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Abstract: This paper tackles the real-time Railway Traffic Management Problem (rtRTMP). It
is the problem of finding an optimal choice for the train schedules and routes to reduce the delays
of trains due to conflicts. We present a new Constraint Based Scheduling (CBS) formulation of
the rtRTMP. This new formulation is based on the concept of conditional time-interval variables
provided in the Ilog CP-optimizer library. A time-interval variable is the time interval in which an
activity is executed, but it can also be a specific value “⊥” meaning the activity is non-executed.
The new formulation exploits this new kind of variables and specific constraint propagation
algorithms which contribute to the efficiency of the solution methods. The formulation has been
validated with experiments on a large set of instances. The experimental results demonstrate
the effectiveness of this new CBS model and show its good performance compared with the
state-of-the art RECIFE-MILP algorithm.
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1. INTRODUCTION

The design of railway services is a complex process in
which the planning of the schedule of trains and the
necessary resources can lead to conflicts at the operational
level. These conflicts are due to unforeseen perturbation
events. The main consequence of these conflicts is the
delays suffered by trains and, consequently, the increase
of passenger travel time. Delays due to conflicts between
two trains are called secondary delays. Railway operators
try to limit secondary delays inserting time allowances in
the timetable design phase. Nevertheless, time allowance
is not always sufficient to avoid conflicts or even their
propagation to other trains in a snowball (or domino)
effect. To limit this propagation, the dispatcher in charge
of traffic management can change the dwell times at
scheduled stops, the train orders at stations or junctions,
or the routes assignment. The problem of finding an
optimal choice for the train schedules and routes is defined
as the real-time Railway Traffic Management Problem
(rtRTMP) (Pellegrini et al., 2014). A rich literature exists
on formulations and methods for solving the rtRTMP, the
reader is referred to Lusby et al. (2011), Cacchiani et al.
(2014), Fang et al. (2015) for recent literature surveys.
Among more recent publications, we can also mention
Bettinelli et al. (2017) which proposes a very fast heuristic
solution algorithm but almost no information is provided
on the considered instances. Kumar et al. (2018) developed
a constraint programming (CP) model tested at India’s

largest train station, but rail routes are limited to two
unary resources. Van Thielen et al. (2019) also proposes
a heuristic which solves the problem in a very short
time and which can be used for very large and complex
networks. Josyula et al. (2020) shows that a mixed-integer
programming (MIP) algorithm outperforms an heuristic
for the five minimization objectives considered but the
heuristic is faster in some specific instances.

The surveys point out that integer programming (IP) and
MIP models are the most popular approaches along with
graph models, while CP ones are more seldom used. Nev-
ertheless, CP models have some undeniable merits which
make them interesting for this problem. In particular,
they are able to generate feasible solutions for some hard
problems in a short computation time. As an example,
to generate the cyclic timetables of the Dutch network
(Kroon et al., 2009), the method of the CADANS module
to solve the Periodic Event Scheduling Problem (PESP)
formulation is based on CP techniques (Schrijver and
Steenbeek, 1994). We can also mention that the PESP
instances of the whole inter city network of Germany and
the south and east subnetworks have been solved with a
SAT-solver (Großmann et al., 2012), which uses specific
CP techniques for variables with boolean domains.

For a given problem instance, CP models typically have
fewer variables and constraints than the other approaches,
and therefore require less memory for the instance formu-
lation. It is also worthwhile mentioning that despite the
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propagation to other trains in a snowball (or domino)
effect. To limit this propagation, the dispatcher in charge
of traffic management can change the dwell times at
scheduled stops, the train orders at stations or junctions,
or the routes assignment. The problem of finding an
optimal choice for the train schedules and routes is defined
as the real-time Railway Traffic Management Problem
(rtRTMP) (Pellegrini et al., 2014). A rich literature exists
on formulations and methods for solving the rtRTMP, the
reader is referred to Lusby et al. (2011), Cacchiani et al.
(2014), Fang et al. (2015) for recent literature surveys.
Among more recent publications, we can also mention
Bettinelli et al. (2017) which proposes a very fast heuristic
solution algorithm but almost no information is provided
on the considered instances. Kumar et al. (2018) developed
a constraint programming (CP) model tested at India’s

largest train station, but rail routes are limited to two
unary resources. Van Thielen et al. (2019) also proposes
a heuristic which solves the problem in a very short
time and which can be used for very large and complex
networks. Josyula et al. (2020) shows that a mixed-integer
programming (MIP) algorithm outperforms an heuristic
for the five minimization objectives considered but the
heuristic is faster in some specific instances.

The surveys point out that integer programming (IP) and
MIP models are the most popular approaches along with
graph models, while CP ones are more seldom used. Nev-
ertheless, CP models have some undeniable merits which
make them interesting for this problem. In particular,
they are able to generate feasible solutions for some hard
problems in a short computation time. As an example,
to generate the cyclic timetables of the Dutch network
(Kroon et al., 2009), the method of the CADANS module
to solve the Periodic Event Scheduling Problem (PESP)
formulation is based on CP techniques (Schrijver and
Steenbeek, 1994). We can also mention that the PESP
instances of the whole inter city network of Germany and
the south and east subnetworks have been solved with a
SAT-solver (Großmann et al., 2012), which uses specific
CP techniques for variables with boolean domains.

