
HAL Id: hal-03465119
https://hal.science/hal-03465119v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Similarity Metric Learning
Stefan Duffner, Christophe Garcia, Khalid Idrissi, Atilla Baskurt

To cite this version:
Stefan Duffner, Christophe Garcia, Khalid Idrissi, Atilla Baskurt. Similarity Metric Learning. Multi-
faceted Deep Learning - Models and Data, 2021. �hal-03465119�

https://hal.science/hal-03465119v1
https://hal.archives-ouvertes.fr

Similarity Metric Learning

Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

Abstract Similarity metric learning models the general semantic similarities
and distances between objects and classes of objects (e.g . persons) in order to
recognise them. Different strategies and models based on Deep Learning exist
and generally consist in learning a non-linear projection into a lower dimen-
sional vector space where the semantic similarity between instances can be
easily measured with a standard distance. As opposed to supervised learning,
one does not train the model to predict the class labels, and the actual la-
bels may not even be used or not known in advance. Machine learning-based
similarity metric learning approaches rather operate in a weakly supervised
way. That is, the training target (loss) is defined on the relationship between
several instances, i.e. similar or different pairs, triplets or tuples. This learnt
distance can then be applied, for example, to two new, unseen examples of
unknown classes in order to determine if they belong to the same class or if
they are similar. There exist numerous applications for metric learning such
as face or speaker verification, image retrieval, human activity recognition or
person re-identification in images. In this chapter, an overview of the prin-
ciple methods and models used for similarity metric learning with neural
networks is given, describing the most common architectures, loss functions
and training algorithms.

1 Introduction

Traditionally, neural networks, and in particular deep neural networks, have
been used in settings involving supervised learning, and they showed state-
of-the-art performance in many applications where abundant annotated data
are available. In these applications, it is usually required to know in advance

e-mail:

1

2 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

the number of classes to predict, and their clear meaning, i.e. which instance
belongs to them or not, or, in case of a regression problem: the values cor-
responding to the instances. Moreover, the relationship of different classes
(or sub-classes) is not explicitly modelled, as this is mostly not useful in the
given predictive scenarios. In this part, we will consider other applications
that do not allow or are not suited for such supervised learning approaches.
This is the case, for example, when:

• instance labels (e.g . positive/negative, foreground/background or a person
identifier) are not available or too difficult to obtain for training or

• the number of classes is not fixed a priori or
• the classes to predict at test time are not the same as the ones available

for training or
• the relationship or similarity between instances and categories of instances

should be modelled and represented explicitly or
• a robust rejection strategy needs to be implemented for a classification

task.

If no information on instance classes or their relationship is given at all,
unsupervised approaches, such as clustering methods or auto-encoders, are
most suitable to automatically learn and infer a general model of the data.
However, in many settings, class labels for at least some of the training data
is available, and one is interested in a generic model that is applicable for
all data of the same type. In this case, weakly supervised or semi-supervised
learning algorithms are commonly employed.

One such weakly supervised approach is to automatically learn a similarity
metric between instances of a given category (e.g . faces). That is, the instance
labels of a training dataset are not explicitly learnt but rather used to model
the distance between similar and dissimilar instances – for example, by using
pairs of instances. Note that sometimes the term distance learning is used.
But many existing models, e.g . those based on neural networks described
in this chapter, do not fulfil the mathematical requirements of a distance,
especially the triangle inequality, and thus do not represent a metric neither.

The notion of similarity or dissimilarity differs from one application to
another. Thus its definition depends on the learning problem and on the
training dataset. For example, let us consider a set of face images: (1) for the
task of face verification, two images of the same person are considered similar;
(2) for the task of gender verification, two face images showing two males or
two females are defined as similar; (3) for the task of kinship verification,
a similar pair of face images must indicate a biological relationship such as
father-son, mother-daughter etc.

In principle, most metric learning algorithms receive positive and negative
pairs of instances, where a positive pair is formed of instances that are con-
sidered similar (e.g . belonging to the same category), and a negative pair is
composed of instances that are considered different or dissimilar, although
this may not be simple to determine in practice. By presenting all possible

Similarity Metric Learning 3

pairs, a good metric learning method must then be able to capture the in-
trinsic relationship between the concerned semantic contents of two objects.
Figure 1 shows pairs of images of the same persons from the LFW dataset.
These pairs can be used to define a similarity relationship, and a generic dis-

Fig. 1 Pairs of images (LFW dataset) from the same person that can be used to learn

a similarity relationship. Similarity metric learning aims at learning a metric space where

similar examples (e.g. faces from the same person) are close and examples not considered
similar have a large distance. This metric can then be used to verify if two unknown exam-

ples, possibly from unknown classes, belong to the same class (e.g. for face verification).

tance metric can be learnt and applied to unknown persons, for example for
face verification. An alternative approach is to give triplets of instances, with
one reference (also called “anchor”), one similar instance and one dissimilar
instance w.r.t. to the reference. Then, the similar instance is considered more
similar to the reference than the third one. Or, sometimes quadruplets are
used, where the first pair is considered more similar than the second pair.
Figure 2 illustrates the principle approach for similarity metric learning with
pairs or triplets of instances.

margin

xR

x+

x−

margin

xR

x+

x−

Fig. 2 Principle approach for similarity metric learning. Minimising an appropriate loss

function tries to bring similar instances closer (xR,x+) and to separate dissimilar ones
(xR,x−) (if they are closer than a certain margin). A pair-wise loss function iteratively
optimises these objectives on all positive and negative pairs, whereas a triplet-based loss

is defined on triplets (xR,x+,x−) (c.f . Section 2.3).

4 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

In this chapter, we will present similarity metric learning methods and
models based on Siamese Neural Networks (SNN). The original term “siamese”
relates to the use of pairs of instances as introduced by Bromley et al .
[BGL+94]. However, in the literature, this has been extended to triplet or
tuple-based architectures. As we will outline in the next section, there are
other models, for example, based on statistical projections or Support Vec-
tor Machines. However, feed-forward neural networks have several properties
that make them interesting and particularly suitable for this problem:

• They can model a wide variety of linear and non-linear functions, c.f . the
universal approximation theorem [HSW89], and well-established optimisa-
tion approaches can be used.

• By carefully specifying the architectures, the complexity of the models can
be controlled (in terms of the number of parameters and the dimensions at
different abstraction levels, considering it as a data processing pipeline).

