
HAL Id: hal-03465101
https://hal.science/hal-03465101v1

Preprint submitted on 8 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Offline Re-Optimization of VNF Placement Decisions for
Existing Network Slices -A Game-Theoretic Algorithm

Ali El Amine, Olivier Brun

To cite this version:
Ali El Amine, Olivier Brun. Offline Re-Optimization of VNF Placement Decisions for Existing Network
Slices -A Game-Theoretic Algorithm. 2021. �hal-03465101�

https://hal.science/hal-03465101v1
https://hal.archives-ouvertes.fr

Offline Re-Optimization of VNF Placement Decisions for

Existing Network Slices - A Game-Theoretic Algorithm

Ali El Amine and Olivier Brun
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France,

{aelamine,brun}@laas.fr

December 3, 2021

Abstract

Network Function Virtualization (NFV) simplifies the deployment of network services by
leveraging virtualization technologies to make the management of network functions more
flexible and cost efficient. The deployment of these services requires the allocation of Virtual
Network Function - Forwarding Graph (VNF-FG), which implies placing and chaining VNFs
according to the requests of VNF-FGs. In this paper, we consider the offline allocation of
VNF-FG problem to improve resource utilization and reduce total costs. We focus on how
VNF-FG demands are routed so as to optimize resource utilization without adding capacity
to the infrastructure. Given a non-linear cost function associated to each network resource,
we formulate the problem as a non-linear single-path routing problem in an extended graph.
Then, we propose to adapt a single-path routing heuristic algorithm inspired from game theory
to solve it. We show that this algorithm converges and establishes its approximation ratio
in a number of cases. Experimental results obtained for different network topologies and
different cost functions show that this algorithm provides very good quality solutions with a
substantially lower computing times compared to the optimal solution.

Keywords— Network Function Virtualization, Virtual Network Function - Forwarding Graph, Slice
as a Service, Offline Allocation, Game Theory, Optimization

1 Introduction

Network Function Virtualization (NFV) opens up the possibility to replace hardwired middleboxes imple-
menting specific network functions (e.g., firewalls or Web proxies) by Virtual Network Functions (VNFs)
running in datacentres and operated as cloud services. In addition to reducing the cost and complexity of
the network, this approach enables to deploy and compose VNFs so as to create network slices on demand.
Network slices are isolated logical networks coexisting simultaneously on the same Physical Substrate Net-
work (PSN), each one being tailored to the needs of a specific application. The VNFs composing the
network slice as well as the virtual links established between them are described by a VNF Forwarding
Graph (VNF-FG). A VNF-FG, according to ETSI, is a directed graph of an ordered set of VNFs that
compose an end-to-end service [1].

The logical service graph described by a VNF-FG is decoupled from the network and has to be mapped
to existing PSN capabilities [2]. This implies not only the fulfillment of slice’s requirements in terms of
Quality of Service (QoS), but also considering the constraints of the underlying infrastructure. Two types
of decisions have to be made: (a) where to run the VNFs, and (b) how to interconnect them in the physical
network, taking into account specific VNF ordering requirements. They are usually made so as to optimize
a certain performance objective, which may be related for instance to the resource utilization of the PSN,
while satisfying a number of technical constraints (e.g., some VNFs should be placed in the vicinity of
end users). This problem, which is known as the VNF Forwarding Graph Embedding (VNF-FGE), is an
extension of the Virtual Network Embedding problem [3,4] which is known to be NP-hard [5]. The VNF-
FGE problem has been studied in the online context, where requests to create network slices are submitted
one after the other [6–10], and in the offline context where multiple VNF-FG have to be embedded in the
physical network at the same time [11–14].

In this work, we consider a physical infrastructure in which transmission and computing resources are
available. These resources have been used to set up a number of logical networks. As the requests for new

1

logical networks arrive one after the other in time, without knowing neither the future requests nor the
logical networks that will be removed in the future, the individual placement and routing decisions made
are necessarily sub-optimal in hindsight, which may result in poor resource utilisation. It may therefore
be necessary to re-optimise the mapping of existing logical networks onto the physical infrastructure. It
should allow for a better load distribution on existing resources, and thus increase the capacity of the
physical infrastructure to accommodate new logical networks without having to add additional capacity.

Despite the previous efforts on the VNF-FG embedding problem, little considered the re-optimization of
resources utilization on the physical infrastructure with non-linear cost functions. In [11], the authors aimed
at minimizing the number of VNF instances mapped on the infrastructure to improve resource utilization.
However, the work ignored the routing cost from connecting the VNFs of the VNF-FG request. Inspired
by the previous work to share the same VNF by multiple VNF-FGs, the work in [12] and [13] studied the
offline VNF-FGE problem to reduce both deployment and forwarding traffic costs. In [12], the authors
proposed a graph-based heuristic inspired from the Viterbi algorithm to reduce the deployment cost of
requested VNF-FG by reducing the number of PoPs hosting the VNF instances. However, this solution
results in an unbalanced infrastructure resource utilization. In [13], the authors focused at minimizing
the cost of routing and deploying the requested VNFs, while guaranteeing a certain level of reliability.
The work however, does not consider an efficient use of resources for future requests. The closest to our
work is [14] that focuses on minimizing both resource utilization and total placement costs. Despite the
similarities with our work, the model considered is different from ours. First, the authors considered an
infrastructure with only PoP nodes that are used to host VNFs. Hence, their work do not consider the
routing problem. Second, the authors considered the possibility to deploy only one type of VNF in a PoP.
Moreover, none of the previous works considered non-linear cost functions which are essential if one wishes
to express that the cost per unit capacity of a resource grows with its utilization rate.

In the setting that we consider, we are given a physical network whose links have known transmission
capacities and in which some nodes provide known computing resources. A non-linear cost function is
associated to each network resource and allows to measure its congestion level. A set of traffic demands
flow through the network, each traffic demand being characterised by its source, destination, volume and
the sequence of VNFs it must flow through. The volume of a traffic demand may change after each VNF,
due to, for example, encryption or data aggregation operations. An initial solution specifies, for each
traffic demand, on which compute nodes the VNFs are executed and the path taken by the demand in the
network between these VNFs. We show that the VNF placement and chaining problem can be formulated
as a non-linear single-path routing problem in an extended graph. To solve this problem, we adapt a
single-path routing algorithm inspired from Game Theory which was proposed in [15]. We show that this
algorithm converges and establishes its approximation ratio in a number of cases. Experimental results
obtained for different network topologies and different cost functions show that this algorithm provides
very good quality solutions with a rather modest computation time.