For a given problem instance, CP models typically have
fewer variables and constraints than the other approaches,
and therefore require less memory for the instance formu-
lation. It is also worthwhile mentioning that despite the
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1. INTRODUCTION

The design of railway services is a complex process in
which the planning of the schedule of trains and the
necessary resources can lead to conflicts at the operational
level. These conflicts are due to unforeseen perturbation
events. The main consequence of these conflicts is the
delays suffered by trains and, consequently, the increase
of passenger travel time. Delays due to conflicts between
two trains are called secondary delays. Railway operators
try to limit secondary delays inserting time allowances in
the timetable design phase. Nevertheless, time allowance
is not always sufficient to avoid conflicts or even their
propagation to other trains in a snowball (or domino)
effect. To limit this propagation, the dispatcher in charge
of traffic management can change the dwell times at
scheduled stops, the train orders at stations or junctions,
or the routes assignment. The problem of finding an
optimal choice for the train schedules and routes is defined
as the real-time Railway Traffic Management Problem
(rtRTMP) (Pellegrini et al., 2014). A rich literature exists
on formulations and methods for solving the rtRTMP, the
reader is referred to Lusby et al. (2011), Cacchiani et al.
(2014), Fang et al. (2015) for recent literature surveys.
Among more recent publications, we can also mention
Bettinelli et al. (2017) which proposes a very fast heuristic
solution algorithm but almost no information is provided
on the considered instances. Kumar et al. (2018) developed
a constraint programming (CP) model tested at India’s

largest train station, but rail routes are limited to two
unary resources. Van Thielen et al. (2019) also proposes
a heuristic which solves the problem in a very short
time and which can be used for very large and complex
networks. Josyula et al. (2020) shows that a mixed-integer
programming (MIP) algorithm outperforms an heuristic
for the five minimization objectives considered but the
heuristic is faster in some specific instances.

The surveys point out that integer programming (IP) and
MIP models are the most popular approaches along with
graph models, while CP ones are more seldom used. Nev-
ertheless, CP models have some undeniable merits which
make them interesting for this problem. In particular,
they are able to generate feasible solutions for some hard
problems in a short computation time. As an example,
to generate the cyclic timetables of the Dutch network
(Kroon et al., 2009), the method of the CADANS module
to solve the Periodic Event Scheduling Problem (PESP)
formulation is based on CP techniques (Schrijver and
Steenbeek, 1994). We can also mention that the PESP
instances of the whole inter city network of Germany and
the south and east subnetworks have been solved with a
SAT-solver (Großmann et al., 2012), which uses specific
CP techniques for variables with boolean domains.

For a given problem instance, CP models typically have
fewer variables and constraints than the other approaches,
and therefore require less memory for the instance formu-
lation. It is also worthwhile mentioning that despite the
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diversity of models and solutions methods, very few pub-
lications compare and analyse their relative performances
and advantages.

Since our first proposal of a CP model in Rodriguez (2007),
named RECIFE-CP hereinafter, new features of CP and
Constraint Based Scheduling (CBS) have been developed.
CBS extends CP to get stronger propagation algorithms
for specific constraints to solve scheduling problems. One
feature is the ability to model optional activities along
with powerful propagation algorithms (Viĺım et al., 2005).
In addition, exact algorithms that use hybrid methods
(i.e., CP and Linear programming) and provide optimality
proofs have been developped (Laborie and Rogerie, 2016).
In this research, we aim to deeply investigate some CP
and CBS modelling possibilities in the light of the new
features developed in the last decade. Moreover, we initiate
a comparison of the performance achievable by a CBS
model with the ones of other algorithms.

To do so, in this paper, we present a new CBS model based
on conditional time-interval variables of the rtRTMP,
RECIFE-CPI. This formulation has been validated with
experiments on a large set of instances. The performances
of this new CBS model has been compared with the one
of the state-of-the art RECIFE-MILP heuristic (Pellegrini
et al., 2014).

2. CBS MODEL

2.1 Scheduling theory

The basic idea of the CBS model of the rtRTMP is that a
train passing through a control area is a job. According to
scheduling theory, the concept of job is a set of activities
linked by a set of temporal constraints. The rtRTMP can
be viewed as a joint problem of allocating resources (the
infrastructure broken down into track sections) to some
activities sequences (the movement of a train).

In a CBS model, temporal constraints connect the tempo-
ral variables concerning activities (e.g., start, end or dura-
tion variables) according to principles which are specific to
each application. The resource constraints are linked to the
use and sharing of the resources by activities. Resources
are divided into consumable or renewable resources, with
the latter being either of limited capacity or with limited
states. By sharing resources, indirect links between the
temporal activity variables are generated by capacity or
state resource constraints.

This modelling approach for train scheduling was first
proposed by Spzigel (1973), who formulated the train
scheduling problem on a single track line as a job-shop
scheduling problem. Trains are jobs and their traveling
through the single track connecting consecutive stations
are activities.

2.2 Microscroscopic model of the rtRTMP

We consider a microscroscopic model of the rtRTMP
where train movements are controlled with a fixed block
signalling system. It decomposes a train journey into
a sequence of activities. Each activity is an elementary
movement of the train through a track detection section

Fig. 1. Train movement as a sequence of activities.

(tds), as illustrated in Figure 1 (Rodriguez, 2007). A track
detection section allows the detection of the occupation
of a part of the railway infrastructure by a train. Tds’s
correspond in many railway infrastructures to electric
devices named track circuits and are part of the block
signalling system that ensure the safe movements of trains.

During normal operation, most of the time only one train
shall be detected by a tds at any point in time. Hence,
tds’s are modelled as unary resources. A unary resource is
a resource that can be used by at most one activity at any
point in time. However, an exception occurs if a train set
is split to operate two trains or, conversely, two train sets
are joined to operate one train. This exception must be
taken into account for the tds’s corresponding to station
platforms where split and join operations are performed.

2.3 Temporal constraints

The temporal constraints between activities allow model-
ing main characteristics of the block signalling system 1

such as: the length of trains, the number of signalling
aspects, the watching time (e.g., running time of the sight
distance), the sectional route release of the interlocking
system.