• Through multi-layered architectures and the error back-propagation algo-
rithm, one can jointly learn optimal features and projections into vector
spaces that best represent semantic similarities.

• Using deep Convolutional Neural Network architectures, the resulting
models are suitable and very powerful for (natural) image data.

• Finally, for a large variety of applications and data, neural networks showed
a high generalisation capacity and robustness to different types of noise.

In the following, we will outline the different algorithms and neural mod-
els that exist for similarity metric learning and describe the principal SNN
approach and variants that have been presented in the literature.

2 Metric learning with Neural Networks

Most linear metric learning methods employ two types of metrics: the Maha-
lanobis distance or a more general similarity metric. In both cases, a linear
transformation matrix W is learnt projecting input features into a target vec-
tor space. Typically, distance metric learning relates to a Mahalanobis-like
distance function [XNJR03, WBS06]: dW (x1,x2) =

√
(x1 − x2)TW (x1 − x2),

where x1 and x2 are two example vectors, and W is not the (fixed) covari-
ance matrix, as for the Mahalanobis distance, but is to be learnt by the algo-
rithm. Note that when W is the identity matrix, dW (x1,x2) corresponds to
the Euclidean distance. In contrast, similarity metric learning methods learn
a function of a more general form: sW (x1,x2) = xT1Wx2/N(x1,x2), where
N(x1,x2) is a normalisation term [QGCL08]. Specifically, whenN(x1,x2) = 1,
sW (x1,x2) is the bilinear similarity function [CSSB10]; and whenN(x1,x2) =√
xT1Wx1

√
xT2Wx2, sW (x1,x2) corresponds to the generalised cosine simi-

larity function [HL11].

Similarity Metric Learning 5

Non-linear metric learning methods are constructed by simply substitut-
ing the above linear projection with a non-linear transformation [HLT14,
CHL05, KTS+12, YYGT16]. For example, Hu et al . [HLT14] and Chopra
et al . [CHL05] employed neural networks to accomplish this. With these ap-
proaches, the learning algorithm optimises the parameters of a non-linear
projection o = f(x) into a metric space such that a simple distance measure
dW (f(x1), f(x2)), mostly the Euclidean or cosine distance, reflects the seman-
tic similarities between the instances. Such non-linear methods are subject to
local optima and more inclined to overfit the training data but have the po-
tential to outperform linear methods on many problems [BHS13, KTS+12].
Compared with linear models, non-linear models are usually preferred on
large training sets to more accurately capture the underlying distribution
of the data [LBOM12]. A detailed survey and review of metric learning ap-
proaches has been published recently by Bellet et al . [BHS13], and an ex-
perimental analysis and comparison by Moutafis et al . [MLK16]. We will
concentrate here on Siamese Neural Networks (SNN) that can represent lin-
ear or non-linear projections depending on the used activation function and
the number of layers. With larger and more complex models, the term deep
similarity metric learning has often been employed in the literature.

As mentioned before, a SNN essentially distinguishes itself from classical
feed-forward neural networks by its specific training strategy involving sets of
examples labelled as similar or dissimilar. The capabilities of different SNN-
based methods depend on four main points: the network architecture, the
training set selection strategy, the loss function, and the training algorithm
[BGL+94]. In the following, we will explain these points in more detail and
give some examples.

2.1 Architectures

A SNN can be seen as two identical, parallel neural networks NN sharing
the same set of weights W (see Fig. 3). Although the weights of the input
branches are shared in most cases, this may not be the case for some specific
applications, notably when the two input examples are of different type or
from different sources (e.g . images taken from two different camera views).
Then, each input branch of the neural network is dedicated to a specific
input type, and the two cannot be interchanged. In any case, the sub-networks
receive input examples x1,x2, and produce output feature vectors o1,o2 that
are supposed to be close for examples from the same class and far apart for
examples from different classes, according to some distance measure, such as
the cosine similarity metric (c.f . section 2.3). During the training phase, a loss
function LW , defined using the chosen distance measure over the output of all
input examples, is iteratively minimised (c.f . Section 2.3). The architecture
of the neural network determines the type and complexity of the projection

6 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

x1 x2

NN NN

dW (o1,o2)

Loss LW

shared

parameters

o1 o2

Fig. 3 The principal SNN architecture. Two identical neural networks NN receive two

different input vectors x1,x2 producing two embeddings o1 and o2, respectively. The loss

function LW to minimise is based on a distance measure dW between these embeddings
and is used to update the shared weights of the neural network computing the gradient

w.r.t. to both of them and back-propagating the error.

function. One crucial parameter is the size of the output layer as it defines the
dimension of the vector space of the embedding. This is usually an empirical
choice. It should be large enough to capture the similarity relationships of
the training data (according to different aspects/axes) but not too large as
the distance measures in too large vector spaces may become extremely small
and thus meaningless.

Bromley et al . [BGL+94] introduced the Siamese architecture in 1994, us-
ing a Siamese CNN with two sub-networks for a signature verification system
handling time-series of hand-crafted low-level features. In 2005, Chopra, Had-
sell and LeCun [CHL05] formalised the Siamese architecture applying a CNN
on raw images for face verification, before adapting it to a dimensionality re-
duction technique [HCL06] (see Fig. 4(b) for an illustration of a siamese CNN
architecture). More recently, Siamese CNNs have been used successfully for
various tasks, such as person re-identification [YLLL14], speaker verification
[CS11], and face identification [SCWT14].

CNN-based architectures are more specific to image inputs, and several
research works propose to use feed-forward Multi-Layer Perceptrons (MLP)
to handle more general vector inputs (c.f . Fig. 4(a)). For example, Yih
et al . [YTPM11] apply SNNs to learn similarities on text data, Bordes et
al . [BWCB11] on entities in Knowledge Bases, and Masci et al . [MBBS14]
on multi-modal data. Recently, siamese or triplet architectures have become
popular and have been used for many different applications and types of
data and combined with other types of neural models. For example, for se-
quence or time series modelling with recurrent neural networks as illustrated
in Fig. 4(c). Mueller and Thyagarajan [MT16] proposed a Siamese neural net-
work for learning similarities between sentences using Long Short-Term Mem-
ory (LSTM) neural networks, where the distances are computed on the last

Similarity Metric Learning 7

x1 x2

vector vector

o1 o2

LW

(a)

