approach based on reformulating the problem as the minimization
of a least squares cost functional using a gradient descent. The main advantage is that, thanks to the
use of adjoint state technique, the iteration cost is relatively cheap and is independent from the number
of parameters of the inverse problem. One therefore does not need a predefined parametrization of the
geometry. This method can also be naturally coupled with a level set parametrization of the unknown
shape, offering the possibility of encoding a complex topology. In the context of inverse scattering and
level-set method we refer to the review article [14] and the seminal work [37]. The approach we use
here is inspired by the one developed for shape optimization problems in [1]. The main drawback of
the gradient descent method is that it usually requires a large number of iterations before achieving
a reasonable accuracy. Some adaptation of the step size using line search technique for instance can
be helpful in improving this performance. It is also numerically observed that the level-set method
tends to reduce the complexity of the topology during iterations (merging connected components rather
than creating new ones). Our main goal here is to propose a way to improve these shortcomings based
on gradient descent acceleration techniques. Let us first notice that other approaches to accelerate the
level set methods have been proposed in the literature, such as Kaczmarz type gradient-based descent
directions in [15], stochastic gradient descent, the Adam method and a stochastic quasi-Newton scheme
in [19]. We do not intent to compete with these approaches but rather present a different possibility.

About forty years ago, Nesterov proposed an accelerated gradient method in [30] and its wide suc-
cess stimulated the development of many first-order acceleration variants (for an unified analysis of these
works see [40] and for a review see [31]). The Nesterov acceleration has been analyzed for inverse pa-
rameters problems in [32]. We are interested here in the application of this technique to shape inverse
problems which, to the best of our knowledge, has not been addressed in the literature. The main dif-
ficulty is to give an interpretation to the Nesterov scheme in the space of parametrization free shapes,
which is not endowed with a Hilbert structure for example. The proposed algorithm is as follows. At
each iteration, we first use the shape derivative to solve the Hamilton-Jacobi equation and get a new
update of the level-set function. For a classical gradient method, this new level-set function is viewed as
the representation of the obstacle shape for the next step. In the accelerated algorithm, we rather make
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a suitable combination of this new level-set function with the previous one to get the representation of
the obstacle for the next step. More precisely, we apply the Nesterov rule for choosing the weights to the
signed distance functions (derived from the level set function) at each step. We explain in a simplified
1D example why the use of the sign distance function is a natural way to implement the acceleration rule.
A rigorous theoretical justification of this approach is still under study and is faced with the difficulty of
relating the shape gradient to the derivative in the topology endowed by sign distance metric: the distance
between two shapes is measured by the L2 norm of the difference between associated sign distances. The
scope of the current work is purely numerical and intends to demonstrate the numerical efficiency of the
proposed methodology for different scenarios of the inverse problem data.

In the implementation of the numerical scheme, we also consider a new way to regularize and extend
the shape gradient. Due to the ill-posedness of the inverse problem, the gradient of the cost functional
may produce very irregular descent directions when the number of parameters is large. Two regulariza-
tion strategies can be adopted to cope with this difficulty. The first one relies on adding a penalty term
to the cost functional while the second one relies on regularizing the gradient descent and encoding an
early stopping rule. We adopt the latter approach to avoid introducing a bias in the cost functional. This
approach also goes well with the level set approach since one needs to define a representative of the shape
gradient (which is defined on the boundary of the unknown) on the domain where the level set function
lives. Motivated by the use of integral equation method to solve the direct problem, we propose to use
a single-layer potential associated with ik where k is the wave number with density equal to the shape
gradient. This offers a one order smoothed descent direction with a smoothing width depending on the
frequency.

One of the main advantages of the numerical algorithm that we propose is its versatility and the good
numerical performances that it provides for different data types. We conduct in these first investigations
only two-dimensional experiments inspired by the literature on inverse scattering problems. A compar-
ative study with a non accelerated scheme shows a spectacular improvements in the accuracy and the
speed of convergence as well as a much less sensitivity to the topology of the initial guess. One addi-
tional observation from our numerical results is that the Nesterov scheme can help escaping small local
minima. The possibility of avoiding local minima for inversion schemes applied to inverse scattering
problems has been observed in other methods, such as Kaczmarz approach [15] and stochastic gradient
descent method [14], which can be viewed as a sub-gradient method, thus can avoid certain local min-
ima when using a cyclic choice of partial data sets for gradient estimation. For strong local minima, as
shown in the case of backscattering data, the algorithm may fail and a different initial guess should be
used. This is also the case of high frequencies with geometries containing fine details as demonstrated
by an example. The use of initial guess from lower frequencies helped solving this shortcoming and
acceleration is observed in both steps.

The organization of this paper is as follows. In section 2, we formulate the direct scattering problem
and formulate the inverse problem as a PDE constrained shape optimization problem. In Section 3 an
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adjoint scattering problem is introduced and is used to derive the shape derivative of a generic cost func-
tional that encompass various data settings. Section 4 is dedicated to the presentation of the accelerated
level-set method based on the Nesterov acceleration method. In Section 4.1 a complete description of
the inversion algorithm is provided including the regularization scheme for the shape gradient. Finally,
the numerical implementation and validation of our algorithm is presented in section 5.

2 The Inverse scattering problem

We here introduce the inverse scattering problem that we take as a model problem and its formulation as
a PDE constrained shape optimization problem.