A brief overview of the temporal constraints between
activities is illustrated by a time over distance diagram
in Figure 2. Along the horizontal axis of this diagram,
we have the sequence of tds’s that the “blue” train runs
through. The line is broken down into blocks that are
bounded by signals providing driving information to the
train driver. A block can have one or more tds’s depending
on the configuration of the line. In the diagram, blue
dashed lines report the position of the head and the tail
of the train.

In RECIFE-CPI, we define two activities for each tds. The
first one is the running of the head of the train through
the tds. The sequence of the head running activities are
shown with filled blue rectangles in Figure 2. Each activity
is linked by a “start at end” constraint with the precedent
one. The second activity associated to a tds includes
the first one and is extended to contain the reservation
time to consider the length of the train (“clearing time”
in Figure 2) and comply with the blocking time theory
constraints (Hansen, 2008). This second type of activities
are shown with striped rectangles in Figure 2 for the
case of a 3-aspect block signalling sytem. All tds’s of a
block must be reserved when the train reaches the sight
distance point of the previous block. When there are
switches within a block, the existence of multiple tds’s
allows the interlocking system to release and set as soon
1 Additional characteristics are ommitted , e.g., time for clearing
signal or release time, to simplify the presentation. For a complete
list we refer the reader to Pellegrini et al. (2014)

Fig. 2. Head running activity and tds blocking time
reservation

as possible the sequence of incompatible routes and then
safely optimise traffic. The sectional route release of the
interlocking system is modelled with separated activities
for each tds of a block section (c.f. Figure 2).

In the previous RECIFE-CP (Rodriguez, 2007), we con-
sider only one activity for each tds and the blocking time
theory constraints are expressed according the start and
end of these activities.

Mascis and Pacciarelli (2002) showed that these temporal
constraints have the same properties as the ones of a
job-shop scheduling problem with blocking and no-wait
constraints of the classic scheduling theory.

2.4 Conditional time-interval variables

In this section, we briefly introduce the concept of con-
ditional time-interval variables. In many works in the
scheduling field, the main decisions are assigning resources
to activities and scheduling activities. However, in indus-
trial applications, it can be also necessary to consider the
choice of specific activities that will be executed in the
final schedule, for example when there are alternative pro-
duction processes in response to an order. This translates
into the introduction of optional activities.

Viĺım et al. (2005) introduced a tree data structure and
a specific constraint propagation algorithm to model op-
tional activities. This was later extended by the intro-
duction of conditional time-interval variables in Ilog CP-
optimizer library (Laborie and Rogerie, 2008).

A conditional time-interval variable (or time-interval vari-
able for the sake of simplicity), noted a, represents a period
of interest in a schedule. In many cases, as in the problem
modelled here, a time-interval variable is the period in
which an activity is executed.

Let ⊥ be a value indicating that the period of interest is
not present in the solution schedule i.e., the corresponding
activity is non-executed. The domain of a time-interval
variable is a subset of {⊥}∪{[s, e)|s, e ∈ Z, s � e}. Like any
other variable in a constraint satisfaction problem, a time-
interval variable is said to be fixed if its domain is reduced
to a singleton. Let a denote a fixed time-interval variable,
then a =⊥ means that the activity is non-executed (not
present in the solution schedule); a = [s, e) means that the

activity is executed (present in the solution schedule). The
values s and e are respectively the start and end time of the
activity. A time-interval variable is said to be non-executed
if it is not considered by any constraint or expression it is
involved in, said in a different way, it is as it was deleted.
An execution or presence status noted pres(a) is equal to
1 if the activity is executed and 0 if it is non-executed.

The conditional time-interval variables are linked by two
kinds of constraints : the logical constraints and the tem-
poral constraints.

The logical constraints link the execution status of the
time-interval variables. These constraints are aggregated
in a 2-SAT (2-satisfiability) constraint network. For exam-
ple, the execution status of the time-interval variables for
two alternative tds’s that correspond to two route choices
will be linked by a clause with an ∨ operator.

The temporal constraints state the different temporal
positions of the start and end events of the time-interval
variables, i.e., “start before start” or “start at end”. These
constraints are aggregated in a Simple Temporal Network
(STN) extended to the presence statuses. The temporal
constraints are “hybrid” in the sense that they combine
the logical aspect of activities (i.e., “executed” or “non-
executed” ) and the temporal aspect (i.e., it represents an
activity with a start, end and duration).

Beside the expressiveness of the time-interval variables,
the 2-SAT and STN constraint networks ensure a strong
constraint propagation and therefore an efficient search for
the optimization engine.

2.5 Optional activities for alternative route choices

For each route choice we define one specific sequence of op-
tional head running activities. It should be noted that each
blocking time reservation activity covers a head running
activity, thus there is also a sequence of optional blocking
time reservation activities “enveloping” the sequence of
head running activities.

To illustrate the model, let us first consider the example
of a train that has two alternative routes r1 and r2 in
Figure 3. We have two sequences of activities for this
example. A sequence with five activities for r1 and a
sequence with six activities for r2. To reduce the number
of variables and fully exploit the constraint propagation
algorithm, the activities of two routes that have the same
tds sequence with same running times are merged. After
merging the equivalent activities, we obtain a graph of
activities such that a path from the first to the last
tds activity gives a sequence of activities for r1 and a
different one for r2. In the example, the activities for
the run through tds1 and tds7 are merged as they have
the same characteristics for r1 and r2 as illustrated in
Figure 4. Conversely, for the runs through tds2 and tds6,
two activities are kept separated because the minimal
running time for r1 is different from the one for r2. If r1 is
chosen, the activities ar2,tds2 , ar2,tds3 , ar2,tds5 , ar2,tds6 are
“non-executed” and all related constraints and variables
are useless. Similarly if r2 is chosen, ar1,tds2 , ar1,tds4 ,
ar1,tds6 are non-executed. When all route assignments
are done, we have to get only one sequence of executed
activities for each train coherent with the route choice.
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as possible the sequence of incompatible routes and then
safely optimise traffic. The sectional route release of the
interlocking system is modelled with separated activities
for each tds of a block section (c.f. Figure 2).