I1 I2

image image

o1 o2

LW

(b)

x1,1 x1,2 x1,3

They had lunch

cell cell cell

h1,1 h1,2 h1,3

x2,1 x2,2 x2,3 x2,4

They ate at noon

cell cell cell cell

h2,1 h2,2 h2,3 h2,4

LW

(c)

x1

vector

x′1

o1

x2

vector

x′2

o2

LR

LW

(d)

G1

graph

GNN

G2

graph

GNN

o1 o2

LW

(e)

Fig. 4 Examples of different types of neural network models for deep similarity metric
learning where two inputs x1 and x2 (I1, I2, G1, G2, respectively) produce fixed-size output

embeddings o1 and o2 that are used for minimising the loss function LW : a) Multi-Layer
Perceptrons (MLP) for vector data, b) Convolutional Neural Network (CNN) for images,
c) Recurrent Neural Networks for variable-length sequential data (here: vectors of word
embeddings), d) auto-encoders minimising simultaneously the reconstruction loss LR and

e) Graph Neural Networks operating on graph structures. For each of the architectures,
only two branches are shown, but these models can be easily adapted to several inputs

(triplets, quadruplets etc.).

8 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

hidden layer output. Similarly, the approach from Neculoiu et al . [NVR16]
uses a Bidirectional LSTM to compute similarities between words. Here, the
hidden layer outputs are averaged over the sequence in order to obtain two
embedding vectors of the same dimension. SNNs have also been used with
auto-encoder architectures [KBR16, YCS19, SL20, ASS20] (c.f . Fig. 4(d)). In
that case, the two (or more) auto-encoders share their weights and the siamese
or triplet loss is minimsed on the latent embedding (code) produced by the
encoder, whereas the reconstruction loss is optimised at the same time. This
approach has been extended by Compagnon et al . [CLDG19] for sequence
metric learning with a LSTM-based sequence-to-sequence auto-encoder. Such
multi-task learning structures and algorithms have very popular in the past
years and successfully applied to various domains, notably Computer Vision.
Recently, Graph Neural Networks (GNN) have been combined with pair-
wise or triplet-based similarity metric learning for image retrieval [CBB19]
or graph matching in general [LGD+19]. Here, the parameters are shared
over several GNN and the similarity metric is learnt on the fixed-size graph
embedding as illustrated in Fig. 4(e).

2.2 Training Set Selection

2.2.1 Pairs

The selection strategy for training examples depends mostly on the appli-
cation and the kind of knowledge about similarities that one wants to in-
corporate in the model. For many applications, such as face or signature
verification, the similarity between examples depends on their “real-world”
origin, i.e. faces/signatures from the same person, and the neural network
allows to determine the genuineness of a test example w.r.t. a reference by
means of a binary classification. Most approaches use pairs of training exam-
ples (x1,x2) and a binary similarity relation which takes different values for
similar and dissimilar pairs (c.f . illustration in Fig. 3). In principle, the over-
all loss is defined as the sum of loss terms over all possible pairs of training
instances (see Section 2.3 for common loss functions). However, this creates
a large imbalance as there are usually much more negative pairs than pos-
itive ones if the examples are uniformly distributed over classes. And this
imbalance may lead to convergence problems because the learning algorithm
tries to focus more on the dissimilarities than the similarities, which are not
well defined. Thus it may fail to learn a meaningful similarity metric. A
straightforward approach to alleviate this problem is to balance the number
of positive and negative pairs (i.e. using over-sampling/under-sampling) in
each training iteration, or alternatively introduce a weight term in the loss
function [ZIG+15]. In some cases, it is even beneficial to learn only with
positive examples [ZDI+18]. This ensures that during learning the dissimilar

Similarity Metric Learning 9

pairs do not impair the learnt projection that brings positive examples closer
in the metric space.

2.2.2 Triplets

Lefebvre et al . [LG13] proposed to expand the information about the expected
neighbourhood, and suggested a more symmetric representation based on the
idea of Weinberger et al . [WBS06]: by considering a reference example xR
for each known relation, it is possible to define triplets (xR,x+,x−), with x+

forming a genuine pair with the reference xR, while x− is an example from
another class (impostor) – sometimes also called the anchor, the positive and
the negative examples, respectively. In this way, the learnt embedding may
correspond to a more balanced representation of similarities and dissimilari-
ties of the data. As for pair-wise SNNs, in principle, the global loss function is
defined over all possible triplets (see Section 2.3 for the definition of different
triplet loss functions). In practice, however, there are two many possible com-
binations. Thus, at each training iteration, a subset of all possible triplets are
usually randomly and uniformly sampled. One can also define each training
example as reference example xR in turn, and draw the positive and nega-
tive ones randomly. Or if classes are not balanced, first randomly sample a
reference example from each class in turn, and then sample the other two.

However, these sampling strategies may not be very efficient because, after
some training iterations, most of the triplets are not contributing much (or
not at all) to learning the similarity metric because they have already been
integrated in the model, and the loss (and gradient) is thus very small or
even zero. Therefore, different heuristics have been proposed to improve con-
vergence and also the semantic expressiveness of the learnt similarity metric.

For example, Hermans et al . [HBL17] proposed the hard-batch triplet loss
which is a modification of the common triplet loss (c.f . Eq. 8), where, for
each reference example, only the hardest positive examples (i.e. the ones that
are furthest from the reference) and the hardest negative examples (i.e. the
closest ones) are selected for training. The hard-batch approach is sometimes
referred to as the “top-ranking constraint”. Wang et al . [WZL17] extended
this idea with an efficient method for mining hard examples by learning a sub-
space and clustering the identities, and they applied this approach for large-
scale face recognition with 100 000 identities. Schroff et al . [SKP15] argued
that learning with the hardest negatives may impair the convergence and the
performance of the model and proposed a semi-hard batch mining strategy
which consists in not using those negatives that have a smaller distance to
the reference than the positive example in a mini-batch. The deep metric
learning formulation from Yu and Tao [YT19] introduce a scaling scheme in
their loss where hard triplets are up-weighted and easier triplets are down-
weighted. An additional slack variable introduces a margin that prevents
too hard negatives from gaining too much importance. Ge et al . [GHDS18]

10 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

introduce an hierarchical triplet loss, which consists in dynamically adapting
the margin m in Eq. 8 and thus incorporates a hierarchical structure in the
embedding that is in turn constructed using the learnt distance metric. This
allows to select meaningful hard negatives and to improve the convergence
and performance. Another approach called RankTriplet has been proposed by
Chen et al . [CDS+18] for ranking in a retrieval application. Here hard triplets
are selected in subsets (training batches) according to their ranks w.r.t. to
a query, i.e. only mis-ranked positive and negative examples are used. This
allows to define a list-wise measure based on the similarity ranking. Also
the effective mining of appropriate positive examples has been studied in
the literature. Shi et al . [SYZ+16], for instance, propose a moderate positive
mining strategy that excludes very hard positives examples as their Euclidean
distance can differ considerably w.r.t. the geodesic distance on a complex
manifold that the learnt metric should correspond to.