Let D ⊂ RN (N = 2 or 3) be an open and bounded domain with C2-boundary ∂D such that the
exterior RN\D of D is connected. Here and throughout the monograph we denote by D the closure of the
set D of points in RN . We consider incident plane waves defined as

ui(x; d, k) := eikx·d, x ∈ RN , (2.1)

where k > 0 is the wave number and d ∈ SN−1 is a given incident direction. Here, SN−1 denotes the unit
sphere in RN . The obstacle D gives rise to a scattered field us ∈ H1

loc(RN \ D) such that the total field
u = ui + us and us satisfy

∆u + k2u = 0 in RN ,

u = 0 on ∂D,

lim
r→∞

r
N−1

2

(
∂us

∂r
− ikus

)
= 0, r = |x|,

(2.2)

where the latter is the Sommerfeld radiation condition that holds uniformly with respect to x̂ = x/|x|. It
is well-known that a unique solution of this problem exists [29]. For numerical purposes, the scattering
problem is reformulated using an integral equation formalism. Given a density function λ, the single-
layer potential with density λ is defined as

(Skλ) (x) :=
∫
∂D
λ(y)Gk(x, y)ds(y), x ∈ RN\∂D, (2.3)

where Gk is the fundamental solution to Helmholtz equation: Gk(x, y) = i
4 H(1)

0 (k|x − y|) for N = 2 and
Gk(x, y) = eik|x−y|

4π|x−y| for N = 3. Seeking a solution to (2.2) in the form of us(x) := (Skλ) (x) in RN \ D is
equivalent to solving for λ ∈ H−1/2(∂D)∫

∂D
λ(y)Gk(x, y)ds(y) = −ui(x), x ∈ ∂D. (2.4)

Assuming that k2 is not a Dirichlet eigenvalue for −∆ in D, equation (2.4) is well posed [27]. For the
numerical implementation of this boundary integral equation we used the gypsilab toolbox [2] that uses a
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first order finite element method applied to a variational writing of (2.4). The radiation condition implies
the following behavior at infinity:

us(x) =
eik|x|

|x|(N−1)/2

{
u∞(x̂) + O

(
1
|x|

)}
, |x| → ∞,

where u∞ is the so-called the far field pattern of us. It is an analytic function on the unit sphere SN−1 and
admits the following representation [12]

u∞(x̂) = CN

∫
∂KR

{
us(y)

∂e−ikx̂·y

∂ν(y)
−
∂us

∂ν
(y)e−ikx̂·y

}
ds(y), x̂ ∈ SN−1,

where R > 0 such that D ⊂ KR :=
{
y ∈ RN | |y| < R

}
and CN = ei π4

√
8πk

for N = 2 and CN = 1
4π for N = 3.

The inverse scattering problem that we are interested in is to reconstruct ∂D from a knowledge of
data related to the far field pattern u∞. Some results on uniqueness issues for this problem can be found
in [12, Chapter 5] and references therein. We also will consider cases where only the modulus of u∞ is
measured (phaseless data). For uniqueness issues related to this problem we refer for instance to [26].

The inverse problem as a PDE constrained shape optimization problem: As mentioned before we
formulate the inverse problem as a PDE constrained shape optimization problem, which aims at min-
imizing a cost function that depends on ∂D via the solution us(∂D) of the scattering problem (2.2).
We shall assume hereafter that D (that may vary during iterations) is always contained in KR for fixed
R. For the inverse problem we will have access to the far field pattern for a set of measurement di-
rections x̂m,m = 1, ...,M and for eventually several incident plane waves (2.1) with incident directions
dl, l = 1, ..., L. We first introduce the pointwise measurement operator operator Hm : H2(K2R \ KR)→ C
defined by

Hmu = CN

∫
∂KR

{
u(y)

∂e−ikx̂m·y

∂ν(y)
−
∂u
∂ν

(y)e−ikx̂m·y
}

ds(y), x̂ ∈ SN−1, (2.5)

which is a linear and continuous mapping. In particular Hmus = u∞(x̂m) where u∞ is the far field
associated with the scattered field us. We make use in the sequel of the notation us

l (∂D) to refer to the
scattered field associated to incident plane wave with direction dl and a Dirichlet obstacle D. Let D? be
the true obstacle. The exact measurement data for different scenarios can be modeled as

flm := φ
(
Hmus

l (∂D?)
)
, m = 1, ...,M, l = 1, ..., L,

where φ denotes a regular function that will be specified later. The solution ∂D? of our inverse problem
is then sought as a minimizer over T , the set of boundaries ∂D of C1 domains D strictly included in KR

with connected complements, of the cost functional

J(∂D) :=
1

2LM

L∑
l=1

M∑
m=1

∣∣∣∣φ (
Hmus

l (∂D)
)
− flm

∣∣∣∣2 . (2.6)

In the case of noisy data f δlm = flm + O(δ), the cost functional is obtained by replacing flm with f δlm. We
shall apply a gradient descent method to approximate the optimal shape associated with J. We introduce
in next section the adjoint state that allows us to easily express and compute the gradient of this cost
functional.
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3 The shape derivative and adjoint state

The shape differentiation of the functional J depends on the existence of a shape derivative for the
scattered fields. The latter has been established in the literature and we shall rely on these results to
establish the shape Fréchet differentiablity of J. However, and as classically used in shape optimization
problems, one does not use the state shape derivative of the state variable to compute the gradient of
J since this would be costly. We rather use an adjoint state to evaluate this derivative. Obtaining the
adjoint state equation can be formally derived using the Lagrangian technique. We here use a rather
direct approach based on the expression of the shape derivative.

3.1 Shape derivative of the scattered field

For any real vector field θ ∈ C1(∂D;RN), we denote by ∂Dθ the set

∂Dθ := {x + θ(x) | x ∈ ∂D} ,

which is the boundary of a domain Dθ provided ‖θ‖∞ := maxx∈∂D |θ(x)| < η with η > 0 being small
enough. We consider the application U : T → H2(K2R \ KR) that maps ∂D to us(∂D)|K2R\KR where
us(∂D) is the solution of (2.2) and where T denotes the set of admissible boundaries, in particular all
boundaries of the form ∂Dθ with ‖θ‖∞ < η.

The mapping U is said to be shape differentiable at ∂D if for all θ ∈ C1(∂D;RN),

1
‖θ‖C1(∂D;RN )

‖U(∂Dθ) − U(∂D) − U′(∂D)(θ)‖H2(K2R\KR) → 0 as θ → 0, (3.7)

where the linear mapping θ 7→ U′(∂D)(θ) is continuous from C1(∂D;RN) into H2(K2R \ KR). This
mapping is then the shape derivative of U at ∂D.

Rigorous foundations for the Fréchet differentiability including characterizations of the derivative
both for the Dirichlet and Neumann boundary condition were given by Kirsch in [22] and Hettlich in
[17], respectively. Hettlich [17] also established differentiability for the exterior Robin problem and the
transmission problem. Here we focus on the Dirichlet case and present the following results given by
Kirsch [22].