In the previous RECIFE-CP (Rodriguez, 2007), we con-
sider only one activity for each tds and the blocking time
theory constraints are expressed according the start and
end of these activities.

Mascis and Pacciarelli (2002) showed that these temporal
constraints have the same properties as the ones of a
job-shop scheduling problem with blocking and no-wait
constraints of the classic scheduling theory.

2.4 Conditional time-interval variables

In this section, we briefly introduce the concept of con-
ditional time-interval variables. In many works in the
scheduling field, the main decisions are assigning resources
to activities and scheduling activities. However, in indus-
trial applications, it can be also necessary to consider the
choice of specific activities that will be executed in the
final schedule, for example when there are alternative pro-
duction processes in response to an order. This translates
into the introduction of optional activities.

Viĺım et al. (2005) introduced a tree data structure and
a specific constraint propagation algorithm to model op-
tional activities. This was later extended by the intro-
duction of conditional time-interval variables in Ilog CP-
optimizer library (Laborie and Rogerie, 2008).

A conditional time-interval variable (or time-interval vari-
able for the sake of simplicity), noted a, represents a period
of interest in a schedule. In many cases, as in the problem
modelled here, a time-interval variable is the period in
which an activity is executed.

Let ⊥ be a value indicating that the period of interest is
not present in the solution schedule i.e., the corresponding
activity is non-executed. The domain of a time-interval
variable is a subset of {⊥}∪{[s, e)|s, e ∈ Z, s � e}. Like any
other variable in a constraint satisfaction problem, a time-
interval variable is said to be fixed if its domain is reduced
to a singleton. Let a denote a fixed time-interval variable,
then a =⊥ means that the activity is non-executed (not
present in the solution schedule); a = [s, e) means that the

activity is executed (present in the solution schedule). The
values s and e are respectively the start and end time of the
activity. A time-interval variable is said to be non-executed
if it is not considered by any constraint or expression it is
involved in, said in a different way, it is as it was deleted.
An execution or presence status noted pres(a) is equal to
1 if the activity is executed and 0 if it is non-executed.

The conditional time-interval variables are linked by two
kinds of constraints : the logical constraints and the tem-
poral constraints.

The logical constraints link the execution status of the
time-interval variables. These constraints are aggregated
in a 2-SAT (2-satisfiability) constraint network. For exam-
ple, the execution status of the time-interval variables for
two alternative tds’s that correspond to two route choices
will be linked by a clause with an ∨ operator.

The temporal constraints state the different temporal
positions of the start and end events of the time-interval
variables, i.e., “start before start” or “start at end”. These
constraints are aggregated in a Simple Temporal Network
(STN) extended to the presence statuses. The temporal
constraints are “hybrid” in the sense that they combine
the logical aspect of activities (i.e., “executed” or “non-
executed” ) and the temporal aspect (i.e., it represents an
activity with a start, end and duration).

Beside the expressiveness of the time-interval variables,
the 2-SAT and STN constraint networks ensure a strong
constraint propagation and therefore an efficient search for
the optimization engine.

2.5 Optional activities for alternative route choices

For each route choice we define one specific sequence of op-
tional head running activities. It should be noted that each
blocking time reservation activity covers a head running
activity, thus there is also a sequence of optional blocking
time reservation activities “enveloping” the sequence of
head running activities.

To illustrate the model, let us first consider the example
of a train that has two alternative routes r1 and r2 in
Figure 3. We have two sequences of activities for this
example. A sequence with five activities for r1 and a
sequence with six activities for r2. To reduce the number
of variables and fully exploit the constraint propagation
algorithm, the activities of two routes that have the same
tds sequence with same running times are merged. After
merging the equivalent activities, we obtain a graph of
activities such that a path from the first to the last
tds activity gives a sequence of activities for r1 and a
different one for r2. In the example, the activities for
the run through tds1 and tds7 are merged as they have
the same characteristics for r1 and r2 as illustrated in
Figure 4. Conversely, for the runs through tds2 and tds6,
two activities are kept separated because the minimal
running time for r1 is different from the one for r2. If r1 is
chosen, the activities ar2,tds2 , ar2,tds3 , ar2,tds5 , ar2,tds6 are
“non-executed” and all related constraints and variables
are useless. Similarly if r2 is chosen, ar1,tds2 , ar1,tds4 ,
ar1,tds6 are non-executed. When all route assignments
are done, we have to get only one sequence of executed
activities for each train coherent with the route choice.
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Fig. 3. Example of tds route sequences

tds sequence r1 (tds1, tds2, tds4, tds6, tds7)

graph of head
running activities

ar1,r2atds1

ar1atds2
ar1atds4

ar1atds6

ar2atds2
ar2atds3

ar2atds5
ar2atds6

ar1,r2atds7

tds sequence r2 (tds1, tds2, tds3 tds5, tds6, tds7)

Fig. 4. Sequences of activities and tds’s for the two routes
of Figure 3

Fig. 5. Example of tds sequences to illustrate group con-
straints

It can be noted that the RECIFE-CP approach for the re-
routing decisions is very different : a train run is modelled
with only one sequence of activities whatever the chosen
route. To do so, “dummy” tds’s are introduced and the
blocking time constraints result in a tricky formulation
(Rodriguez, 2007).

2.6 Global constraints on groups of activities

To improve the constraint propagation and hence the per-
formance of the solution method, we create a hierarchical
model with new global constraints on groups of activities.
These global constraints allow the encapsulation of a group
of activities into one high-level activity. Derived high-level
activities can be used with any temporal constraint in the
same way as low-level ones.