2.2.3 Tuples

Several SNN approaches that go beyond triplet architectures have been pro-
posed in the past. For instance, the model introduced by Yih et al . [YTPM11]
uses a loss based on two pairs of training examples (see Eq. 12), where the
first pair is considered more similar than the second one. For some applica-
tions, this type of relative similarity may be easier to define than the binary
relation between similar and dissimilar pairs. Chen et al . [CCZH17a] propose
a quadruplet loss (c.f . Eq. 14) introducing an additional constraint to triplets
that also pushes away negatives pairs from positive pairs w.r.t. to different
reference images. They experimentally showed that this approach reduces the
intra-class variance while increasing the inter-class variance, thus improving
its discrimination capacity.

Another possibility proposed by Berlemont et al . [BLDG15] is to use tuples
(xR,x+,x−,1,x−,2, . . . ,x−,K), with a reference xR, a positive example x+

and K negative examples x−,k, as illustrated in Fig. 5. Here, the loss function
LW (Eq. 15) is defined on a modified triplet cosine similarity that tries to
bring closer the positive and separate all the negative examples from the
reference. This objective essentially operates on K + 1 pairs of examples.
Similarly, Song et al . [SXJS16] proposed a deep metric learning approach
based on CNNs, where training batches are composed of several positive
and negative pairs and the loss function (Eq. 17) brings closer similar pairs
and separates each positive pair from its hardest negatives. Later, Yang et
al . [YCS19] extended this approach defining a loss function on all positive
and negative pairs in a tuple (Eq. 18) and a regularisation term preventing
the variances of positive and negative distances from becoming too large.
They also introduced a dynamically computed weight that focuses the loss
on harder positive pairs.

Similarity Metric Learning 11

xR x+ x−,1 x−,2 x−,k

NN NN NN NN NN

dW (or,o+,o−,1, . . . ,o−,k)

Loss LW

oR o+ o−,1 o−,2 o−,k

Fig. 5 A SNN architecture trained with tuples composed of a reference example xR, a pos-
itive example x+, and K negative examples x−,1, . . . ,x−,K . For K = 1, this corresponds

to the popular triplet architecture.

Going beyond pair-wise loss formulations, Berlemont et al . [BLDG16,
BLDG18] extended their previous approach by proposing a loss based on the
polar sine function [LW09], a generalisation of the sine function to n dimen-
sions (Eq. 22). The relation between all examples in the tuple is thus taken
into account by maximising the hyper-volume spanned by the projected ref-
erence and the negative example vectors. By sampling each negative example
in a tuple from a different class (different from the one of the reference ex-
ample) the training becomes more balanced and the learnt similarity metric
tends to better reflect the relationship between the classes.

The various SNN architectures and corresponding loss functions described
here have been used and evaluated for different applications in the litera-
ture. It seems there is no universal strategy for the choice of these hyper-
parameters, and their performance largely depends on the given application
as well as the type and amount of training data.

2.3 Loss Functions

The loss function LW that is to be minimised by the optimisation algorithm
defines a global objective in terms of the distances dW between the neural
network output vectors of the training examples oi i ∈ 1..N , i.e. the projec-
tions in the embedding. The loss should ensure that the distances between
similar examples is small and between dissimilar examples large. As described
above, this measure is usually defined over pairs, triplets or tuples in the loss
function, and mostly based on the Euclidean or cosine distance. When min-
imising the empirical loss over the training examples by iteratively updating
the shared weights W of the neural network, one essentially learns a projec-
tion function of inputs o = f(x) into an embedding that forms a similarity

12 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

metric space where similar examples lie close (in terms of the defined distance
dW) and dissimilar examples are further apart.

In the following, we will briefly describe some of the most commonly used
loss functions. For convenience and unless stated otherwise, we only note the
loss on a given subset (pair, triplet, tuple etc.), and the overall loss is usually
defined as the sum of these losses over all possible subsets.

Cosine pair-wise
Given a network with weights W and two examples x1 and x2 with their

labels Y , a target t(Y) is defined for the cosine value between the two respec-
tive output vectors o1 and o2 as “1” for similar pairs and “−1” (or “0”) for
dissimilar pairs [BGL+94]:

LW (x1,x2, Y) = (t(Y)− cos(o1,o2))
2
. (1)

A similar function is used in the Cosine Similarity Metric Learning (CSML)
approach [HL11]:

LW (x1,x2, Y) = −t(Y) cos(o1,o2) . (2)

Triangular
Zheng et al . [ZDI+18] use the same targets for a pair-wise function and

impose additional constraints on the norms of the output vectors: o1 and
o2. Integrating a geometrical interpretation using the triangle inequality, the
resulting loss function becomes:

LW (x1,x2, Y) =
1

2
‖o1‖2 +

1

2
‖o2‖2 − ‖o1 + t(Y)o2‖+ 1 . (3)

Norm-based
Several works [CHL05, HCL06, SCWT14, MBBS14] propose to use the

norm, e.g . `2-norm, between the output vectors as a similarity measure:

dW (x1,x2) = ‖o1 − o2‖2 . (4)

For example, Chopra et al . [CHL05] define an objective composed of an
“impostor” I (t(Y)=1) and a “genuine” G term (t(Y)=0):

LW (x1,x2, Y) = (1− t(Y))EGW (x1,x2) + t(Y).EIW (x1,x2) (5)

with EGW (x1,x2) =
2

Q
(dW)2, EIW (x1,x2) = 2Qe(−

2.77
Q dW) , (6)

where Q is the upper bound of dW .
Many recent works use the so-called contrastive loss [HCL06], where

EGW (x1,x2) = d2W and EIW (x1,x2) = max(m− d2W , 0) , (7)

Similarity Metric Learning 13

with m being a fixed margin parameter.