Theorem 3.1. Assume that ∂D is a C2 boundary, consider a real vector field θ ∈ C1
(
∂D;RN

)
and let

u ∈ H1
loc

(
RN

)
be the solution of the scattering problem (2.2). Then the Fréchet derivative U′(∂D)(θ)

exists and is equal to vθ|K2R\KR , where vθ ∈ H1
loc(RN \ D) solves the exterior boundary value problem

∆vθ + k2vθ = 0 in RN\D,

vθ = −
∂u
∂ν
ν · θ on ∂D,

vθ s.t. the radiating condition in (2.2).

(3.8)

Here ν(x) denotes the outer unit normal at x ∈ ∂D.
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3.2 Shape derivative of the cost functional

Similarly to the above, the cost functional J : T → R is said to be shape differentiable at ∂D if θ 7→
J(∂Dθ) from C1(∂D;RN) into R is Fréchet-differentiable at 0, i.e., the following expansion holds in the
vicinity of 0:

J(∂Dθ) = J(∂D) + J′(∂D)(θ) + o
(
‖θ‖C1(∂D;RN )

)
, (3.9)

with a continuous linear mapping θ 7→ J′(∂D)(θ) from C1(∂D;RN) into R referred to as the shape
derivative of J at ∂D.

Now we give the shape derivative of the cost functional (2.6) in the following theorem. We consider
functions φ defined on C that are either holomorphic and in that case we denote by φ̃ = φ′ or φ is of the
form φ(z) = f (|z|2) with real valued C1 function f : R+ → R and in that case we set φ̃(z) = 2z f ′(|z|2).

Theorem 3.2. Let D ⊂ RN be a bounded domain of class C2. Consider the cost functional J defined by
(2.6) with φ and φ̃ being defined as above. Then J is shape differentiable at ∂D and its shape derivative
is:

J′(∂D)(θ) =
1
L
<

L∑
l=1

∫
∂D

∂ul

∂ν

∂wl

∂ν
(ν · θ) ds, ∀θ ∈ C1

(
∂D;RN

)
, (3.10)

where ul is the total field of the scattering problem (2.2) with d = dl and wl := wi
l + ws

l is the solution to
the adjoint problem

∆wl + k2wl = 0 in RN\D,

wl = 0 on ∂D,

ws
l s.t. the radiating condition in (2.2),

(3.11)

with

wi
l(y) :=

CN

M

M∑
m=1

Rlm(∂D)e−ikx̂m·y and Rlm(∂D) :=
(
φ
(
Hmus

l (∂D)
)
− flm

)
φ̃
(
Hmus

l (∂D)
)
. (3.12)

Proof. We denote by Ul : T → H2(K2R \ KR), l = 1, ..., L the application that maps ∂D to us
l (∂D)|K2R\KR

where us
l (∂D) is the solution of (2.2) corresponding to the incident direction dl. First observe that if we

define
j(z) =

1
2
|φ(z) − flm|2,

then j(z+h) = j(z)+<

(
(φ(z) − flm) φ̃(z) h

)
+o(|h|2). Therefore, due to the existence of U′l (∂D)(θ) shown

in Theorem 3.1, by the chain rule, the shape derivative of the cost functional J exists and can be written
as, for any θ ∈ C1

(
∂D;RN

)
,

J′(∂D)(θ) =
1

LM
<

L∑
l=1

M∑
m=1

(
φ
(
Hmus

l (∂D)
)
− flm

)
φ̃
(
Hmus

l (∂D)
)

Hm
(
U′l (∂D)(θ)

)
. (3.13)
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Also by Theorem 3.1, we know that U′l (∂D)(θ) is the scattered field vθ,l(x) for problem (3.8) with u(x) =

ul(x), which is the total field corresponding to ui(x; dl, k). Thus, by the definition of Hm in (2.5), we have

Hm
(
U′l (∂D)(θ)

)
= CN

∫
∂KR

{
vθ,l(y)

∂e−ikx̂m·y

∂ν(y)
−
∂vθ,l
∂ν

(y)e−ikx̂m·y
}

ds(y), x̂m ∈ S
N−1. (3.14)

Insert (3.14) into (3.13), and use the definition of wi
l and Rlm given in (3.12), we have

J′(∂D)(θ) =
1

LM
<

L∑
l=1

M∑
m=1

Rlm(∂D)CN

∫
∂KR

{
vθ,l(y)

∂e−ikx̂m·y

∂ν(y)
−
∂vθ,l
∂ν

(y)e−ikx̂m·y
}

ds(y)

=
1
L
<

L∑
l=1

∫
∂KR

vθ,l(y)
∂wi

l

∂ν
(y) −

∂vθ,l
∂ν

(y)wi
l(y)

 ds(y). (3.15)

Using the Green’s theorem for vθ,l and wi
l in KR \ D implies that∫

∂KR

vθ,l(y)
∂wi

l

∂ν
(y) −

∂vθ,l
∂ν

(y)wi
l(y)

 ds(y) =

∫
∂D

vθ,l(y)
∂wi

l

∂ν
(y) −

∂vθ,l
∂ν

(y)wi
l(y)

 ds(y). (3.16)

Similarly, using the Green’s theorem for the radiating solution vθ,l and ws
l in KR̃ \ D, and letting R̃ → ∞

implies that ∫
∂D

{
vθ,l(y)

∂ws
l

∂ν
(y) − ws

l (y)
∂vθ,l
∂ν

(y)
}

ds(y) = 0. (3.17)

Putting (3.16) and (3.17) into (3.15), together with wi
l + ws

l = 0 on ∂D, we have

J′(∂D)(θ) =
1
L
<

L∑
l=1

∫
∂D

vθ,l(y)
∂wi

l

∂ν
(y) −

∂vθ,l
∂ν

(y)wi
l(y)

 ds(y)

=
1
L
<

L∑
l=1

∫
∂D

vθ,l(y)
∂wi

l

∂ν
(y) +

∂vθ,l
∂ν

(y)ws
l (y)

 ds(y)

=
1
L
<

L∑
l=1

∫
∂D

vθ,l(y)
∂wi

l

∂ν
(y) + vθ,l

∂ws
l

∂ν
(y)

 ds(y)

=
1
L
<

L∑
l=1

∫
∂D

∂ul

∂ν

∂wl

∂ν
(ν · θ) ds.