Fig. 6. Graph of activities for the example of Figure 5

Two group constraints are used: span(aG, a1, . . . , an)
states that activity aG, if executed, spans over all executed

activities of the set {a1, . . . , an}; and the second group
alternative(aG, a1, . . . , an) states that if activity aG is
executed then exactly only one of activities {a1, . . . , an} is
executed and aG starts and ends together with this chosen
one. Activity aG is non-executed if and only if none of
activities {a1, . . . , an} is executed (Laborie and Rogerie,
2016).

To illustrate the definition of high-level activities and the
group constraints, let us consider the example depicted
in Figure 5. To simplify the presentation, we consider
that the elementary runs through a tds have the same
characteristics whatever the route considered. Therefore
all the activities corresponding to runs through a common
tds are merged into one activity which is not indexed by
routes. The lower part of Figure 6 shows the graph of head
running activities. Remark that contrary to the example of
Figure 3 not all paths of the precedence graph correspond
to a tds sequence activities for a route. The activities
of each group are shown with red dotted shapes linked
with a red dotted line to the corresponding group activity.
The links are named with the group constraint used. The
first hierarchical activity aG1

is linked by an alternative
constraint to the set of activities {atds2 , atds3} to state
the precedence constraint atds1 ≺ aG1

. Group G2 =
{atds4 ,atds5 , atds6} is an example in which the activity aG2

cannot be linked with an alternative constraint because
atds6 precedes atds5 thus the activities ofG2 are linked with
a span constraint to aG2

. This span constraint with aG2

allows to state the precedence constraint aG1
≺ aG2

. All in
all, the group activities of this example add six high-level
activities and five precedence constraints (red arrows).

3. FORMULATION

For the formulation, we use a notation close the one intro-
duced by Pellegrini et al. (2014) and then as follows:
T,R,TDS set of trains, routes and tds’s, respec-

tively,
Rt ⊆ R set of routes that can be used by train t,
TDS r set of tds’s composing route r,
tyt type corresponding to train t (indicating

characteristics as weight, length, engine
power, etc.),

TDS t ⊆
TDS

set of tds’s that can be used by train t
(TDS t =

⋃
r∈Rt

TDS r),
PL ⊂ TDS set of tds’s corresponding to platforms (if

the control area includes a station),
PLt,t′ ⊂ PL set of tds’s corresponding to the possible

departure platforms of a train t′ which
uses the same rolling stock as train t and
results from the turnaround of train t,

bsr,tds block section including track detection
section tds along route r,

pr,tds tds’s preceding tds along route r,
rt ty,r,tds running time of tds along route r for a

train of type ty ,
ct ty,r,tds clearing time of tds along route r for a

train of type ty ,
forbs , relbs formation and release time for block sec-

tion bs, respectively,

init t earliest time at which train t can be oper-
ated: either expected arrival in the control
area or expected departure from a plat-
form within the control area,

exit t earliest time at which train t can reach its
destination given init t, the route assigned
to t in the timetable and the intermediate
stops,

i(t, t′) indicator function: 1 if trains t and t′ use
the same rolling stock and t′ results from
the turnaround of train t, 0 otherwise,

mst,t′ minimum separation between the arrival of
a train t and the departure of another train
t′ using the same rolling stock,

St, TDSt,s set of stations where train t has a sched-
uled stop and set of tds’s that can be used
by t for stopping at station s,

arr t,s scheduled arrival times for train t at sta-
tion s.

3.1 Decision variables

We define the following decision time-interval variables :
for all triplets of t ∈ T , r ∈ Rt and tds ∈ TDS r:
at,rtds,h : optional time-interval variable which represents

the running time activity of t’s head through tds
along r,

at,rtds,b : optional time-interval variable which represents
the blocking time reservation activity of tds for t
along r,

for all t ∈ T :
Darr

t , Dexit
t :delay suffered by train t at station arrivals

(cumulated) and at the exit from the control
area.

Moreover, we define binary variables for the route choices:
for all pairs of train t ∈ T and route r ∈ Rt:

xt,r =

{
1 if t uses r,
0 otherwise.;

The objective is the minimization of the total delays
suffered by trains at their departure from stations and exit
from the control area:

min
∑
t∈T

(Darr
t +Dexit

t ) (1)

To define constraints, let us consider the following addi-
tional notation :
s(a), e(a),
d(a), pres(a)

start, end, duration and presence
status for time-interval variable a,
respectively,

first(at,rtds,h),

last(at,rtds,h)

boolean functions that return true
if at,rtds,h is the first, respectively the
last, head running activity of train
t through the tds sequence for route
r,

{(Gt
prec,

xxxxGt
succ)}

set of pairs of groups of tds’s of train t
Gt

prec ∈ P(TDSt)
2 , Gt

succ ∈ P(TDSt)
with the folllowing property : each head
running activity through a tds ∈ Gt

prec

(resp. tds ∈ Gt
succ) precedes (resp. fol-

lows) at least one head running activity
through a tds ∈ Gt

succ (resp. tds ∈
Gt

prec),
prec(G) boolean function that returns true if

∃(tds, tds′) ∈ G such that the head
running activities through tds and tds′

are linked with a precedence constraint,
and false otherwise.