The paper is organized as follows. We describe the problem addressed in this paper and introduce our
main notations in Section 2. In Section 2.1, we introduce the concept of expanded network. The problem
is then formulated as a non-linear single path routing problem in the expanded network in Section 2.2.
We present the proposed algorithm in Section 3. Section 4 is devoted to the performance evaluation of
this algorithm using diverse network topologies and cost functions. Finally, some conclusions are drawn in
Section 5.

2 Problem Statement

We are given a physical network represented by a directed graph G = (V, E), where V is the set of nodes
and E is the set of links. A subset D ⊆ V of the nodes have the required compute and storage resources to
host VNF. These nodes will be called the function nodes in the following. They are used to execute one or
more VNFs out of a set F of K VNFs, where function f ∈ F is available at function nodes v ∈ D(f) ⊆ D.
A function node corresponds to a logical entity representing reserved computing and storage capacity in
a data centre. Multiple VNFs may be deployed at the same function node, and a VNF may be replicated
at different function nodes. The transmission links of the network and the function nodes are the critical
resources in our problem and in the following we shall denote by R = E ∪ D the set of these resources.

We are also given a set W of traffic demands. Each traffic demand w ∈ W is characterized by its source
node sw, its destination node tw and the sequence Fw =

(
fw
1 , fw

2 , . . . , fw
Kw

)
of network functions it must

flow through in that prescribed order. The sequence is called the Service Chain associated to the traffic
demand. The processing path of demand w may therefore be decomposed in different stages, where stage 0
corresponds to the transmission of the original traffic volume from the source to VNF fw

1 (excluded), stage
1 represents the processing at VNF fw

1 followed by the transmission to VNF fw
2 , etc. The volume of a

traffic demand may change at each stage due to, e.g., packet encryption/decryption or to data aggregation

2

Table 1: Notations.

G = (V, E) Physical network, where V is the set of nodes and E is the set of links.
D Set of function nodes.
R Set of network resources (transmission links and function nodes).

F (resp. Fw) Set of K network functions (resp. service chain for demand w).
D(f) Set of function nodes where VNF f can be executed.
W Set of traffic demands.

sw (resp. tw) Source (resp. destination) node of demand w.
Kw Number of VNFs in the service chain Fw.
fw
k kth VNF in the service chain Fw.

bwk,r Capacity required by demand w from resource r at stage k.

operations. Moreover, the processing capacity required per unit of traffic may be different for one VNF
to another. We therefore define bwk,r as the capacity required from resource r for processing demand w
at stage k. If r is a transmission link e ∈ E , then this capacity just represents the volume of traffic send
from VNF fw

k to VNF fw
k+1 for 0 < k < K(w), and the volume of traffic from sw (resp. VNF fw

K(w)) to
VNF fw

1 (resp. tw) for k = 0 (resp. = K(w)). This volume of traffic should be the same for all links e
and is expressed in bit/s. Similarly, if r is a function node v ∈ D(fw

k), the capacity bwk,r represents the
(fractional) number of cores required for processing the traffic of demand w by VNF fw

k . Our notations
are summarized in Table 1.

Figure 1 provides a simple example of the setting considered in the paper, in which there are two traffic
demands. The service chain for the traffic demand s1 − t1 is F1 = (f1, f2), whereas the service chain for
the traffic demand s2 − t2 is F2 = (f1). The volume of traffic demand s1 − t1 is b10 = 20 units of traffic and
the volume of traffic demand s2 − t2 is 10 units. To simplify, we assume that the volumes do not change
along the paths from the sources to the destinations. We also assume that VNF f1 requires 1.5 cores per
unit of traffic, whereas VNF f2 requires 1.0 core per unit of traffic. The capacity of all links are taken to
be ce = 60 units of traffic, and the processing capacity of the function nodes are cD = 70 and cE = 40.
The figure illustrates two possible deployment scenarios. In the first scenario (see Fig. 1a), all instances
of all VNFs are deployed at node D, whereas in the second scenario (see Fig. 1b) the instances of VNF 1
required for processing the traffic demand s1− t1 are executed at node E. We analyze below each scenario,
assuming that the cost function for resource r is yr

cr−yr
:

(a) Scenario 1: In this scenario, the utilization rates of the network links are as follows: 1
3
for one link, 1

6

for two links and 1
2
for four links. This yields a total link cost of 1× 1/3

1−1/3
+2× 1/6

1−1/6
+4× 1/2

1−1/2
= 4.9.

However, the total capacity required at node D is 65 cores ((20 + 10)× 1.5 for VNF f1, and 20× 1
for VNF f2), yielding a total cost for function nodes equals to 65

70−65
= 13. Hence the total network

cost for this deployment scenario is 17.9.

(a) Scenario 2: In this scenario, the utilization rates of the network links are as follows: 1
3
for seven

links, 1
6
for three links and 1

2
for three other links. The total link cost is therefore 7× 1/3

1−1/3
+ 3×

1/6
1−1/6

+ 3× 1/2
1−1/2

= 7.1. The computing capacity required at node D is 35 cores: 10× 1.5 for VNF
f1, and 20 × 1 for VNF f2. The computing capacity required at node E is 20 × 1.5 = 30 cores.
The total computing cost of function nodes is hence 35

70−35
+ 30

40−30
= 4. We conclude that the total

network cost in this scenario is 11.1, which shows that it achieves a better resource utilization.

The problem at hands amounts to choosing a single path through the network for each traffic demand
such that the function nodes are visited in the prescribed order and so that a certain network cost function
is minimized. We shall shortly discuss the network cost function to be optimized, but we would first like to
emphasize that a first difficulty is related to the modelling of precedence constraints on the order in which
the function nodes must be visited by each traffic request. The key observation is that the overall path from
sw to tw for traffic demand w can be viewed as a collection of segments, the first segment connecting sw to
one of the function nodes hosting fw

1 through some intermediate nodes, the second segment connecting the
end node of the first segment with one of the function nodes hosting fw

2 , etc, until the destination node tw
is reached. These segments are connected by decision points where we choose which nodes will compute
the functions in Fw. As observed in [16], it is possible to construct an expanded network to model both
the segment construction and the function selection at the nodes. We shall discuss the construction of this
expanded network in Section 2.1. In Section 2.2, we formulate the single-path routing problem considered
in this paper using the concept of expanded network.

3

s2

b10 = 20

b20 = 10

f1

s1 t1

C

B

D

E

f1, f2

t2
A

(a) Deployment scenario 1 in which all VNFs
are executed at node D.

s2

b10 = 20

b20 = 10

f1

s1 t1

C

B

D

E

f1, f2

t2
A

(b) Deployment scenario 2 in which instances of
VNF 1 are executed at node E for the traffic
demand s1 − t1.