This completes the proof. �

Remark 3.3. From the explicit form of the shape derivative of the cost functional J given in (3.10), one
observes that choosing the perturbation θ such that

θ = −∆t
1
L
<

L∑
l=1

∂ul

∂ν

∂wl

∂ν
ν =: −∆t vD ν on ∂D (3.18)
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for some descent step ∆t > 0 yields

J(∂Dθ) = J(∂D) − ∆t
∫
∂D
|vD|

2ds + o(∆t) < J(∂D),

for t sufficiently small. The function vD ν can be formally interpreted as the L2(∂D) gradient of the
functional J. Remark that for these calculations to be compatible with the statement of our theorem,
vD should be a C1 function, which is not guaranteed if ∂D in only a C2 boundary. We refer to the
regularization section below for a possible way to fix this issue.

Remark 3.4. According to (3.11), the adjoint state wl solves the same scattering problem as ul with an
incident field being a linear combination of plane waves in the directions −x̂m, m = 1, . . . ,M. Therefore,
if those directions are included in the set of incident directions dl, l = 1, . . . , L, the computation of the ad-
joint field does not require additional resolutions of the scattering problem but only a linear combination
of previously computed fields.

3.3 Explicit shape derivatives various data settings

We shall explicit the cost functional and the incident field for the adjoint state in the following three types
of data settings: far field data, backscattering data and phaseless data.

3.3.1 Far field data

For the far field measurement case, the function φ in (2.6) is chosen to be φ(z) = z, that is,

φ
(
Hmus

l (∂D)
)

= Hmus
l (∂D) := u∞D (x̂m, dl).

Here u∞D (x̂m, dl) refers to the far field of the scattered field us
l (∂D) which is the solution to (2.2) at the

measured direction x̂m. The exact expression for the cost functional is

J1(∂D) :=
1

2LM

L∑
l=1

M∑
m=1

∣∣∣u∞D (x̂m, dl) − u∞D?(x̂m, dl)
∣∣∣2 . (3.19)

By (3.12), the incident wave wi
l,1 for the adjoint problem (3.11) is

wi
l,1(y) :=

CN

M

M∑
m=1

(
u∞D (x̂m, dl) − u∞D?

(x̂m, dl)
)
e−ikx̂m·y. (3.20)

3.3.2 Backscattering far field data

Backscattering refers that for each incident direction d, we only measure the far field data u∞ at direction
−d. Then from (3.19) and (3.20), set M = 1 and x̂m = −dl, we get the exact expression for the cost
function

J2(∂D) :=
1

2L

L∑
l=1

∣∣∣u∞D (−dl, dl) − u∞D?(−dl, dl)
∣∣∣2 , (3.21)
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and the incident wave wi
l,2 for the adjoint problem (3.11) is

wi
l,2(y) := CN

(
u∞D (−dl, dl) − u∞D?(−dl, dl)

)
eikdl·y.

Observe that in this case the incident field for the adjoint problem is proportional to the incident field for
the forward problem. Suppose that ul is the total field for the scattering problem (2.2) with d = dl, then
the solution wl,2 of (3.10) with wi

l = wi
l,2 is

wl,2 := CN
(
u∞D (−dl, dl) − u∞D?(−dl, dl)

)
ul.

Thus, the descent direction vD = vD,2 as defined in Remark 3.3 can be directly computed as

vD,2 =
CN

L
<

L∑
l=1

(
u∞D (−dl, dl) − u∞D?(−dl, dl)

) (∂ul

∂ν

)2

.

3.3.3 Phaseless data

In many practical applications, the phase of the far-field pattern can not be measured accurately com-
pared with its modulus or intensity and sometimes is even impossible to be measured, and therefore it
is often desirable to reconstruct the scattering obstacle from phaseless data. The real-valued function φ
corresponding to this case is

φ(z) =
|z|2√
|z|2 + ε

, (3.22)

where ε > 0 is a small constant to ensure differentiability of the cost functional. The expression for the
cost functional with phaseless data can be written as

J3(∂D) :=
1

2LM

L∑
l=1

M∑
m=1

∣∣∣∣∣∣∣∣∣
∣∣∣u∞D (x̂m, dl)

∣∣∣2√∣∣∣u∞D (x̂m, dl)
∣∣∣2 + ε

−

∣∣∣u∞D?(x̂m, dl)
∣∣∣2√∣∣∣u∞D?(x̂m, dl)
∣∣∣2 + ε

∣∣∣∣∣∣∣∣∣
2

. (3.23)

By (3.12), the incident wave wi
l,3 for the adjoint problem (3.11) is

wi
l,3(y) :=

CN

M

M∑
m=1

(
φ(u∞D (x̂m, dl)) − φ(u∞D?

(x̂m, dl)
)
)
|u∞D (x̂m, dl)|2 + 2ε

(|u∞D (x̂m, dl)|2 + ε)3/2 u∞D (x̂m, dl)e−ikx̂m·y.

4 The Accelerated Level-Set Algorithm

Level-set methods are a famous and by now widely used conceptual framework where level-sets are
employed as a tool for numerical analysis of surfaces and shapes. The advantage of the level-set model
is that one can perform numerical computations involving curves and surfaces on a fixed Cartesian grid
G without having to parameterize these objects (actually G could also be a mesh).

10



For the inverse scattering problem at hand, we want to reconstruct the unknown objects using a
gradient descent scheme. Compared to the boundary variation method, the level-set method makes it
easy to follow shapes that change topology during iterations, for example, when a connected shape splits
into two, develops holes, or the reverse of these operations. This allows us not need to know the number
of connected components in advance. This advantage makes it very convenient to real applications.

For a boundary ∂D of domain D, a level set function associated with this boundary is a continuous
function defined on RN such that

∂D = {x ∈ RN | ϕ(x) = 0} and D = {x ∈ RN | ϕ(x) < 0}.