The constraints are :

∑
r∈Rt

xt,r = 1∀t ∈ T, (2)

if(xt,r = 1) ⇒ pres(at,rtds,h) = 1

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(3)

if(xt,r = 1) ⇒ pres(at,rtds,b) = 1

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(4)

s(at,rtds,h) � initt

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(5)

d(at,rtds,h) � rt ty,r,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(6)

s(at,rtds,h) = e(at,rpr,tds ,h
)

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(7)

e(at,rtds,b) = e(at,rtds,h) + ct ty,r,tds + relbsr,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(8)

s(at,rtds,b) = at,rref r,tds ,h
− for bsr,ref r,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(9)

alternative(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
),

G = {at,r1tds1,h
, . . . , at,rntdsn,h

}
∀t ∈ T,G ∈ (Gt

prec ∪Gt
succ) : ¬prec(G)

(10)

span(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
),

G = {at,r1tds1,h
, . . . , at,rntdsn,h

}
∀t ∈ T,G ∈ (Gt

prec ∪Gt
succ) : prec(G)

(11)

e(atG) = s(atG′)

∀t ∈ T, (G,G′) ∈ {(Gt
prec, G

t
succ)}

(12)

pres(at
′,r′

tds,h) = pres(at,rtds,h)

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ :

i(t, t′) = 1 ∧ tds ∈ PLt,t′

(13)

2 We use the notation P(S) to denote the power set of a set S .



	 Grégory Marlière  et al. / IFAC PapersOnLine 54-2 (2021) 187–194	 191

init t earliest time at which train t can be oper-
ated: either expected arrival in the control
area or expected departure from a plat-
form within the control area,

exit t earliest time at which train t can reach its
destination given init t, the route assigned
to t in the timetable and the intermediate
stops,

i(t, t′) indicator function: 1 if trains t and t′ use
the same rolling stock and t′ results from
the turnaround of train t, 0 otherwise,

mst,t′ minimum separation between the arrival of
a train t and the departure of another train
t′ using the same rolling stock,

St, TDSt,s set of stations where train t has a sched-
uled stop and set of tds’s that can be used
by t for stopping at station s,

arr t,s scheduled arrival times for train t at sta-
tion s.

3.1 Decision variables

We define the following decision time-interval variables :
for all triplets of t ∈ T , r ∈ Rt and tds ∈ TDS r:
at,rtds,h : optional time-interval variable which represents

the running time activity of t’s head through tds
along r,

at,rtds,b : optional time-interval variable which represents
the blocking time reservation activity of tds for t
along r,

for all t ∈ T :
Darr

t , Dexit
t :delay suffered by train t at station arrivals

(cumulated) and at the exit from the control
area.

Moreover, we define binary variables for the route choices:
for all pairs of train t ∈ T and route r ∈ Rt:

xt,r =

{
1 if t uses r,
0 otherwise.;

The objective is the minimization of the total delays
suffered by trains at their departure from stations and exit
from the control area:

min
∑
t∈T

(Darr
t +Dexit

t ) (1)

To define constraints, let us consider the following addi-
tional notation :
s(a), e(a),
d(a), pres(a)

start, end, duration and presence
status for time-interval variable a,
respectively,

first(at,rtds,h),

last(at,rtds,h)

boolean functions that return true
if at,rtds,h is the first, respectively the
last, head running activity of train
t through the tds sequence for route
r,

{(Gt
prec,

xxxxGt
succ)}

set of pairs of groups of tds’s of train t
Gt

prec ∈ P(TDSt)
2 , Gt

succ ∈ P(TDSt)
with the folllowing property : each head
running activity through a tds ∈ Gt

prec

(resp. tds ∈ Gt
succ) precedes (resp. fol-

lows) at least one head running activity
through a tds ∈ Gt

succ (resp. tds ∈
Gt

prec),
prec(G) boolean function that returns true if

∃(tds, tds′) ∈ G such that the head
running activities through tds and tds′

are linked with a precedence constraint,
and false otherwise.

The constraints are :

∑
r∈Rt

xt,r = 1∀t ∈ T, (2)

if(xt,r = 1) ⇒ pres(at,rtds,h) = 1

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(3)

if(xt,r = 1) ⇒ pres(at,rtds,b) = 1

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(4)

s(at,rtds,h) � initt

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(5)

d(at,rtds,h) � rt ty,r,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(6)

s(at,rtds,h) = e(at,rpr,tds ,h
)

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(7)

e(at,rtds,b) = e(at,rtds,h) + ct ty,r,tds + relbsr,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(8)

s(at,rtds,b) = at,rref r,tds ,h
− for bsr,ref r,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r,
(9)

alternative(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
),

G = {at,r1tds1,h
, . . . , at,rntdsn,h

}
∀t ∈ T,G ∈ (Gt

prec ∪Gt
succ) : ¬prec(G)

(10)

span(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
),

G = {at,r1tds1,h
, . . . , at,rntdsn,h

}
∀t ∈ T,G ∈ (Gt

prec ∪Gt
succ) : prec(G)

(11)

e(atG) = s(atG′)

∀t ∈ T, (G,G′) ∈ {(Gt
prec, G

t
succ)}

(12)

pres(at
′,r′

tds,h) = pres(at,rtds,h)

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ :

i(t, t′) = 1 ∧ tds ∈ PLt,t′

(13)

2 We use the notation P(S) to denote the power set of a set S .
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s(at
′,r′

tds,h) � e(at,rtds,h) +mst,t′

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ : i(t, t

′) = 1 ∧
last(at,rtds,h) ∧ first(at

′,r′

tds,h) ∧ tds ∈ PLt,t′

(14)

s(at
′,r′

tds,b) = e(at,rtds,b)

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ : i(t, t

′) = 1 ∧
last(at,rtds,h) ∧ first(at

′,r′

tds,h) ∧ tds ∈ PLt,t′

(15)

noOverlap(at,rtds,b)∀t ∈ T, r ∈ Rt : tds ∈ TDS (16)

Dexit
t =

∑
r∈Rt,tds∈TDSr:

last(at,r
tds,h

)

e(at,rtds,h)− exit t∀t ∈ T (17)

Darr
t =

∑
r∈Rt

∑
s∈St,

tds∈TDSt,s

(s(at,rtds,h) + rt ty,r,tds −

dept,sxt,r)∀t ∈ T

(18)