Triplet
Weinberger et al . [WBS06] introduced the triplet loss for a linear met-

ric learning approach using simultaneously targets for genuine and impostor
pairs by forming triplets of a reference xR, a positive x+ and a negative x−
example:

LW (xR,x+,x−) = max(dW (oR,o+)2 − dW (oR,o−)2 +m, 0) . (8)

This loss has been used by numerous deep learning approaches in the litera-
ture and for various different applications.

Later, Lefebvre et al . [LG13] proposed a triplet similarity measure based
on the cosine distance. Here, the output of the positive pair (oR,o+) is trained
to be collinear, whereas the output of the negative pair (oR,o−) is trained
to be orthogonal. Thus:

LW (xR,x+,x−) = (1− cos(oR,o+))2 + (0− cos(oR,o−))2 . (9)

Note that the margin m is a hyper-parameter that is usually empirically
determined. It is however not trivial to find its optimal value as it depends
mostly on the application, the used dataset and the dimension of the embed-
ding space.

Angular
Wang et al . [WZW+17] introduced a loss function based on the angles

formed by triplets, called the angular loss. Compared to the classical triplet
loss, it not only takes into account the reference-positive and reference-
negative pairs but also the negative-positive relationship, thus improving its
stability during training. It is defined as:

.LW (xR,x+,x−) = max(0, ||oR − o+||2 − 4 tan2 α||o− − oc||2) , (10)

. where oc = (oR + o+)/2, and α > 0 is a margin parameter defining an
upper bound of the angle between the o− and oc.

Deviance
Yi et al . [YLLL14] use the binomial deviance to define their loss function:

LW (x1,x2, Y) = ln
(

exp−2t(Y) cos(o1,o2) +1
)
. (11)

Quadruplets
Yih et al . [YTPM11] consider two pairs of vectors, (xp1,xq1) and (xp2,xq2),

the first being known to have a higher similarity than the second. The main
objective is then to maximise

∆ = cos(oxp1 ,oxq1)− cos(oxp2 ,oxq2) (12)

14 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

in a logistic loss function

LW (∆) = log(1 + exp(−γ∆)) , (13)

with γ being a scaling factor.
Chen et al . [CCZH17b] propose a deep metric learning approach based on

quadruplets extending the classical triplet loss (Eq. 8) by introducing an ad-
ditional constraint that enforces the distance between two negative examples
to be larger then between two positive examples but with a different reference
(anchor). The overall loss for N training examples is defined as:

LW =

N∑
i,j,k

max(dW (oi,oj)
2 − dW (oi,ok)2 +m1, 0)

+
N∑

i,j,k,l]

max(dW (oi,oj)
2 − dW (ol,ok)2 +m2, 0) , (14)

where m1 and m2 are two margins, and the input triplets (xi,xj ,xk) and
quadruplets (xi,xj ,xk,xl) are chosen under label constraints: yi = yj , yl 6=
yk, yi 6= yl, yi 6= yk.

Tuples: pair-wise
The approach from Berlemont et al . [BLDG15] is based on tuples T com-

posed of a reference example xR, a positive example x+ and K negative
examples x−,k (k = 1..K). Similar to the triplet loss (c.f . Eq. 9), with a
tuple T, a positive pair (xR,x+) and K negative pairs are formed, with re-
spective target values “1” and “0” for the cosine distance. Thus, given the
respective outputs of the neural network oR,o+,o−,1, . . . ,o−,K , the loss for
a tuple T is defined as follows:

LW (T) = (1− oR · o+)2 +

K∑
k=1

(0− oR · o−,k)2 +
∑
xp∈T

(1− ‖op‖)2 , (15)

where the cosine distances for the positive pair and the K negative pairs have
been replaced by the scalar product as cos(o1,o2) = o1·o2

‖o1‖.‖o2‖ , and the norms

are enforced to be “1” in the term of the last sum.
A very similar approach has been proposed by Son [Soh16] based on the

classical triplet formulation of Weinberger et al . (Eq. 8) using the so-called
N-pair loss:

LW (T) = log

(
1 +

K∑
i=1

exp
(
o>R o−,k − o>R o+

))
. (16)

Similarity Metric Learning 15

Song et al . [SXJS16] proposed another pair-wise formulation based on
several positive and several negative pairs, P and N , respectively. For each
positive pair (xi,xj), only the closest negative examples (for either) have an
influence during the training. The initial loss function involves a discontinuous
max function that is replaced by a smooth upper bound defined by the “log-
exp-sum” of the two terms for the positive pair, which leads to the final
loss:

LW =
1

2|P|
∑

(xi,xj)∈P

max(0,L(i,j)
W)2

L(i,j)
W = log

 ∑
(xi,xk)∈N

exp(m− d(xi,xk)) +
∑

(xj ,xl)∈N

exp(m− d(xj ,xl))

+ d(xi,xj) , (17)

where d(xi,xj) = ||xi − x||2 is the Euclidean distance, and m is a margin.
Yang et al . [?] proposed a similar “structural” loss function based on all

positive and negative pairs, P and N , in a tuple (mini-batch) T:

LW (T) =
1

B
∑

(xi,xj)∈P

βij log

1 +
∑

(xi,xk)∈N

exp
(
d(xi,xj)

2 − d(xi,xk)2 +m
)
/ξ

+
λ

2
(|σ2

p −mp]+ + [σ2
n −mn]+) , (18)

where ξ < 1 is a constant making the triplet constraint “softer”, m,mp and
mn are margin parameters, and [x]+ = max(0, x) is a hinge loss minimising
the second-order statistics σp and σn of positive and negative pair distances.
This second term serves as a regularisation (controlled by factor λ) preventing
the variances of positive and negative distances from becoming too large.
The factor βij (with B =

∑
(xi,xj)∈P βij) weights each positive pair (xi,xj)

according to its “hardness”, i.e. the distance in the Euclidean space:

βij = exp(d(xi,xj)
2 − τc) , (19)

with τc being a class-dependent threshold, defined as twice the mean minus
the minimum of positive distances in P.

Tuples: polar sine
Later, Berlemont et al . [BLDG16, BLDG18] proposed a loss function based

on tuples that simultaneously takes into account the relationship between all
examples in the tuple, i.e. also between the negatives and not only pair-wise
w.r.t. to a reference.