Figure 1: A simple example network , in which we assume that VNF f1 may be executed at nodes
D and E, whereas VNF f2 is only available at node D.

f1f1

f1, f2

s
(0)
1

s
(0)
2

t
(0)
1

t
(0)
2

A(0)

C(0)

B(0)

D(0)

E(0)

s
(1)
1

s
(1)
2

t
(1)
1

t
(1)
2

A(1)

C(1)

B(1)

D(1)

E(1)

s
(2)
1

s
(2)
2

t
(2)
1

t
(2)
2

A(2)

C(2)

B(2)

D(2)

E(2)

f1, f2

Figure 2: Expanded network for the example of Figure 1. The artificial edges between consecutive
layers are shown with dotted lines. Two feasible paths for the demand from node s1 to node t1
are shown, with blue-coloured edges for the first one and with red-coloured edges for the other one
(common edges are purple-coloured).

2.1 Expanded Network

The expanded network G∗ is made up of K layers. Each layer G(k) = (V(k), E(k)), k = 0, . . . ,K, is a copy of
of the original network G = (V, E). We shall use the notation v(k) (resp. e(k)) to refer to node v ∈ V (resp.
link e ∈ E) at layer k. We use each layer to find one segment of the total path for each traffic demand w.
Consecutive layers are connected by artificial edges which are used to model the function selection at the
nodes. More precisely, for each function node v ∈ D and each layer k = 0, . . . ,K − 1, there is an artificial
directed edge from node v(k) to node v(k+1). The interpretation is that a path for traffic demand w goes
through this artificial link if and only if VNF fw

k is executed at node v ∈ D(fw
k). In the following, we shall

use the notation ℓ
(k)
v to refer to the artificial edge (v(k), v(k+1)) and we shall denote the set of artificial

edges between layers k = 0, . . . ,K − 1 and k+ 1 by L(k) =
{
ℓ
(k)
v : v ∈ D

}
. In summary, the set of nodes

of the expanded network G∗ is

V∗ =

K⋃
k=0

V(k),

whereas its set of edges is

E∗ =

K⋃
k=0

E(k) ∪
K−1⋃
k=0

L(k).

The construction of the expanded network is shown in Figure 2 for the example network of Figure 1.
In the following, we say that an artificial edge ℓ

(k)
v ∈ L(k) is feasible for demand w if and only if

v ∈ D(fw
k), that is, it connects two consecutive copies of a node v hosting function fw

k . A feasible path

4

πw ⊂ E∗ for the traffic demand w ∈ W is then defined as a path from node s
(0)
w to node t

(Kw)
w in the

expanded network such that all artificial edges in the path are feasible for demand w. Figure 2 shows
two feasible paths for the demand from node s1 to node t1. Note that the artificial edges appearing in a
path specify the function nodes at which the VNFs are executed, while the other edges in the path specify
the path segments used to reach these function nodes. The feasibility of a path ensures that the network
functions are executed in the prescribed order.

Given a set π ⊂ E∗ of edges in the expanded network and a link e ∈ E of the original network, we define
the constant δe,kπ as 1 if e(k) ∈ π, and 0 otherwise. Similarly, for any set π ⊆ E∗ and any function node
v ∈ D, we define the constant δv,kπ as 1 if the artificial edge ℓ

(k)
v ∈ π, and 0 otherwise. In the following, the

notation δr,kπ will refer to one of the above-defined constants, depending on whether resource r ∈ R is a
transmission link e or a function node v. We shall say for short that resource r appears in path π at layer
k of the expanded network and write (r, k) ∈ π when δr,kπ = 1. Similarly, we write r ∈ π if δr,kπ = 1 for
some k.

2.2 Single-Path Routing Problem

In the following, we shall assume that we are given a set Πw of candidate feasible paths through the
expanded network for each demand w ∈ W. A feasible solution for the joint routing and VNF placement
problem is then defined as a vector π = (πw) ∈ Π, where πw is the path assigned to traffic demand w and
Π =

⊗
w∈W Πw. Given such a feasible solution π, the traffic sent by demand w on resource r ∈ R of the

original network is:

yw
r (πw) =

K∑
k=0

δr,kπw
bwk,r, (1)

from which it follows that the traffic flowing on resource r is yr(π) =
∑

w∈W yw
r (πw).

We assume that to each resource r ∈ R of the physical network is associated a non-decreasing function
ϕr : R+ → R+ and that the cost of this resource has the form yrϕr(yr). The function ϕr() may be
interpreted as the cost per unit of capacity of resource r, and it may depend on the total traffic flowing
on that resource. A typical example is the Kleinrock function ϕr(yr) = 1/(cr − yr), where cr is a constant
representing the (transmission or processing) capacity of resource r. This function assumes that the total
traffic on a resource is smaller than its capacity and that the cost per unit of capacity grows unboundedly
as the former approaches the latter. Other examples are the linear function ϕr(yr) = yr/cr or the quadratic
function ϕr(yr) = y2

r/c
2
r, which are valid even for yr ≥ cr. In the above examples, the cost per unit capacity

grows as the traffic yr on the resource increases, in contrast with linear models in which ϕr is assumed to
be a constant function. We emphasize that the functions ϕr() may differ for different types of resources or
even from one resource to the other.

The goal is to find a feasible solution π ∈ Π that minimizes the network cost F (π) =
∑

r∈R yr(π)ϕr (yr(π)).
Formally, the problem is as follows:

minimize F (π) =
∑
r∈R

yr(π)ϕr (yr(π)) (OPT)

subject to:

πw ∈ Πw, w ∈ W. (2)

It is worth mentioning that problem (OPT) can be cast as a 0-1 mathematical programming problem
by introducing the following binary variables:

xw,π =

{
1 if demand w is routed along path π in G∗,

0 otherwise,
(3)

5

so that it becomes equivalent to:

minimize
∑
r∈R

yr ϕr(yr)

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (4)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (5)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (6)

Except when the functions ϕr() are constant functions, the above problem belongs to the class of non-
linear mathematical programs with integer variables, a class of mathematical programs which are known
to be extremely hard to solve. This motivates the development of an efficient approximation method for
solving problem (OPT).