Constraints (2) ensure that exactly one route is used by
each train. Constraints (3) and (4) link the choice of a
route r and the presence of the corresponding activities,
i.e., if route r is chosen all its activities must be executed
(be present in the solution schedule). Constraints (5) state
that trains cannot be operated earlier than initt. Con-
straints (6) impose that the duration of the running time
head activities are greater than the running time of track
detection section tds along route r for a train of type
ty. Constraints (7) impose a precedence relation between
running time head activities of a train. For Constraints (8),
the blocking time reservation lasts after the tail of the
train clears tds, which corresponds to the end of the
head running plus a clearing time for the type of train
ty plus the block section release time. Constraints (9)
state that the blocking time reservation activity is syn-
chronized with the time the head of the train is detected
by the reference track detection section according to the
interlocking system ref r,tds minus the route formation
time. Constraints (10) and (11) link a group of activ-

ities G = {at,r1tds1,h
, . . . , at,rntdsn,h

} into a high-level activity

atG according to the presence of precedence constraints
between low-level activities. High-level activities are linked
to low-level activities by span or alternative constraints.
Constraints (12) state the precedence constraints between
high-level activities. Constraints (13) ensure local coher-
ence: trains using the same rolling stock must use the
same platform when they perform the turnaround. Con-
straints (14) ensure that a minimum separation time must
separate the arrival and departure of trains using the same
rolling stock. Constraints (15) ensure the tds where the
turnaround takes place is utilized for the whole time be-
tween t′’s arrival and ts departure. Thus, the first activity
blocking time reservation of t′ starts when the last activity
blocking time reservation of t ends. Constraints (16) ensure
that the blocking time activities of a shared tds do not
overlap. Constaints (17) and (18) state that the values of
the delays Dexit

t and Darr
t of a train t is the difference

between the actual and the scheduled times at the exit
of the infrastructure, respectively at the arrival at stop
stations.

4. SOLUTION METHOD

The solution method we consider is the one implemented in
Ilog CP-optimizer library. It uses the algorithm of Viĺım
et al. (2015) for scheduling problems which combines a
Failure-Directed Search (FDS) with Self-Adapting Large
Neighborhood Search (SA-LNS).

First, SA-LNS (Laborie and Godard, 2007) aims to find
a good quality solution quickly. It is an iterative improve-
ment method with following steps:

(1) Start with an existing solution (heuristic or CP
search)

(2) Select a Large Neighborhood (LN) and a Completion
Strategy (CS)

(3) Apply LN to relax part of the solution and fix the
rest

(4) Apply CS to improve solution using a limited search
tree

(5) If time limit is reached then stop else go to 2.

SA-LNS uses the following components to improve the
search:

• Constraint propagation algorithms for the logical and
the precedence constraints networks (Viĺım et al.,
2005),

• Enhanced selection of LN and CS: machine learning
techniques to portfolios of LN and CS that quickly
converge on good solutions (Laborie and Godard,
2007),

• Temporal Linear Relaxation: use CPLEX’s LP solver
for a solution to a relaxed version of the problem to
guide heuristics (Laborie and Rogerie, 2016).

FDS is activated when the search space seems to be small
enough, and SA-LNS has difficulties improving the current
solution. It builds a complete search tree and it drives the
search into conflicts in order to prove that the current
branch is infeasible. It uses a restart scheme with nogoods.

5. EXPERIMENTS

5.1 Case-studies

In the experimental analysis, we test our formulation on
perturbations of real instances representing four French
control areas with different characteristics: a junction
with mixed traffic, a line with intermediate stops, and
two passenger terminal stations with high density traffic.
Namely, they cover the Gonesse junction north of Paris
(# 1), the line between Mantes-La-Jolie and Rouen-Rive-
Droite (# 2) and the Lille-Flandres (# 3) and Paris–Saint-
Lazare (# 4) stations. Their characteristics are detailed in
Table 1 and their layout is in Appendix A. Notes that
the second line of Table 1 gives the values of |R| and the
eighth line gives the bounds of the number of routes per
train (bounds of |Rt|).

5.2 Experimental settings

The experiments involve RECIFE-CPI (named CPI) and
RECIFE-MILP (named MILP) in order to compare their
performance in various cases.

Both algorithms are configured to perform a two-step
approach:

• in the first step, a maximum of 10 seconds CPU
wall-clock time is allocated for “fixed-route” solution,
which means that the route fixed in the timetable is
used for each train,

• in the second step, the best solution of the previous
step is used for initializing the “all-route” resolution,
which means that all possible routes are used.

A limit of 180s CPU wall-clock time is imposed for the
solution of these two steps on an Intel(R) Xeon(R) CPU
E5-2643 v4 @ 3.40GHz, 24 cores, 128go RAM.

5.3 Perturbation scenarios

For each of the 4 control areas, we generate 30 perturbation
scenarios: starting from the original timetable, 20% of
randomly selected trains are delayed with a value in the
interval between 5 and 15 minutes.

To cover a variety of instances difficulty, for each perturba-
tion scenario, we select 12 morning time horizons starting
at 8 am with duration from 10 minutes to 120 minutes
with 10 minute step. Therefore we consider 360 instances
for each case study.

In total, 1440 problem instances are solved by each algo-
rithm.