Inspired by the 2D sine function, Lerman et al . [LW09] define the polar sine
for a set Vm = {v1, . . . ,vn} of m-dimensional linearly independent vectors

16 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

(m > n) as a normalised hyper-volume. Given A =
[
v1 v2 · · · vm

]
and its

transpose A>:

PolarSine(v1, . . . ,vn) =

√
det (A>A)∏n
i=1 ‖vi‖

. (20)

In the special case where m = n, the matrix product in the determinant is
replaced by the square matrix A.

Given the matrix S such that ∀(i, j) ∈ [1, .., n]
2
,Si,j = cos(vi,vj), this

measure can be rewritten as PolarSine(v1, . . . ,vn) =
√

det (S). For numer-
ical stability reasons during the derivation process, and to make this value
independent from the number of classes, the authors define a polar sine metric
as follows:

psine(v1, . . . ,vn) = n
√

det (S). (21)

This metric only depends on the angles between every vector of the set.
It reaches its maximum value when all the vectors are orthogonal, and thus
can be used as a measure for dissimilarity. The loss function for a tuple T is
defined as:

LW (T) = LpW (T) + LnW (T) ,

LpW (T) = (1− cos(oR,o+))2,

LnW (T) = (1− psine(oR,o−,1, . . . ,o−,K))2 .

(22)

Optimising the polar sine corresponds to assigning a target of 0 to the
cosine value of every pair of outputs from different vectors drawn in T\{xR},
i.e. a target for every pair of dissimilar examples.

SoftTriple
The approach proposed by Qian et al . [QSS+19] uses a loss formulation

based on the SoftMax function. They showed that the SoftMax loss, com-
monly used in supervised learning, is essentially equivalent to a smoothed
triplet loss, where each class has a single “centre”, and they extended this
to multiple centres allowing to cope with large intra-class variations and
underlying multi-modal distributions. The similarity metric is learnt in a su-
pervised way with C classes and an additional fully-connected layer l with
weight vectors [w1, . . . ,wC] ∈ Rd×C before the final SoftMax layer. The al-
gorithm minimises the following loss defined on a single input xi to the layer
l and its label yi over the entire training set:

LW = − log
exp(λ(Si,yi − δ))

exp(λ(Si,yi − δ)) +
∑
j 6=yi exp(λSi,j)

(23)

where all weights wi and xi have unit length, λ is a regularisation constant,
δ is a margin, and

Similarity Metric Learning 17

Si,c =
∑
k

exp(1
γx
>
i w

k
c)∑

k exp(1
γx
>
i w

k
c)

x>i w
k
c (24)

is a relaxed (hence soft) version of

S′i,c = max
k

x>i w
k
c , (25)

a similarity between the input xi and the (closest) k-th centre (i.e. weight
vector) of class c. The final embedding representing the similarity metric is
thus produced at the output of layer l.

Sphere Loss
Similar to the SoftTriple loss, Fan et al . [FJLF19] proposed a similarity

metric learning approach based on the SoftMax function, where, again, the
embeddings oi and weights wi i = 1..C of the last layer are set to unit norm
and thus lie on a hyper-sphere. Here, the similarity is expressed in terms of
the angle θj between the weight (“centre”) wj and an embedding o. And the
loss for one example xi with label yi is defined as:

LW = − log
es cos θyi∑C
j=1 e

s cos θj
, (26)

where s is a scaling factor. Thus, after training, the embedding is formed by
the hyper-sphere manifold described by the last layer outputs, and similarity
is measured in terms of the angular distance.

Probability-driven
Nair et al . [NH10] add a final unit to their neural network architecture

whose activation function computes the probability P of two examples x1,
x2 being from the same class:

P =
1

1 + exp(−(w. cos(o1,o2) + b))
, (27)

with w and b being scalar parameters.

Statistical
Chen et al . [CS11] compute the first and second-order statistics, µ(i) and

Σ(i), over sliding windows on the SNN outputs of a speech sample i, and
define the loss function as:

LW (x1,x2, Y) = (1− t(Y))(Dm +DS) + t(Y).(exp(
−Dm

λm
) + exp(

−DS

λS
)) ,

(28)
where

Dm =
∥∥∥µ(i) − µ(j)

∥∥∥2
2
, DS =

∥∥∥Σ(i) −Σ(j)
∥∥∥2
F

(29)

18 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

are incompatibility measures of these statistics between two samples i and j,
λm and λs are tolerance bounds on these measures, and ‖.‖F is the Frobenius
norm.

2.4 Training Algorithms and Schemes

In principle, any optimisation algorithm for neural networks can be used
to train a SNN. In most similarity learning approaches from the literature,
the standard Stochastic Gradient Descent (SGD) with mini-batches has been
used. The batch size is sometimes an important hyper-parameter because it
may have an influence on the overall convergence. Furthermore, as mentioned
in Section 2.2, the selection of examples used for one training iteration might
be pre-determined by the SNN architecture or loss function. For instance,
for an SNN with a pair-wise loss function, e.g . contrastive divergence, dif-
ferent pairs can be formed with the examples in the batch, and it is often
recommended to balance the possible number of positive and negative pairs.
For triplets, it may be appropriate to have at least one positive/similar pair
for each example. For tuples, there may need to be at least one example
for each class. In any case, at each training iteration, the loss function (c.f .
Section 2.3) is generally evaluated on the set of examples in the batch. And
the gradients are computed for each input example and summed. Then the
(shared) weights are updated according to the standard error backpropaga-
tion algorithm.

To circumvent the problem of exhaustive triplet sampling, Movshovitz-
Attias et al . [MATL+17] introduced the notion of proxies, where a represen-
tative point (proxy) from a much smaller subset is assigned to each positive
and negative training example in the triplets as an approximation. The prox-
ies are updated during training, and the algorithm thus requires much less
memory and further improves the convergence.

Another original similarity metric learning algorithm proposed by Duan et
al . [DZL+18] uses a Generative Adversarial Network (GAN) model to gener-
ate synthetic hard negative examples for efficient learning of the metric space.
The generator loss encourages the creation of realistic negative examples that
are as close as possible to the positive ones and that violate the triplet con-
straint. The algorithm jointly minimises this loss with the metric loss, and the
authors experimented with various loss functions: contrastive, triplet, N-pair
tuples etc., and obtained improved image retrieval results using the N-pair
loss (c.f . Eq. 16).

For large embeddings and complex, deep SNN models, the convergence
can be difficult when learning only with similarity and dissimilarity con-
straints. For this reason, some approaches suggest to either pre-train the
model in a supervised way using the labels of the training dataset and a tem-
porary final fully-connected SoftMax layer [CS11] or to simultaneously train

Similarity Metric Learning 19

identities and the metric space using the combination of two (or more) loss
functions [MdRM17, CCZH17b, YWLY18, MMLJ20].