3 Penalized Best-Response Algorithm

As discussed in Section 2.2, the joint routing and VNF placement problem can be cast as a non-linear single
path routing problem in the expanded network. The problem differs however significantly from traditional
single-path routing problems as on one hand the same resource appears at different layers of the expanded
network and on the other hand the volume of a traffic demand may change from one layer to the other.
Nevertheless the heuristic algorithm that we propose in this section is directly inspired from an algorithm
proposed in [15] for solving such problems. The idea of the algorithm is to view the traffic demands as
the players of a non-cooperative game in which each each player independently optimizes its own objective
function. Starting from an arbitrary initial feasible solution, the algorithm then mimics the best-response
dynamics of the game, that is, the players take turns in some order to adapt their strategy based on the
most recent known strategy of the others. The player objective functions are designed in such a way that
(a) the best-response dynamics converges to a Nash equilibrium of the game in a finite number of steps,
(b) all optimal solutions of problem (OPT) are Nash equilibria of the game, and (c) an upper bound on
the approximation ratio of the algorithm can be proven in some cases.

Let us think of the traffic demands as the players of the game. The strategy of player w ∈ W is the
path πw it chooses in the set Πw, and a strategy profile of the game is a feasible solution to problem
(OPT), that is, a vector π ∈ Π. Given the strategy of the other players π−w = (πu)u̸=w, we shall assume
that the player w seeks to solve the following problem:

minimizeπ∈Πwcw(π,π−w) = fw(π,π−w) + pw(π,π−w), (OPT-w)

where the value fw(π,π−w) associated to path π by player w reflects the cost of this path, whereas the
term pw(π,π−w) is a penalty term measuring the impact of player w’s choice on other players. More
precisely, we shall assume that the selfish objective function of player w is:

fw(π,π−w) =
∑
r∈π

yw
r (π)ϕr

(
y−w
r + yw

r (π)
)
, (7)

where y−w
r =

∑
u̸=w yu

r (πu) is the total traffic sent over resource r by all the other players u ̸= w. The
term fw(π,π−w) thus represents the cost of path π for player w, given the fixed strategies π−w of the
other players.

In order to define the penalty term pw(π,π−w), assume that player w chooses path π ∈ Πw and consider
a resource r appearing in the path π at some layer. Then, for all players u ̸= w, the cost of this resource
increases by:

yu
r (πu)

[
ϕr

(
y−w
r + yw

r (π)
)
− ϕr

(
y−w
r

)]
.

As a consequence, we define the penalty term pw(π,π−w) as follows:

pw(π,π−w) =
∑
r∈R

∑
u̸=w

yu
r (πu)

[
ϕr

(
y−w
r + yw

r (π)
)
− ϕr

(
y−w
r

)]
=

∑
r∈π

y−w
r

[
ϕr

(
y−w
r + yw

r (π)
)
− ϕr

(
y−w
r

)]
(8)

6

With (7) and (8), the objective function cw(π,π−w) = fw(π,π−w) + pw(π,π−w) of player w is
perfectly defined. Given the strategies π−w of the other players, the path π minimizing cw(π,π−w)
in problem (OPT-w) is known as the best response of player w.

The pseudocode of our heuristic is given in Algorithm 1. The algorithm starts from an initial
feasible solution π(0). At each iteration n, the players update their strategies in a given order by
computing their best responses to the strategies of the others (lines 3 − 5). Note that a player w

deviates from its strategy π
(n)
w at iteration n to a new strategy π′ if and only if cw

(
π′,π

(n)
−w

)
<

cw
(
π(n)

)
. The algorithm stops when no player can decrease its cost by unilaterally deviating from

its strategy, that is, π(n+1) = π(n), which means that a Nash equilibrium has been reached (line
7).

Algorithm 1 Penalized best-response

Require: π(0)

1: n← 0
2: repeat
3: for w ∈ W do
4: π

(n+1)
w ← argmin (OPT-w)

5: end for
6: n← n+ 1
7: until π(n+1) ̸= π(n).
8: return π(n)

Theorem 1 below states the main properties of Algorithm 1. The proofs of properties (a), (b)
and (c) are straightforward adaptations of those of similar results in [15]. The proof of property
(d) is notably more involved, though it follows the same lines as the proof of Theorem 3 in [15].
Note that property (c) follows from property (d) by taking d = 0.

Theorem 1. Algorithm 1 has the following properties:

(a) It converges in a finite number of steps.

(b) If it ever reaches a global optimum of problem (OPT), it returns this optimal solution.

(c) It computes an optimal solution of problem (OPT) for linear resource costs, that is, when
the functions ϕr() are constant functions ϕr(y) = ar.

(d) Its approximation ratio is
(
2

1
d+1 − 1

)−(d+1)

when the functions ϕr() are polynomials of degree

d, that is, ϕr(y) =
∑d

n=0 ar,ny
n.

Proof. See Appendix A.

Algorithm 1 is optimal for linear resource costs and returns a solution whose cost is at most
5.83× the cost of an optimal solution for quadratic resource costs. Unfortunately, the approxima-
tion ratio of the algorithm for polynomial resource costs degrades quickly with the degree of the
polynomial (it is already equals to 56.9 for d = 2). Our numerical results suggest however that the
heuristic provides close-to-optimal solutions in most cases.

The proof of Theorem 1 shows that the game that we consider is a potential game, which implies
that the worst-case complexity of Algorithm 1 is exponential in the number of traffic demands [17].
However, as we will see in Section 4 below, its convergence in practice is much faster than suggested
by this worst-case result.

4 Performance Evaluation

In this section, we experimentally evaluate the performance of the penalized best-response algo-
rithm. We first describe the different types of objective functions used to solve the penalized

7

best-response algorithm and the procedure for generating random instances in sections 4.1 and
4.2. Then, we present in section 4.3 the numerical results for the different topologies evaluated
under the different types of objective functions.

4.1 Cost Functions

Given the cost per-unit of capacity of resource r function ϕr, we denote by Φr = yrϕr(yr) the cost
function of resource r. We consider four types of cost functions: linear, piece-wise linear, quadratic
and the Kleinrock Function (M/M/1).

1. Linear cost function: the per-unit cost does not depend on the utilization rate of the resource
r (ϕr(yr) = a, where a is a constant). Here, the objective function is linear with the amount
of traffic which is solved using Gurobi 9.0 as the ILP solver. We note that in this case the
solution may over utilize the resources capacity. We choose a = 5, and we have:

Φr = 5× yr (9)

2. Piece-Wise Linear cost function: we consider the following increasing per-unit cost function:

ϕr(yr) =

3 if 0 ≤ yr

cr
≤ 1

4 ,

5− 1
2
cr
yr

if 1
4 < yr

cr
≤ 3

4 ,

10− 17
4

cr
yr

if 3
4 < yr

cr
.