For instance, a signed distance function dD defined as:

dD(x) =


−d(x, ∂D) if x ∈ D,

0 if x ∈ ∂D,

d(x, ∂D) if x ∈ RN\D.

where d(·, ∂D) is the usual Euclidean distance function to ∂D:

d(x, ∂D) := inf
y∈∂D
|x − y|

is an example of a level set function associated with ∂D. If the curve ∂D regularly depends on a (pseudo)
time parameter t and moves in the normal direction with a speed v, then a regular level-set function ϕ
associated with ∂D satisfies the Hamilton-Jacobi equation [33, 38]

∂ϕ

∂t
+ v|∇ϕ| = 0. (4.24)

For given v, equation (4.24) is usually numerically approximated on a cartesian gird (that can be inde-
pendent from the grid or mesh used for computing the solution to the scattering problem). The design
of stable numerical schemes for the level-set equation requires sophisticated techniques. Simple finite-
differences methods may quickly fail. We refer to [16] for discussions of advanced numerical methods
that efficiently handle this problem. We shall rely on the toolbox [28] in our numerical implementation
of the inverse solver developed below.

The first step for application of the level set method to our problem is the definition of the velocity
field v.

4.1 Regularized velocity field for the level set equation

According to Remark 3.3, a natural choice for v would correspond with v = vD on ∂D. Since we added no
regularization term to the cost functional, this choice may produce a very irregular descent directions and
prevent convergence by creating distorted shapes [21]. This is why it is often necessary to smooth this
descent direction so that the shapes stay regular during iterations. One then should additionally define
an extension of this velocity field to the whole computational domain of the level set function. There
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are several possibilities to do the velocity regularization/extension based on solving a Laplacian problem
[1]. Inspired by the solution to the forward problem, we here propose a slightly different approach that
performs regularization and extension at the same time and also lead to an automatic calibration of the
regularization parameter in terms of the frequency.

Theorem 4.1. Let ∂D be of class C2 and vD be defined by (3.18). We define the regularized velocity vreg

as

vreg(x) :=
∫
∂D

Gikr (x, y)vD(y)ds(y), x ∈ ∂D, (4.25)

where kr > 0 is a regularizing parameter. Then −∆t vregν ∈ C1(∂D,RN) and is a descent direction for
J(∂D) for ∆t sufficiently small.

Proof. From regularity properties of the exterior Dirichlet to Neumann operator for the exterior scattering
problem [12, Theorem 3.13], one has that vD ∈ C0,α(∂D) with 0 < α < 1. Consequently, from single
layer potential regularity properties on Hölder spaces [12, Theorem 3.3], vreg ∈ C1,α(∂D). Therefore
θ := −∆tvregν ∈ C1(∂D,RN), and we have, using Theorem 3.2 and the definition of shape differentiation,

J(∂Dθ) − J(∂D) = −∆t
∫
∂D

vDvreg ds + o (∆t) .

From [12, Lemma 5.37] (see also Remark 4.2) the single layer potential S kr : vD
∣∣∣
∂D → vreg

∣∣∣
∂D is self-

adjoint with respect to L2(∂D) and is coercive with respect to H−1/2(∂D) norm. Since vD is a real valued
function, this implies ∫

∂D
vDvreg ds ≥ c0‖vD‖

2
H−1/2(∂D)

for some positive constant c0. Therefore, if J′(∂D) , 0,

J(∂Dθ) − J(∂D) ≤ −∆tc0‖vD‖
2
H−1/2(∂D) + o (∆t) < 0

for a ∆t small enough. This shows that θ is a descent direction and completes the proof. �

A natural extension or the regularized velocity field vreg to RN that can be used for the level set
equation is indeed

vext(x) :=
∫
∂D

Gikr (x, y)vD(y) ds(y), x ∈ RN . (4.26)

As can be observed below, kr can be seen a parameter that adjust the spacial spread of the regularized
and extended speed. We numerically observed that choosing kr = k yield good reconstruction accuracy
and performances of the inversion algorithm.
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Remark 4.2. Using properties of single layer potentials with purely imaginary wave number one can
observe that the extension defined by (4.26) verifies vext ∈ H1(RN) and is the unique solution to

−∆vext + k2
r vext = 0 in RN\∂D, (4.27)

(∇v+
ext − ∇v−ext) · ν = −vD on ∂D.

Moreover, vext = vreg on ∂D and by the Green theorem∫
∂D

vDvreg ds =

∫
RN
|∇vext|

2 + k2
r |vext|

2dx.

From (4.27), we observe that the single layer potential extension (4.26) is similar to smoothing based
on diffusion kernels, with 1/k2

r being the regularization parameter. The main advantage of this regular-
ization is that it does not require a prior smoothing or extension (like narrow band extension in [15])
of the shape gradient nor the addition of boundary conditions on the level set domain. We numerically
observed that taking kr = k gives good results, which saves efforts to adjust this parameter for each
example.

4.2 Description of the accelerated level-set scheme

In this subsection, we present an accelerated level-set method to solve a shape optimization problem
based on the previous analysis. We start by presenting the non accelerated scheme which is summa-
rized in Algorithm 1. This algorithm consists in interpreting a gradient descent iteration with step ∆t as
advancing in time the solution of the Hamilton-Jacobi equation by a step ∆t keeping fixed the velocity
v = vext defined by (4.26) associated with vD from previous step.

The first main drawback of this algorithm is inherited from shortcoming of gradient descent algo-
rithms for large set of parameters, i.e. the slow rate of convergence. In addition, we usually observe that
although allowed in theory, the numerical algorithm does not allow for increasing the number of con-
nected components during iterations. This may render the algorithm more sensitive to local minimum.
This topology simplification during iterations may be made worse by the employed step adaptation, since
we start with ∆t0 sufficiently large to avoid sensitivity to small oscillations of the cost functional.

Since the seminal work by Nesterov [31], it is well known that an efficient way to accelerate first
order gradient descent schemes is to use combinations of previous steps. We recall in the following
variant [7] that we would like to apply in the present work. Consider the optimization problem for a
convex and regular function f

min
x∈RN

f (x).