Finally, when the metric that is to be learnt is applied to a ranking prob-
lem, like image retrieval for example, additional constraints on this ranking
can be imposed. For example, the approach proposed by Chen et al . [CDS+18]
integrates the classical mean average precision and rank-1 measures as a
weighting term in the loss function and specifically selects mis-ranked triplets
in the training batches in order to correct ranking errors. Another approach
for deep metric learning to rank, called FastAP, has been presented by Cakir
et al . [CHX+19]. Here, instead of sampling pairs or triplets of training ex-
amples, the training is directly optimising the mean average precision within
mini-batches by computing the distance histograms between each query and
sets of gallery examples in the batch. Using a differentiable soft-binning tech-
nique, gradient descent can directly be performed on these histograms of
positive and negative retrieval results.

3 Conclusion

In this chapter, we gave an overview on the principal models and training
algorithms for similarity metric learning with neural networks. Numerous
variants of loss functions, neural architectures and training sample selection
have been proposed in the literature, and these choices mostly depend on the
given training data, the task to solve and the application domain. The general
trend seems to go away from simple pair-wise training and triplets to sam-
ples involving tuples of several similar and dissimilar examples allowing to
model richer structural relations, but these strategies are nowadays mostly
based on application-dependant heuristics involving empirical parameters.
More research work needs to be done to study the generalisation capacity
and the general applicability (beyond person re-identification, for example)
for more complex state-of-the-art deep metric learning models. In this re-
gard, the interplay between classification, feature extraction and the learnt
metric needs to be better understood. Finally, the notion of similarity (and
dissimilarity) is to be defined more formally and extended, possibly by intro-
ducing other (prior) knowledge, in order design new models and algorithms
that learn a rich, abstract and semantic representation of training data.

References

[ASS20] Mohammad Adiban, Hossein Sameti, and Saeedreza Shehnepoor. Re-
play spoofing countermeasure using autoencoder and siamese networks on
ASVspoof 2019 challenge. Computer Speech & Language, 64, 2020.

20 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

[BGL+94] Jane Bromley, Isabelle Guyon, Yann Lecun, Eduard Säckinger, and Roopak

Shah. Signature Verification using a ”Siamese” Time Delay Neural Network.
In Proceedings of NIPS, 1994.

[BHS13] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature

vectors and structured data. Computing Research Repository, abs/1306.6709,
2013.

[BLDG15] Samuel Berlemont, Gregoire Lefebvre, Stefan Duffner, and Christophe Garcia.

Siamese neural network based similarity metric for inertial gesture classifica-
tion and rejection. In Proceedings of the International Conference on Auto-

matic Face and Gesture Recognition (FG), Ljubljana, Slovenia, May 2015.
[BLDG16] Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, and Christophe Garcia.

Polar sine based siamese neural network for gesture recognition. In Proceed-

ings of the International Conference on International Conference on Artificial
Neural Networks (ICANN), Barcelona, Spain, 2016.

[BLDG18] Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, and Christophe Garcia.

Class-balanced siamese neural networks. Neurocomputing, 273:47–56, 2018.
[BWCB11] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learn-

ing structured embeddings of knowledge bases. In Conference on Artificial

Intelligence, 2011.
[CBB19] Ushasi Chaudhuri, Biplab Banerjee, and Avik Bhattacharya. Siamese graph

convolutional network for content based remote sensing image retrieval. Com-

puter Vision and Image Understanding, 184:22 – 30, 2019.
[CCZH17a] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. Beyond

triplet loss: a deep quadruplet network for person re-identification. In Pro-
ceedings of the International Conference on Computer Vision and Pattern

Recognition (CVPR), 2017.

[CCZH17b] Weihua Chen, Xiaotang Chen, Jianguo Zhang, and Kaiqi Huang. A multi-
task deep network for person re-identification. In Proceedings of the AAAI

Conference on Artificial Intelligence, 2017.

[CDS+18] Yiqiang Chen, Stefan Duffner, Andrei Stoian, Jean-Yves Dufour, and Atilla
Baskurt. Similarity learning with listwise ranking for person re-identification.

In Proceedings of the International Conference on Image Processing (ICIP),

2018.
[CHL05] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-

tively, with application to face verification. In Proceedings of the International

Conference on Computer Vision and Pattern Recognition (CVPR), volume 1,
pages 539–546. IEEE, 2005.

[CHX+19] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric
learning to rank. In Proceedings of the International Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[CLDG19] Paul Compagnon, Gregoire Lefebvre, Stefan Duffner, and Christophe Garcia.
Routine modeling with time series metric learning. In Proceedings of the

International Conference on International Conference on Artificial Neural

Networks (ICANN), September 2019.
[CS11] Ke Chen and Ahmad Salman. Extracting Speaker-Specific Information with

a Regularized Siamese Deep Network. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pages 298–306, 2011.

[CSSB10] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning

of image similarity through ranking. Journal of Machine Learning Research,

11:1109–1135, 2010.
[DZL+18] Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou. Deep

adversarial metric learning. In Proceedings of the International Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

Similarity Metric Learning 21

[FJLF19] Xing Fan, Wei Jiang, Hao Luo, and Mengjuan Fei. SphereReID: Deep hy-

persphere manifold embedding for person re-identification. Journal of Visual
Communication and Image Representation, 60:51–58, 2019.

[GHDS18] Weifeng Ge, Weilin Huang, Dengke Dong, and Matthew R. Scott. Deep metric

learning with hierarchical triplet loss. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018.

[HBL17] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In Defense of the Triplet

Loss for Person Re-Identification. arXiv preprint arXiv:1703.07737, 2017.
[HCL06] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by

learning an invariant mapping. In Proceedings of the International Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1735–1742,

2006.
[HL11] N. V. Hieu and B. Li. Cosine similarity metric learning for face verification.