(10)

where cr is the capacity of resource r. This function expresses that it is cheap to utilize a
resource with a small utilization rate, whereas, as the load approaches cr, it becomes more
expensive. Problem (OTP) can then be formulated as a Mixed-Integer Linear Problem and
solved using Gurobi 9.0 as the MILP solver:

minimize
∑
r∈R

Φr

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (11)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (12)

Φr ≥ ayr − bcr, for all r ∈ R and (a, b) ∈ C, (13)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (14)

yr ≥ 0,Φr ≥ 0, for all r ∈ R, (15)

where C = {(3, 0), (5, 1
2), (10,

17
4)}.

3. Quadratic cost function: The per-unit cost function is linear (ϕr(yr) = ayr). This results
in a quadratic objective function which is solved using Gurobi 9.0 as the Quadratic Integer
Program solver. Similar to the previous function, the more is the utilization rate of a resource,
the more expensive it becomes.

Φr = y2r/c
2
r (16)

4. Kleinrock cost function (M/M/1): with this function, it becomes hard to find the optimal
solution. However, it guarantees that the utilization of a resource r does not exceed its
capacity cr.

Φr =
yr

cr − yr
(17)

We formulate problem (OPT) as a Bilinear Program, and we solve it with Gurobi 9.0 Bilinear
solver.

8

Table 2: Topologies : number of nodes and links.

Topology # Nodes # Links
AARNET 19 46
ARPANET 25 56
NSFNET 13 30

IBM 18 48
CESNET 10 18

s1 t1

t2

s2

s3

v2 v3

v1 f1, f2t3

f1, f3

f2, f3

Figure 3: NSFNET topology which has been expanded with function nodes v1, v2 and v3. The
nodes s1, s2 and s3 are the source nodes and the nodes t1, t2 and t3 are the destination nodes of
the traffic demands.

minimize
∑
r∈R

Φr

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (18)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (19)

yr − Φrcr +Φry = 0, for all r ∈ R, (20)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (21)

yr ≥ 0,Φr ≥ 0, for all r ∈ R, (22)

4.2 Generation of Random Instances

In order to evaluate the performance of the penalized best-response algorithm, we use five network
topologies (see Table 2) collected from the IEEE literature and from The Internet Zoo Topology [18].
As illustrated in Figure 3 for the NSFNET topology, we choose three source nodes (s1, s2 and s3)
and three destination nodes (t1, t2 and t3) in each topology. The original topology is also expanded
by adding three function nodes v1, v2 and v3 and connecting them to the other nodes. We consider
three VNFs f1, f2 and f3 and assume that each one requires one core per unit of traffic. Function
node v1 can host VNFs f1 and f2, whereas function node v2 (resp. v3) can host VNFs f1 and f3
(resp. f2 and f3). As shown in Figure 3, each VNF is thus available at two different locations.

We then generate 100 random instances for each network topology. A random instance is com-
posed of 25 traffic demands, which are randomly generated as follows. The source and destination

9

Table 3: Number of candidate paths Πw.

Topology Max Min Average
AARNET 128 32 52
ARPANET 128 32 47
NSFNET 128 32 48

IBM 128 32 51
CESNET 8 4 5

nodes of a traffic demand are chosen randomly in the sets {s1, s2, s3} and {t1, t2, t3}, respectively,
according to uniform distributions. The volume of a traffic demand is drawn from a uniform dis-
tribution in the interval [1, 5], and, to simplify, we assume that it does not change along the path
from the source to the destination. Finally, the processing path of a traffic demand in chosen
uniformly at random in the set {(f1, f2), (f1, f3), (f2, f3), (f1, f2, f3)}.

Each traffic demand must thus go through two or three VNFs, which are available at multiple
locations. The possible paths for a traffic demand w are generated as follows. We first compute two
possible paths between the source node sw and each location where the first VNF fw

1 is available by
solving a 2-shortest path problem (assuming unit weights for the edges of the expanded network).
We then apply the same procedure for computing two possible paths between each possible location
of the VNF fw

1 and each possible location of fw
2 , etc. The final set of candidate paths Πw is obtained

by connecting the different segments forming the overall path from sw to tw.
The initial solution is obtained by choosing randomly a path for each traffic demand. We

assume that all links and all function nodes have the same capacity. This capacity is computed for
each random instance so as to obtain a network congestion rate of 0.83.

We report in Table 3 the number of candidate paths for a traffic demand |Πw| calculated for
each studied topology. The max (min, resp.) value is obtained when the size of the processing
path is three (two, resp.) resulting in |Πw| = 27 (|Πw| = 25, resp.). We remind the reader that we
have k = 2 candidate paths for each VNF option. The average value is obtained over 100 problem
instances where traffic demands have a probability of 3/4 (1/4, resp.) to choose a processing path
size of two (three, resp.). In the case of CESNET topology and under all the generated instances,
we could not find two candidate paths for each VNF option, hence the reduced size of Πw.

The final set of candidate paths calculated for each traffic demand is used to find the optimal
solution with Gurobi solver. However, when running the penalized best-response algorithm, we
consider only the k′-shortest paths from the previously obtained set. For instance, a traffic demand
in the AARNET topology has on average 52 different paths that will be used to find the optimal
solution. For k′ = 10, only the 10 shortest paths will be considered in the penalized best-response
algorithm.

4.3 Numerical Results

We report in Tables 4 and 5 the performance of the penalized Best Response (BR) algorithm for
different cost functions under distinct topologies. We set k′ = 10, and we evaluate the algorithm
performance by calculating the relative gap between the penalized BR solution and the optimal
solution from Gurobi. Following the obtained results, the penalized BR algorithm provides very
good quality solutions for the different cost functions with impressive computation time. Its average
relative gap to the optimal solution is under 5%, and it is almost negligible for small topologies
such as CESNET that has a result value of at most 0.07%. The average execution time of the
algorithm depends on the size of the topology and on the cost function used. It is also directly
proportional to the number of paths considered for each demand. Nevertheless except for the
PWL cost function where the MILP solver is known to be efficient and quick at solving, the solver
is significantly slower for the other more complex cost functions. In the case of the quadratic
cost function, the maximum relative error of the BR algorithm over the 100 instances is 3.725%.
However, the if we look at the computing times in Table 5, we observe that the BR algorithm is
at most 16 times faster and at worst 6.3 times faster than the solver. It is interesting to note that
for the M/M/1 cost function, the solver has reached its time limit that has been set to 5 minutes,

10

Table 4: Relative gap (%± std) to the optimal solution with k′ = 10.