We define the following sequence:

λ0 = 0, λn =
1 +

√
1 + 4λ2

n−1

2
, and γn =

1 − λn

λn+1
. (4.28)
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Algorithm 1 Non accelerated level-set inversion scheme
Initialization: Given a fixed Cartesian grid G and a step size value ∆t0 > 0, start from an initial signed
distance function ϕ0 corresponding to D0 defined on G,
for n = 0, 1, ...,Nit, do

1 Solve the direct scattering problem and the corresponding adjoint problem to get ∂νun
l and

∂νwn
l on the zero-level set of ϕn and calculate Jn.

2 Compute the velocity vDn on ∂Dn thanks to formula (3.18) and use (4.26) to compute the
velocity extension vn

ext on the whole grid G.

Set T = ∆t0.

3 Solve the Hamilton-Jacobi equation
∂ϕ
∂t (t, x) + vn

ext(x)|∇ϕ(t, x)| = 0 on (0,T ) ×G,

ϕ(t = 0, x) = ϕn(x) for x ∈ G.

to get a level-set function ϕn+1(x) = ϕ(T, x).

4 Solve the direct scattering problem on the zero-level set of ϕn+1 and calculate Jn+1.
if Jn+1 < Jn then

Go forward to step 5.
else if T > tol (step tolerance) then

Set T = 0.5 T and go back to step 3.
else

Stop and quit the program.
end if

5 Redistance ϕn+1 as a signed distance function (this step is only required if the level set varia-
tions are too small compared to the grid mesh size).

end for
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(Note that −1 ≤ γn ≤ 0 for n > 0). An accelerated gradient scheme can be written as follows, with
x1 = y1 being an arbitrary initial point,

yn+1 = xn − tn∇ f (xn),

xn+1 = (1 − γn) yn+1 + γnyn.

The convergence result for this algorithm can be found in [9].
The main difficulty in applying this idea to Algorithm 1 is to properly define combinations of level

sets that would coincide with the same combinations of boundaries (with respect to a given definition
of a metric on the set of admissible boundaries). Let us for instance remark that if the boundary is
parametrized with a fixed set of basis functions (which is for instance the employed strategy for star like
geometries), then there is no difficulty in transposing the accelerated scheme to that setting by taking xn to
be the coordinates of the geometry parametrization in the chosen basis. However, if one replaces xn with
ϕn then there is no clear link between the resulting scheme and the one applied to xn. If ϕn coincides with
the signed distance function, then one can establish this link in the simplified one dimensional setting as
explained below.

Suppose that we have two one dimensional signed distance functions ψn and ψn+1 as shown in Figure
1 where the boundaries defined by these level set functions are respectively {y1

n, y
2
n} and {y1

n+1, y
2
n+1} with

y1
` < y2

` . Let us define a new level-set function ϕn+1 as

ϕn+1 = (1 − γn)ψn+1 + γnψ
n. (4.29)

One easily guess from Figure 1 that if ψn+1 is sufficiently close to ψn, then in the neighborhood of the
zeros ψn+1 and ψn are affine functions with the same slope and consequently the zeros of ϕn+1 are

x j
n+1 = (1 − γn) y j

n+1 + γny j
n, j = 1, 2. (4.30)

More precisely, in order to ensure that x1
n+1 is a zero of ϕn+1, it is sufficient to ensure that

x1
n+1 < min(ỹn, ỹn+1) (4.31)

with ỹ` = (y1
` + y2

` )/2, which means that x1
n+1 indeed lies in a region where ψn+1 and ψn have the same

slope. In the case y1
n+1 ≤ y1

n, x1
n+1 = y1

n+1 + γn(y1
n − y1

n+1) < y1
n+1 since γn ≤ 0 and therefore (4.31) is

verified. If y1
n+1 > y1

n, then, since 0 ≥ γn ≥ −1, one can easily check that (4.31) is verified as long as

y1
n+1 − y1

n < min((y2
n − y1

n)/4, (y2
n+1 − y1

n+1)/2). (4.32)

Symmetrically, (replace ψ`(y) by ψ`(−y)), x2
n+1 is a zero of ϕn+1 if

y2
n − y2

n+1 < min((y2
n − y1

n)/4, (y2
n+1 − y1

n+1)/2). (4.33)
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Figure 1: Combination of two one-dimensional signed distance functions ψn and ψn+1.

Conditions (4.32) and (4.33) can be interpreted as a condition on ∆t being sufficiently small so
that the gradient descent increment is sufficiently small compared to the size of the domain. These
observations on the one dimensional case motivated the accelerated scheme proposed in Algorithm 2. In
this algorithm, the main additional step is to transform the solution of the Hamilton-Jacobi equation into a
signed distance function, then compute the updated level set function using (4.29). The rationality behind
this scheme is that in higher dimensions, since we locally vary the boundary along the normal, assuming
that the changes in the normal is of higher order with respect to the gradient descent step, locally the
signed distance functions behave as in the 1D example, where the coordinate system represents the axis
along the normal.

As indicated in the introduction, the present article can be viewed as a proof of concept with only
numerical validations for the proposed algorithm. The convergence analysis is still under progress in
the case of convexity assumptions on the cost functional (although this is not guaranteed in general for
inverse scattering problems).

5 Numerical results

In this section, several numerical examples are carried out to show the effectiveness of the regularized
level-set method and compare the convergence speed of our accelerated level-set method with the non
accelerated scheme. We use the gypsilab toolbox [2] to solve the direct scattering problems. To solve the
Hamilton-Jacobi equation, we use the matlab level set toolbox [28]. More precisely, we use the algorithm
referred to Motion in the Normal Direction presented in [28, Section 2.3, equation (7)]. For redistancing,
we use [28, Section 2.3, equation (8)].

The following items are shared by all numerical examples.

(1) To generate the synthetic data we use the gypsilab toolbox [2] to solve the direct scattering problem
for the exact shapes. The noise level δ = 5% and the noisy data ũδ is computed from the exact one
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Algorithm 2 Accelerated level-set scheme
Initialization: Given a fixed Cartesian grid G and a step size value ∆t0 > 0, start from an initial signed
distance function ϕ0 corresponding to D0 defined on G,
for n = 0, 1, ...,Nit, do

1 Solve the direct scattering problem and the corresponding adjoint problem to get ∂νun
l and

∂νwn
l on the zero-level set of ϕn and calculate Jn.