In Proceedings of the Asian Conference on Computer Vision (ACCV), pages

709–720. Springer, 2011.
[HLT14] J. Hu, J. Lu, and Y.-P. Tan. Discriminative deep metric learning for face

verification in the wild. In Proceedings of the International Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1875–1882, 2014.
[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural Networks, 2(5):359–366,

1989.
[KBR16] Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian repre-

sentation learning with oracle constraints. In International Conference on

Learning Representations (ICLR), 2016.
[KTS+12] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger. Non-

linear metric learning. In Proceedings of Advances in Neural Information

Processing Systems (NIPS), pages 2573–2581, 2012.
[LBOM12] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In

Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.
[LG13] Grégoire Lefebvre and Christophe Garcia. Learning a bag of features based

nonlinear metric for facial similarity. In Proceedings of the International Con-

ference on Advanced Video and Signal-Based Surveillance (AVSS), pages 238–

243, 2013.
[LGD+19] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli.

Graph matching networks for learning the similarity of graph structured ob-

jects. In Proceedings of the International Conference on Machine Learning
(ICML), 2019.

[LW09] Gilad Lerman and J. Tyler Whitehouse. On D-dimensional D-semimetrics

and simplex-type inequalities for high-dimensional sine functions. Journal of
Approximation Theory, 156(1):52–81, January 2009.

[MATL+17] Yair Movshovitz-Attias, Alexander Toshev, Thomas K. Leung, Sergey Ioffe,
and Saurabh Singh. No fuss distance metric learning using proxies. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), 2017.

[MBBS14] Jonathan Masci, Michael M. Bronstein, Alexander M. Bronstein, and Jurgen
Schmidhuber. Multimodal Similarity-Preserving Hashing. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 36(4):824–830, April 2014.
[MdRM17] Niall McLaughlin, Jesus Martinez del Rincon, and Paul C Miller. Person rei-

dentification using deep convnets with multitask learning. IEEE Transactions

on Circuits and Systems for Video Technology, 27(3):525–539, 2017.
[MLK16] Panagiotis Moutafis, Mengjun Leng, and Ioannis A Kakadiaris. An overview

and empirical comparison of distance metric learning methods. IEEE Trans-
actions on Cybernetics, 2016.

[MMLJ20] Weiqing Min, Shuhuan Mei, Zhuo Li, and Shuqiang Jiang. A two-stage triplet
network training framework for image retrieval. IEEE Transactions on Mul-

timedia, 2020.

22 Stefan Duffner, Christophe Garcia, Khalid Idrissi and Atilla Baskurt

[MT16] J. Mueller and A. Thyagarajan. Siamese recurrent architectures for learn-

ing sentence similarity. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2016.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted

Boltzmann Machines. In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 807–814, 2010.

[NVR16] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning Text Simi-

larity with Siamese Recurrent Networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 148–157, August 2016.

[QGCL08] A. M. Qamar, E. Gaussier, J. P. Chevallet, and J. H. Lim. Similarity learn-
ing for nearest neighbor classification. In Proceedings of the International

Conference on Data Mining (ICDM), pages 983–988. IEEE, 2008.
[QSS+19] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong Jin. SoftTriple

loss: Deep metric learning without triplet sampling. In Proceedings of the

International Conference on Computer Vision (ICCV), 2019.
[SCWT14] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representa-

tion by joint identification-verification. In Proceedings of Advances in Neural

Information Processing Systems (NIPS), pages 1988–1996, 2014.
[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. In Proceedings of the Inter-

national Conference on Computer Vision and Pattern Recognition (CVPR),

pages 815–823, 2015.
[SL20] Weijie Sheng and Xinde Li. Siamese denoising autoencoders for joints trajec-

tories reconstruction and robust gait recognition. Neurocomputing, 395:86 –

94, 2020.
[Soh16] Kihyuk Sohn. Improved deep metric learning with multi-class N-pair loss ob-

jective. In Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2016.

[SXJS16] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric

learning via lifted structured feature embedding. In Proceedings of the Inter-
national Conference on Computer Vision and Pattern Recognition (CVPR),

2016.
[SYZ+16] Hailin Shi, Yang Yang, Xiangyu Zhu, Shengcai Liao, Zhen Lei, Weishi Zheng,

and Stan Z. Li. Embedding deep metric for person re-identification: A study

against large variations. In Proceedings of the European Conference on Com-

puter Vision (ECCV), 2016.
[WBS06] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large

margin nearest neighbor classification. In Proceedings of Advances in Neural

Information Processing Systems (NIPS), volume 18, page 1473, 2006.
[WZL17] Chong Wang, Xue Zhang, and Xipeng Lan. How to train triplet networks with

100k identities? In Proceedings of the International Conference on Computer

Vision (ICCV), 2017.
[WZW+17] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep metric learning with

angular loss. In Proceedings of the International Conference on Computer
Vision (ICCV), 2017.

[XNJR03] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learn-

ing with application to clustering with side-information. In Proceedings of
Advances in Neural Information Processing Systems (NIPS), pages 521–528.

MIT; 1998, 2003.
[YCS19] Yao Yang, Haoran Chen, and Junming Shao. Triplet enhanced autoencoder:

Model-free discriminative network embedding. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2019.
[YLLL14] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Deep metric learning

for person re-identification. In Proceedings of International Conference on

Pattern Recognition (ICPR), pages 34–39, 2014.

Similarity Metric Learning 23

[YT19] Baosheng Yu and Dacheng Tao. Deep metric learning with tuplet margin loss.

In Proceedings of the International Conference on Computer Vision (ICCV),
2019.

[YTPM11] Wen-tau Yih, Kristina Toutanova, John C. Platt, and Christopher Meek.

Learning discriminative projections for text similarity measures. In Proceed-
ings of the Fifteenth Conference on Computational Natural Language Learn-

ing, pages 247–256. Association for Computational Linguistics, 2011.

[YWLY18] Mang Ye, Zheng Wang, Xiangyuan Lan, and Pong C. Yuen. Visible thermal
person re-identification via dual-constrained top-ranking. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), 2018.
[YYGT16] Jun Yu, Xiaokang Yang, Fei Gao, and Dacheng Tao. Deep multimodal distance

metric learning using click constraints for image ranking. IEEE Transactions

on Cybernetics, 2016.
[ZDI+18] Lilei Zheng, Stefan Duffner, Khalid Idrissi, Christophe Garcia, and Atilla

Baskurt. Pairwise identity verification via linear concentrative metric learning.

IEEE Transactions on Cybernetics, 48(1):324–335, 2018.
[ZIG+15] Lilei Zheng, Khalid Idrissi, Christophe Garcia, Stefan Duffner, and Atilla

Baskurt. Logistic similarity metric learning for face verification. In Pro-

ceedings of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, 2015.