Topology PWL Quadratic M/M/1
AARNET 0.71 ±0.65 1.81 ±0.85 1.43 ±1.76
ARPANET 1.15 ±0.5 3.725 ±1.55 1.5 ±0.79
NSFNET 0.42 ±0.49 1.67 ±1.12 0.31 ±0.32

IBM 1.7 ±0.8 2.85 ±0.98 0.53 ±0.71
CESNET 0.051 ±0.003 0.047 ±0.008 0.070 ±0.056

AARNET ARPANET NSFNET IBM CESNET
0

2

4

6

8

10

Re
la

tiv
e

ga
p

(%
)

PWL function
Quadratic function
M/M/1

Figure 4: Box plot of the relative gap to the optimal solution.

Table 5: Average computing times (seconds±std) for the 100 problem instances with k′ = 10.

Function Costs
AARNET ARPANET NSFNET IBM CESNET
BR Gurobi BR Gurobi BR Gurobi BR Gurobi BR Gurobi

PWL 7.1±0 1.2 8.09±0 1.72 4.93±0 0.72 6.83±0 0.9 1.96±0 0.07
Quadratic 7.89±0 126±0 8.89±0 124±0 6.3±0 40±0 8.27±0 109±0 2.33±0 0.3
M/M/1 8.17±0 300 9.84±0 300 7.52±0 300 9.17 300 2.79±0 300

while the BR algorithm takes less than 10 seconds to execute with a solution as close as 1.43% to
the solver.

The box plot in Figure 4 compares the distribution of the 100 instances generated for each
scenario. The line that divides the box into two parts marks the median (Q2) of the data. The
upper quartile (Q3) value is represented by the upper box line. 75% of the values fall below Q3.
The lower quartile (Q1) value is the lower box line. 25% of the values fall below Q1. Hence,
the values inside the box represent 50% of the data. The end of the lower and upper whiskers
represents the minimum and maximum values, respectively. We first note that there are no outliers
in the data samples which means that all the values of the data fall within the normal range. We
observe that the values obtained with the quadratic cost function are more dispersed than the
values obtained from the other cost functions.

In order to evaluate the choice of k′, we report in Table 6 the average relative gap and the
computing times over different values of k′. We evaluate the results with the quadratic cost
function (similar results were observed for the other cost functions). As expected, the optimality
gap decreases when more routing paths are added to the set of candidate paths. However, the
decrease of this gap is insignificant for k′ > 10. In the case of the CESNET topology and since on
average there are only 5 possible paths for a given demand (refer to Table 3), the gap optimality
remains constant for k′ ≥ 5. On the other hand, increasing the routing paths increases the running
time of the BR algorithm. In this work, we found that the best trade-off between quality solution
and running time is for k′ = 10.

11

Table 6: Average relative gap and computing times for the 100 problem instances with the quadratic
cost function.

Topology
k′ = 5 k′ = 10 k′ = 20 k′ = 32

gap runtime gap runtime gap runtime gap runtime
AARNET 5.2% 3.8 sec 1.8% 7.9 sec 1.4% 17 sec 1.4% 26.7 sec
ARPANET 5.5% 4 sec 3.7% 8.9 sec 3% 19 sec 3% 30 sec
NSFNET 1.8% 2.9 sec 1.7% 6.3 sec 1.6% 12 sec 1.6% 18 sec

IBM 5.88% 3.5 sec 2.85% 8.2 sec 2.77% 12.8 sec 2.75% 30 sec
CESNET 0.05% 1.9 sec 0.05% 2.3 sec 0.05% 2.4 sec 0.05% 2.4 sec

5 Conclusion

In this paper, we have considered the offline VNF placement and chaining problem, assuming that
a non-linear cost function is associated to each network resources. It is also assumed that the
volume of a traffic demand can change after each VNF. With respect to previous works, the main
originality of the considered model is that the cost per unit capacity of a resource is not constant,
but instead that it grows with its utilization rate, which is an essential feature to achieve a better
load distribution. We have formulated the problem as a single-path routing problem in an extended
network and adapted an existing game-theoretic algorithm to solve it. Our numerical results
suggest that the algorithm provides near-optimal solutions in a substantially lower computing
times than the solver, in particular for highly non-linear cost functions.

References

[1] ISG NFV, ETSI, “Network Functions Virtualisation (NFV): Architectural framework,” 2013.

[2] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,” IEEE
Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532, 2016.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual network
embedding: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1888–
1906, 2013.

[4] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and virtual network
functions,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[5] E. Amaldi, S. Coniglio, A. Koster, and M. Tieves, “On the computational complexity of the
virtual network embedding problem,” Electron. Notes Discret. Math., vol. 52, pp. 213–220,
2016.

[6] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “A green vnf-fg embedding algorithm,”
in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), 2018, pp.
141–149.

[7] M. Mechtri, C. Ghribi, and D. Zeghlache, “Vnf placement and chaining in distributed cloud,”
in 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), 2016, pp. 376–
383.

[8] F. Carpio, W. Bziuk, and A. Jukan, “Replication of virtual network functions: Optimizing
link utilization and resource costs,” in 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2017, pp. 521–526.

[9] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio, “Single and multi-domain
adaptive allocation algorithms for vnf forwarding graph embedding,” IEEE Transactions on
Network and Service Management, vol. 16, no. 1, pp. 98–112, 2019.

12

[10] A. El Amine, O. Brun, S. Abdellatif, and P. Berthou, “Shortening the deployment time of SFC
by adaptively querying resource providers,” in 2021 IEEE Global Communications Conference:
Next-Generation Networking and Internet (Globecom2021 NGNI), Madrid, Spain, Dec. 2021.

[11] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing together
the nfv provisioning puzzle: Efficient placement and chaining of virtual network functions,” in
2015 IFIP/IEEE International Symposium on Integrated Network Management (IM). IEEE,
2015.

[12] N. Tastevin, M. Obadia, and M. Bouet, “A graph approach to placement of service func-
tions chains,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE, 2017.

[13] X. Zhong, Y. Wang, and X. Qiu, “Cost-aware service function chaining with reliability guaran-
tees in nfv-enabled inter-dc network,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). IEEE, 2019.

[14] H. Guo, Y. Wang, Z. Li, X. Qiu, H. An, N. Yuan et al., “Cost-aware placement and chaining
of service function chain with vnf instance sharing,” in NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2020.

[15] O. Brun, B. Prabhu, and J. Vallet, “A penalized best-response algorithm for non-linear single-
path routing problems,” Networks, vol. 69, no. 1, pp. 52–66, 2017.

[16] T. M. Nguyen, “Optimizing resource allocation in infrastructure networks based on network
function virtualization,” Ph.D. dissertation, Université Pierre et Marie Curie - Paris VI, 2017.