2 Compute the velocity vDn on ∂Dn thanks to formula (3.18) and use (4.26) to compute the
velocity extension vn

ext on the whole grid G.

Set T = ∆t0.

3 Solve the Hamilton-Jacobi equation
∂ϕ
∂t (t, x) + vn

ext(x)|∇ϕ(t, x)| = 0 on (0,T ) ×G,

ϕ(t = 0, x) = ϕn(x) for x ∈ G.

to get a level-set function ϕn+1(x) = ϕ(T, x).

4 Solve the direct scattering problem on the zero-level set of ϕn+1 and calculate J̃n+1.
if J̃n+1 < Jn then

Go forward to step 5.
else if T > tol (step tolerance) then

Set T = 0.5 T and go back to step 3.
else

Stop and quit the program.
end if

5 Redistance ϕn+1 as a signed distance function to get a new function ψn+1

6 Compute the new update for the level set function as

ϕn+1 = (1 − γn)ψn+1 + γnψ
n

where γn is the sequence defined by (4.28).
end for
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ũ using the formula ũδ = ũ(1 + δη), where η is a normally distributed random number in [−1, 1]
and ũ := u∞ for far field pattern or ũ := |u∞| for phaseless data.

(2) The computational region for the level set functions is chosen to be a square with side length 10
centered at (0, 0). This region is discretized using a cartesian grid with steps ∆x = ∆y = 0.04.

(3) The wave number of the incident wave is chosen to be k = 1 unless otherwise stated. For the
parameters in the inversion algorithm, we choose an initial step size ∆t0 = 2 and a regularization
parameter kr = k.

(4) For far field and phaseless data, we transmit L = 36 equidistant incident plane waves on a full
aperture and evaluate M = 36 equidistant measurements on a full aperture for each incident wave.
For back-scattering data, we transmit L = 360 equidistant incident plane waves on a full aperture
and evaluate the far field at −dl for each incident direction dl.

(5) In each example, in addition to showing the final reconstruction results, we compare the decay rate
of the cost functional between Algorithm 1 and Algorithm 2. For the n-th iteration, we calculate
log10 (Jn/Jo) with Jn = J(∂Dn) and Jo being the value of J corresponding to φ = 0 (see (2.6)).

Remark 5.1. Although the step adaptation is incorporated in the accelerated scheme, we observe that
it does not imply that the cost functional is always decreasing. This is what is also numerically observed
in the results below. In fact, for the value of ∆t0 chosen above, the adaptation step was never activated
by Algorithm 2 in the experiments below while it was sometimes activated by Algorithm 1.

We consider the following three configurations. Configuration 1 includes a kite-shaped obstacle
located at (−

√
2,
√

2) and it is described by the parametric representation

xkite(t) =
(
−
√

2 + (0.75 cos t + 0.5 cos 2t − 0.5) ,
√

2 + sin t
)
, 0 ≤ t ≤ 2π.

In configuration 2, we add an ellipse located at (
√

2,−
√

2) to the kite-shaped obstacle. The ellipse is
defined by

xellipse(t) =

√2 +
1.5 cos t√

sin2 t + 2.25 cos2 t
,−
√

2 +
1.5sint√

sin2 t + 2.25 cos2 t

 , 0 ≤ t ≤ 2π.

In configuration 3, we consider a whale-shaped obstacle for which the exact boundary can not be globally
parametrized as for the previous examples. The three configurations are depicted in Figure 2.

For each configuration, the following three different initial guesses are tested:

(1) One circle with radius R = 1 located at (0, 0);

(2) Two circles with radius R = 1 located at (0, 0) and (−2.5, 0);

(3) Three circles with radius R = 1 located at (0, 0), (−2.5, 0) and (2.5, 0).
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Figure 2: The considered configurations for the domain D.
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Figure 3: Initial guesses.

These initial guesses are depicted in Figure 3.
Example 1: Shape reconstruction with far field data. We first consider the inverse problem with

far field data generated by configuration 1, which includes only one kite-shaped obstacle. The recon-
structions due to different initial guesses are presented in Figure 4. In Figure 4(a)-(d), the results show
that both algorithms converge to the exact boundary and our accelerated method converges faster. In Fig-
ure 4(e)-(h) and Figure 4(i)-(l), Algorithm 2 converges while Algorithm 1 stops since the cost functional
cannot be further decreased (after the step size reached the lower tolerance). Therefore, the accelerated
algorithm not only converges faster, but also can deal with the case in which the classical approach does
not work. In other words, our method offers more flexibility for the choice of the initial guess, which
may be useful for cases with no a priori information on the connectivity of the obstacle.

We second consider the inverse problem with far field measurements generated by configuration 2,
which includes two obstacles: a kite-shaped obstacle and an ellipse. The reconstructed shapes associated
with different initial guesses are presented in Figure 5. It can be seen that both algorithms converge no
matter how many obstacles the initial guess includes, while the accelerated method converges faster and
can provide a more accurate reconstruction of the exact curves.

Example 2: Shape reconstruction with back-scattering data. In this example, we discuss the
inverse scattering problem using back-scattering measurements. First, we consider configuration 1 and
initial guess 1 presented in Figure 4(a). The reconstructed results are shown in Figure 6. It can be seen
that both algorithms do not converge to the exact boundary. In fact this is due to the non convexity of
the cost functional in a neighborhood of the initial guess. In order to visualize this non convexity, we
compute J for different shapes (circles) that depend on one parameter and plot the obtained function. In
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Figure 4: Shape reconstructions for configuration 1 using far field data with different initial guesses. The
first column gives the profile of the exact boundary and the initial guess. The second column presents the
convergence speed for the cost functional by Algorithm 1 (dashed line) and Algorithm 2 (dotted line).
The third and fourth columns show the final reconstructions given by Algorithm 1 and Algorithm 2,
respectively.
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Figure 5: Shape reconstructions for configuration 2 using far field data with different initial guesses. The
first column gives the profile of the exact boundary and the initial guess. The second column presents the
convergence speed for the cost functional by Algorithm 1 (dashed line) and Algorithm 2 (dotted line).
The third and fourth columns show the final reconstructions given by Algorithm 1 and Algorithm 2,
respectively.
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a first case we fix the center at (0, 0) and change the radius of this circle from R = 0.1 to R = 3 (Figure
7 (a) and (b)). In a second case we fix the radius R = 1 and change the location of the center along the
straight segment joining (0, 0) to (−

√
2,
√

2) (Figure 7 (a) and (b)). For both cases we also compute the
cost functional J corresponding with the full aperture far field data as in the Example 1 (depicted with
dashed lines). Figures 7(b) and (d) clearly show a severe non convexity change of the cost functional
associated with back-scattering data. Using the initial guess in Figure 6 made the accelerated algorithm
trapped in a local minimum present in its neighborhood. It seems that for the full aperture case the non
convexity change is much less severe and this is why the accelerated algorithm was more successful to
escape local minima in that case.