6. RESULTS

Figure 7 allows a comparison of the solution quality given
by CPI and MILP on each case study. The x-axis repre-
sents the horizon size in minutes. The boxplots show the
distribution of the differences of objective values between
the two algorithms. Observing these distributions, we can
analyze the algorithms’ performance. For cases studies #1
and #2, the boxplots indicate that the objective values
of both algorithms are very close : the median of the
differences is close to zero. For cases study #3, the perfor-
mance of both algorithms are also very close for instances
until 70 minutes horizon, then CPI outperforms MILP.
Conversely, for case study #4, both algorithms are also
very close for instances until 80 minutes horizon, then
MILP outperforms CPI. Further analysis shows that, for
difficult instances (case studies #3 and #4), MILP is not
able to provide a solution during the all-routes solution

Table 1. Case-studies characteristics

Junction Line Stations
# 1 # 2 # 3 # 4
Gonesse MLJ-Rouen Lille StLazare

Infrastructure

Length (km) 15 80 7 4.5
Routes 37 187 2409 84
Blocks 79 157 829 197
Track Circuits 89 236 299 212
Stations 0 13 1 4
Platforms 0 33 17 51

Timetable

Trains/Day 336 237 589 1212
Routes/Train 5-13 1-24 1-71 1-9
Turnarounds 0 6 298 606

phase. Therefore, the solution initially found during the
fixed-route search phase is returned. In these instances,
CPI provides poor solutions during the fixed-route search
phase but is able to improve them during the all-routes
solution phase. However, the improvement is not sufficient
for it to outperform MILP.

Fig. 7. Experimental results : Best objective value (MILP)
- Best objective value (CPI)
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7. CONCLUSION

In this paper, we proposed a new Constraint Program-
ming model for the real-time Railway Traffic Management
Problem. It is based on the concept of Time-interval
variables which simplifies the formulation of alternative
route choices and the blocking time constraints. The so-
lution method integrates Constraint Programming and
Mathematical Programming techniques. Preliminary re-
sults show good performance of the proposed approach
compared with the state-of-the art RECIFE-MILP algo-
rithm.

This research is a contribution toward the proof of the
applicability and relevance of use of a microscopic model
to tackle real-time management of traffic perturbations.
Previously, the output of the European project ON-TIME
(Quaglietta et al., 2016) provided a proof-of-concept of a
framework where the RECIFE-MILP algorithm was used
in a closed-loop with a simulation environment and tested
on different European networks.

As perspectives of this research, we will exploit the use of
state resources to better manage opposite direction con-
flicts, hence to improve our model. In addition, an in-depth
analysis of weaknesses and strengths of both RECIFE-
MILP and RECIFE-CPI will likely allow the proposal of
a hybrid very well performing solution approach.
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Both algorithms are configured to perform a two-step
approach:

• in the first step, a maximum of 10 seconds CPU
wall-clock time is allocated for “fixed-route” solution,
which means that the route fixed in the timetable is
used for each train,

• in the second step, the best solution of the previous
step is used for initializing the “all-route” resolution,
which means that all possible routes are used.

A limit of 180s CPU wall-clock time is imposed for the
solution of these two steps on an Intel(R) Xeon(R) CPU
E5-2643 v4 @ 3.40GHz, 24 cores, 128go RAM.

5.3 Perturbation scenarios

For each of the 4 control areas, we generate 30 perturbation
scenarios: starting from the original timetable, 20% of
randomly selected trains are delayed with a value in the
interval between 5 and 15 minutes.

To cover a variety of instances difficulty, for each perturba-
tion scenario, we select 12 morning time horizons starting
at 8 am with duration from 10 minutes to 120 minutes
with 10 minute step. Therefore we consider 360 instances
for each case study.

In total, 1440 problem instances are solved by each algo-
rithm.

6. RESULTS

Figure 7 allows a comparison of the solution quality given
by CPI and MILP on each case study. The x-axis repre-
sents the horizon size in minutes. The boxplots show the
distribution of the differences of objective values between
the two algorithms. Observing these distributions, we can
analyze the algorithms’ performance. For cases studies #1
and #2, the boxplots indicate that the objective values
of both algorithms are very close : the median of the
differences is close to zero. For cases study #3, the perfor-
mance of both algorithms are also very close for instances
until 70 minutes horizon, then CPI outperforms MILP.
Conversely, for case study #4, both algorithms are also
very close for instances until 80 minutes horizon, then
MILP outperforms CPI. Further analysis shows that, for
difficult instances (case studies #3 and #4), MILP is not
able to provide a solution during the all-routes solution

Table 1. Case-studies characteristics

Junction Line Stations
# 1 # 2 # 3 # 4
Gonesse MLJ-Rouen Lille StLazare

Infrastructure

Length (km) 15 80 7 4.5
Routes 37 187 2409 84
Blocks 79 157 829 197
Track Circuits 89 236 299 212
Stations 0 13 1 4
Platforms 0 33 17 51

Timetable

Trains/Day 336 237 589 1212
Routes/Train 5-13 1-24 1-71 1-9
Turnarounds 0 6 298 606

phase. Therefore, the solution initially found during the
fixed-route search phase is returned. In these instances,
CPI provides poor solutions during the fixed-route search
phase but is able to improve them during the all-routes
solution phase. However, the improvement is not sufficient
for it to outperform MILP.

Fig. 7. Experimental results : Best objective value (MILP)
- Best objective value (CPI)
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7. CONCLUSION

In this paper, we proposed a new Constraint Program-
ming model for the real-time Railway Traffic Management
Problem. It is based on the concept of Time-interval
variables which simplifies the formulation of alternative
route choices and the blocking time constraints. The so-
lution method integrates Constraint Programming and
Mathematical Programming techniques. Preliminary re-
sults show good performance of the proposed approach
compared with the state-of-the art RECIFE-MILP algo-
rithm.

This research is a contribution toward the proof of the
applicability and relevance of use of a microscopic model
to tackle real-time management of traffic perturbations.
Previously, the output of the European project ON-TIME
(Quaglietta et al., 2016) provided a proof-of-concept of a
framework where the RECIFE-MILP algorithm was used
in a closed-loop with a simulation environment and tested
on different European networks.

As perspectives of this research, we will exploit the use of
state resources to better manage opposite direction con-
flicts, hence to improve our model. In addition, an in-depth
analysis of weaknesses and strengths of both RECIFE-
MILP and RECIFE-CPI will likely allow the proposal of
a hybrid very well performing solution approach.
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Appendix A. CASE-STUDIES LAYOUTS
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