[17] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity of pure nash equilibria,” in
Proc. of STOC’04, ACM, Ed., New York, NY, USA, 2004, pp. 604–612.

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology
zoo,” IEEE Journal on Selected Areas in Communications, 2011.

13

A Proof of Theorem 1

Before proving Theorem 1, we remark that if Algorithm 1 converges, it necessarily converges
to a Nash equilibrium of the game. By definition, the game is in a Nash equilibrium if and
only if no player has anything to gain by unilaterally deviating from its current strategy, that is,
the current strategy of each player is its best response to the strategy of the others. Formally,

π(n) =
(
π
(n)
w

)
w∈W

is a Nash equilibrium of our game if and only if:

cw(π
(n)
w ,π

(n)
−w) ≤ cw(π,π

(n)
−w),∀π ∈ Πw,∀w ∈ W,

which is precisely the condition under which Algorithm 1 stops (see line 7).
In order to prove property (d), we will need the following technical lemma which is an extension

of Lemma 2 in [15].

Lemma 1. Let d ∈ N and x ≥ 0. For any non-negative numbers a1, a2, . . . , aN and b1, b2, . . . , bN
such that aibi = 0 for all i = 1, 2, . . . , N , it holds that

x̄d+1 − xd+1 =

d∑
k=0

xd−k
N∑
j=1

[
aj (x̄+ bj)

k − bj (x̄− aj)
k
]
, (23)

where x̄ = x+
∑N

j=1(aj − bj)

Proof. We have

x̄d+1 − xd+1 =

 N∑
j=1

aj −
N∑
j=1

bj

 d∑
k=0

x̄kxd−k,

=

d∑
k=0

xd−k
N∑
j=1

aj x̄
k −

d∑
k=0

xd−k
N∑
j=1

bj x̄
k,

=

d∑
k=0

xd−k
N∑
j=1

aj(x̄+ bj − bj)
k −

d∑
k=0

xd−k
N∑
j=1

bj(x̄+ aj − aj)
k,

=

d∑
k=0

xd−k
N∑
j=1

aj

k∑
n=0

(
k

n

)
(x̄+ bj)

n(−bj)k−n

−
d∑

k=0

xd−k
N∑
j=1

bj

k∑
n=0

(
k

n

)
(x̄− aj)

n(aj)
k−n,

=

d∑
k=0

xd−k
N∑
j=1

aj(x̄+ bj)
k −

d∑
k=0

xd−k
N∑
j=1

bj(x̄− aj)
k,

where the last equality follows from ajbj = 0.

We will also need Lemma 2 below (which is basically a simple application of Hölder’s inequality).

Lemma 2. For non-negative numbers ae, xe ze, and non-negative integer m,

∑
e

ae(xe + ze)
m+1 ≤

(∑
e

aex
m+1
e

)1/(m+1)

+

(∑
e

aez
m+1
e

)1/(m+1)
m+1

. (24)

Proof. See the proof of Lemma 3 in [15].

We are now in position to prove Theorem 1.

14

Proof of Theorem 1. We first prove property (a). We observe that the cost function cw(πw,π−w)
of player w can be rewritten as follows

cw(π,π−w) = fw(π,π−w) + pw(π,π−w),

=
∑
r∈π

ywr (π)ϕr

(
y−w
r + ywr (π)

)
+
∑
r∈π

y−w
r

[
ϕr

(
y−w
r + ywr (π)

)
− ϕr

(
y−w
r

)]
,

=
∑
r∈π

yr(π,π−w)ϕr (yr(π,π−w))−
∑
r∈π

y−w
r ϕr

(
y−w
r

)
,

=
∑
r∈R

yr(π,π−w)ϕr (yr(π,π−w))−

∑
r ̸∈π

y−w
r ϕr

(
y−w
r

)
+
∑
r∈π

y−w
r ϕr

(
y−w
r

) ,

= F (π,π−w)−
∑
r∈R

y−w
r ϕr

(
y−w
r

)
, (25)

where the penultimate equality is obtained by noting that yr(π,π−w) = y−w
r for all resources

r ̸∈ π. Introducing F (π−w) =
∑

r∈R y−w
r ϕr (y

−w
r), which represents the network cost that would

be obtained if demand w was removed from the network, (25) yields

cw(π
′,π−w)− cw(π,π−w) = (F (π′,π−w)− F (π−w))− (F (π,π−w)− F (π−w)) ,

= F (π′,π−w)− F (π,π−w), (26)

which means that the network cost function F () is a potential function of the game, that is, any
best-response move of a player w decreases the total network cost. As Algorithm 1 computes the
best response of all players at each iteration and as the network cost F () can take only a finite
number of values, this implies the convergence of the algorithm in a finite number of steps.

We now prove property (b). Assume that Algorithm 1 has reached an optimal solution π∗

of problem (OPT). The strategy of each player w is therefore π∗
w. For any player w and any path

π ∈ Πw, it follows from (26) that

cw(π,π
∗
−w)− cw(π

∗
w,π

∗
−w) = F (π,π∗

−w)− F (π∗) ≥ 0, (27)

which implies that π∗ is Nash equilibrium of our game. Hence, Algorithm 1 returns this solution.
Consider now property (c). Note that it directly follows from property (d). Nevertheless, we

provide a direct proof below. Assume that ϕr(y) = ar for all y ≥ 0 and all resources r ∈ R. The
network cost F (π) can then be written as follows

F (π) =
∑
r∈R

yr(π)ϕr (yr(π)) =
∑
r∈R

∑
w∈W

K∑
k=0

arδ
r,k
πw

bwk,r =
∑
w∈W

 ∑
(r,k)∈πw

arb
w
k,r

 , (28)

from which it follows that it is optimal to route each demand w on a path

πw ∈ argminπ∈Πw

 ∑
(r,k)∈π

arb
w
k,r

 .

Note from (8) that pw(π,π−w) = 0 in this case, from which it follows that

cw(π,π−w) = fw(π,π−w) =
∑
r∈π

ary
w
r (π) =

∑
(r,k)∈π

arb
w
k,r. (29)

Therefore, the best-response strategy of a player is an optimal path, independently of the
strategies of the other players. This implies that Algorithm 1 returns a globally optimal solution
for linear resource costs.