By changing the initial guess, for instance using a circle located at (−0.5, 0.5) with radius R = 1 as
shown in Figure 8, both algorithms provide good reconstructions and the accelerated one exhibit a faster
convergence as in the previous examples.
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Figure 6: Shape reconstructions for configuration 1 using back-scattering data with initial guess 1.
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Figure 7: The value of the cost functional J for backscattering data (solid line) and full aperture data
(dashed line) for exact data associated with kite-shape obstacle and for domains corresponding with
circles of different radii or locations. In (a)-(b) we fix the center of the circles at (0, 0) and change the
radius of this circle from R = 0.1 to R = 2. In (c)-(d) we fix the radius R = 1 and change the location of
the center along the straight segment joining (0, 0) to (−

√
2,
√

2).

Example 3: Shape reconstruction with phaseless data. In this example, we consider configuration
2 for shapes with phaseless data [20], which has a more widely use in real applications. We remark that
due to the translation invariance for phaseless data, one can only reconstruct the shapes up to a translation
(but which is the same for all connected components). This compatible with the reconstructed results
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Figure 8: Shape reconstructions for configuration 1 using back-scattering data with an initial guess being
a circle with radius R = 1 located at (−0.5, 0.5).

shown in Figure 9. In all of the three cases, Algorithm 2 needs less than 200 steps of iterations while
Algorithm 1 needs more than 1000 iterations before convergence. Moreover, Figure 9(i)-(l) shows that
Algorithm 2 is more tolerant with the initial guess than Algorithm 1. It provides a good reconstruction
after 200 iterations while Algorithm 1 does not perform well even after 1000 iterations.

Example 4: Shape reconstruction of configuration 3 with multi-frequency full aperture data.
In this last experiment, we consider an object with a more complex geometry given by the whale-shaped
obstacle. The exact boundary is approximated by 582 points. Due to this large number of parameters, and
the difficulty to design a priori parametrization of the shape make gradient descent methods well suited
optimization strategy for this case. Additionally since there are some small details in the geometry, we
need to successively use data produced at higher frequencies to get better reconstructions (see [6]). This
is what the numerical experiments in Figure 10 also suggest. At a low wave number k = 1 as used in
the previous examples, the reconstructed shape misses the small details while the residual is small and
cannot be improved by the algorithm: see Figure 10(a)-(d). Using a larger wave number, for example,
k = 5 we observe that if we use the same initial guess as in the previous case, both algorithms get
stuck into a local minimum see Figure 10(e)-(h). One can think in this case to use adaptation of the
regularization strategy but we found it hard to automatically tune parameters in this case. This leads us
to consider a multi-frequency strategy similar to [6]. We first use a low frequency incident waves to get a
reconstruction at k = 1. Then we take it as the initial guess for higher wave number k = 5. The numerical
results are shown in Figure 10(i)-(l) and shows that this type of strategy is successful. The accelerated
algorithm still outperforms the non accelerated one.

6 Conclusion

We presented a new algorithm to solve inverse obstacle scattering problems based on an accelerated
level-set approach. Since level-set functions allow for a larger variety of shapes, they usually induce
more iterations than for boundary variation techniques. Motivated by accelerated gradient descent strate-
gies that combine several iterates, we proposed an adaptation of these strategies to the level-set frame-
work in order to reduce the number of iterations and accelerate the whole procedure. We also proposed
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Figure 9: Shape reconstructions for configuration 2 using phaseless data with different initial guesses.
The first column gives the profile of the exact boundary and the initial guess. The second column presents
the convergence speed for the cost functional by Algorithm 1 (dashed line) and Algorithm 2 (dotted
line). The third and fourth columns show the final reconstructions given by Algorithm 1 and Algorithm
2, respectively.

24



-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Initial guess

(a) original and initial

0 20 40 60 80 100
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Algorithm 1

Algorithm 2

(b) convergence speed

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 1

(c) Algorithm 1, Nit = 101

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 2

(d) Algorithm 2, Nit = 101

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Initial guess

(e) original and initial

0 20 40 60 80 100
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Algorithm 1

Algorithm 2

(f) convergence speed

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 1

(g) Algorithm 1, Nit = 101

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 2

(h) Algorithm 2, Nit = 101

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Initial guess

(i) original and initial

0 6 12 18 24 30
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Algorithm 1

Algorithm 2

(j) convergence speed

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 1

(k) Algorithm 1, Nit = 31

-4 -2 0 2 4
-4

-2

0

2

4
Exact boundary

Reconstructed result 2

(l) Algorithm 2, Nit = 31

Figure 10: Shape reconstructions for configuration 3 using a multi-frequency full aperture data. The first
row gives the results with the initial guess shown in (a) and the wave number k = 1 by Algorithm 1 and
Algorithm 2. The second row gives the results with the initial guess shown in (e) and the wave number
k = 5 by Algorithm 1 and Algorithm 2. The third row gives the results with the initial guess shown in (i),
which is the final reconstruction given by a small wave number k = 1 (as shown in (c)), and then iterates
with a larger wave number k = 5.
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the use single-layer potentials to extend and regularize the descent direction given by the shape deriva-
tive. Numerical examples with different types of measurements have been conducted to demonstrate the
expected superiority of the proposed approach over non accelerated approaches in terms of iterations
number. They also demonstrated that the algorithm provides much more accurate reconstructions and is
less sensitive to initial guesses (and the topology of both the initial guess and the reconstructed object).
A theoretical analysis of these conclusions will be the subject of future works.
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