Finally, let us prove property (d). We focus on the case of monomial functions ϕr(y) = ary
d,

as the extension to polynomials is straightforward (see the proof of Theorem 3 in [15]). In that
case, we have

15

F (π) =
∑
r∈R

aryr(π)
d+1. (30)

Given an instance of the problem, let π be the solution returned by Algorithm 1 and π∗ be any
optimal solution. Consider a traffic demand w ∈ W and consider the solution obtained from π by
deviating this demand from path πw to path π∗

w, with the paths of the other demands unchanged.
As π is a Nash equilibrium, we have cw(π

∗
w,π−w) ≥ cw(πw,π−w), and with (26) it follows that

F (π∗
w,π−w) ≥ F (π). (31)

Consider now the impact of this deviation on the traffic flowing on the edges of the expanded
network. Let ywr,k(πw) and ywr,k(π

∗
w) be the traffic sent by demand w on the edge (r, k) of the

expanded network before and after the deviation, respectively. We have

ywr,k(π
∗
w) = δr,kπ∗

w
bwk,r,

= δr,kπw
bwk,r + (δr,kπ∗

w
− δr,kπw

)bwk,r,

= ywr,k(πw) + (δr,kπ∗
w
− δr,kπw

)bwk,r, (32)

from which we obtain

ywr (π
∗
w) =

K∑
k=0

ywr,k(π
∗
w) = ywr (πw) +

K∑
k=0

(δr,kπ∗
w
− δr,kπw

)bwk,r, (33)

and

yr(π
∗
w,π−w) = ywr (π

∗
w) + y−w

r ,

= ywr (πw) + y−w
r +

K∑
k=0

(δr,kπ∗
w
− δr,kπw

)bwk,r,

= yr(π) +

K∑
k=0

(δr,kπ∗
w
− δr,kπw

)bwk,r. (34)

With (31), it yields the following inequality

∑
r∈R

ar

(yr(π) + K∑
k=0

(δr,kπ∗
w
− δr,kπw

)bwk,r

)d+1

− yr(π)
d+1

 ≥ 0. (35)

Let us now introduce the following constants

α+
r,k(w) =

{
1 if (r, k) ∈ π∗

w \ πw,

0 otherwise,
and α−

r,k(w) =

{
1 if (r, k) ∈ πw \ π∗

w,

0 otherwise,

The constant α+
r,k(w) is 1 if the deviation increases the traffic of demand w on the edge (r, k) of

the expanded network, and similarly, α−
r,k(w) is 1 if the deviation decreases the traffic of demand

w on the edge (r, k) of the expanded network. Note that α+
r,k(w)α

−
r,k(w) = 0. As δr,kπ∗

w
− δr,kπw

=

α+
r,k(w)− α−

r,k(w), we can rewrite (35) as follows

∑
r∈R

ar

(yr(π) + K∑
k=0

(α+
r,k(w)− α−

r,k(w))b
w
k,r

)d+1

− yr(π)
d+1

 ≥ 0. (36)

Applying Lemma 23 to (36) with ak = α+
r,k(w)b

w
k,r and bk = α−

r,k(w)b
w
k,r, we obtain

16

0 ≤
∑
r∈R

ar

d∑
n=0

yr(π)
d−n

K∑
k=0

α+
r,k(w)b

w
k,r

yr(π) +
∑
j

α+
r,j(w)b

w
j −

∑
j ̸=k

α−
r,j(w)b

w
j

n

− α−
r,k(w)b

w
k,r

yr(π) +
∑
j ̸=k

α+
r,j(w)b

w
j −

∑
j

α−
r,j(w)b

w
j

n
=
∑
r∈R

ar

d∑
n=1

yr(π)
d−n

K∑
k=0

α+
r,k(w)b

w
k,r

yr(π) +
∑
j

α+
r,j(w)b

w
j −

∑
j ̸=k

α−
r,j(w)b

w
j

n

− α−
r,k(w)b

w
k,r

yr(π) +
∑
j ̸=k

α+
r,j(w)b

w
j −

∑
j

α−
r,j(w)b

w
j

n
+
∑
r∈R

aryr(π)
d

K∑
k=0

(α+
r,k(w)− α−

r,k(w))b
w
k,r,

and it yields

0 ≤
∑
r∈R

ar

d∑
n=1

yr(π)
d−n

K∑
k=0

α+
r,k(w)b

w
k,r

yr(π) +
∑
j

α+
r,j(w)b

w
j −

∑
j ̸=k

α−
r,j(w)b

w
j

n

+
∑
r∈R

aryr(π)
d

K∑
k=0

(α+
r,k(w)− α−

r,k(w))b
w
k,r. (37)

Observe that

∑
j

α+
r,j(w)b

w
j −

∑
j ̸=k

α−
r,j(w)b

w
j ≤

∑
j

α+
r,j(w)b

w
j ,

≤
∑
j

δr,kπ∗
w
bwj ,

= ywr (π
∗
w),

≤ yr(π
∗),

so that (37) implies

∑
r∈R

ar

d∑
n=1

yr(π)
d−n

K∑
k=0

α+
r,k(w)b

w
k,r (yr(π) + yr(π

∗))
n

+
∑
r∈R

aryr(π)
d

K∑
k=0

(α+
r,k(w)− α−

r,k(w))b
w
k,r ≥ 0. (38)

Observe that

∑
w∈W

K∑
k=0

α+
r,k(w)b

w
k,r ≤

∑
w∈W

K∑
k=0

δr,kπ∗
w
bwk,r = yr(π

∗),

and

∑
w∈W

K∑
k=0

(α+
r,k(w)− α−

r,k(w))b
w
k,r =

∑
w∈W

K∑
k=0

(δr,kπ∗
w
− δr,kπw

)bwk,r = yr(π
∗)− yr(π).

17

Hence, summing inequalities (38) over all w ∈ W, we get

∑
r∈R

aryr(π
∗)

d∑
n=1

yr(π)
d−n (yr(π) + yr(π

∗))
n
+
∑
r∈R

aryr(π)
d [yr(π

∗)− yr(π)] ≥ 0, (39)

which gives

F (π) ≤
∑
r∈R

aryr(π
∗)

d∑
n=0

yr(π)
d−n (yr(π) + yr(π

∗))
n
,

=
∑
r∈R

ar

[
(yr(π) + yr(π

∗))
d+1 − yr(π)

d+1
]
,

=
∑
r∈R

ar (yr(π) + yr(π
∗))

d+1 − F (π). (40)

With Lemma 2, it yields,

2F (π) ≤

(∑
r∈R

aryr(π)
d+1

) 1
d+1

+

(∑
r∈R

aryr(π
∗)d+1

) 1
d+1

d+1

,

=
[
F (π)

1
d+1 + F (π∗)

1
d+1

]d+1

, (41)

from which we obtain

F (π)

F (π∗)
≤
(

1

2
1

d+1 − 1

)d+1

, (42)

which concludes the proof.

18

