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Abstract

The purpose of this study is to determine the feasibility of a mesoscale (< 300 km) cloud 

classification using infrared radiance data of satellite-borne instruments. We present a new 

method  involving  an  index  called  the  diversity  index  (DI),  derived  from  a  parameter 

commonly used to describe ecosystem variability. In this respect, we consider several classes 

of value ranges of standard deviation of the brightness temperature at 11 µm (BT). In order to 

calculate  DI for  128128 km2 grids,  subframes  of  8  km8 km are superimposed to  the 

satellite image, and then  BT is calculated for all 256 subframes and assigned to one of the 

classes.  Each  observed  cloud  pattern  is  associated  with  an  index  characterized  by  the 

frequency of  BT-classes within the scene, representative of a cloud type. Classification of 

different clouds is obtained from Advanced Very High Resolution Radiometer (AVHRR)-

NOAA  16  data  at  1  km  resolution.  Stratus,  stratocumulus  and  cumulus  are  specifically 

recognized  by  this  window  analysis  using  a  DI threshold.  Then,  a  six-class  scheme  is 

presented,  with the standard deviation of the infrared brightness temperature of the entire 

cloud  scene  (c)  and  DI as  inputs  of  a  neural  network  algorithm.  This  neural  network 

classifier achieves an overall accuracy of 77.5% for a six-class scheme, and 79.4% for three-

class,  as  verified  against  the  analyses  of  nephanalists.  As an  application  of  the  proposed 

methodology, regional cloud variability over Pacific is examined using cloud patterns derived 

from  the  Moderate  Imaging  Spectroradiometer  System  (MODIS)  carried  aboard  Earth 

Observing System (EOS)  Terra  polar  orbiter  platform,  for  February  2003 and 2004.  The 

comparison shows regional change in monthly mean cloud types, associated with 2003 El 

Niño and 2004 neutral events. A significant increase in the occurrence of convective clouds 

(+15%) and a decrease in stratiform clouds (-10%) are observed between the two months.
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1. Introduction

Satellite  remote  sensing  is  the  most  effective  method for  investigating  spatial  and 

temporal variations of clouds properties. In particular,  information related to cloud type is 

essential when dealing with climatological problems (Schiffer and Rossow 1983, Stowe et al. 

1988).  Indeed,  cloud  arrangement  is  of  great  importance  for  practical  applications,  since 

different cloud patterns and types can lead to very different values of radiative fluxes. Welch 

and Wielicki (1984) have showed that gaps between clouds modify the reflectivity properties, 

and that different cloud patterns, with the same fractional coverage and water content, can 

produce very different radiative fluxes.  Thus, accurate observations of cloud cover in space 

are important to determine quantitatively the magnitude of clouds radiative forcing (Inoue and 

Ackerman 2002).  Clearly,  cloud inhomogeneities  and cloud spatial  patterns  are  important 

variables (Sengupta  et al. 1990), and the estimation of the spatial inhomogeneity, and more 

specifically, the degree to which the earth's cloud cover is structured and organized remains 

an important issue in cloud study. 

Satellite images (Scorer 1986) highlight that cloud fields are spatially  organized in 

recognizable mesoscale morphologies (Garand 1988, Carvalho and Dias 1998), which may 

reveal specific information on the physical state of the atmosphere. The clouds in a satellite 

picture are either quite randomly distributed or organized into mesoscale cloud formation with 

some regularity of pattern (Plank 1969, Kuo et al. 1993). Such patterns are important both for 

identifying certain cloud types and for explaining the physical processes that produce them. 

The structures in cloud fields (layers, cloud free areas inside ...etc) result from interactions 

between the cloud itself and the ambient atmosphere. Usually, traditional statistical measures, 

such  as  fractional  coverage,  size  distributions  of  cloud  elements,  and  mutual  distances 

between them are used to describe these cloud fields, in particular to model their radiative 

properties. 
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Practical considerations limit representation of this cloud variability in global climate 

and  weather  forecast  models  to  spatial  scales  larger  than  about  100-300  km.  Since  the 

relationship between cloud properties and radiative fluxes is not linear, the presence of cloud 

variability  at  smaller  scales  (we  call  scales  <  300  km,  mesoscale)  creates  biases  in  the 

modelled radiative fluxes. To correct these inhomogeneity effects,  climate models use the 

property of fractional coverage, but it is essential not only to determine cloud cover, but also 

to  distinguish  cloud  type  (low,  middle  and  high)  and  cloud  subspecies  (stratocumulus, 

stratus).  Therefore  the developpement  of  more methods to  consider  additional  large-scale 

cloud  parameters  from  satellites  is  important  to  improve  our  comprehension  of  light 

interactions in the atmosphere system through radiative processes.

Usually, the different cloud types were identified routinely in terms of the forms of individual  

clouds or cloud elements as seen from fixed positions on the ground, prior to the advent of 

weather satellites. A useful reference classification which has been developed in detail is laid 

out in the International Cloud Atlas (W.M.O 1987). From this conventional viewpoint, clouds 

are classified best on the joint bases of their altitudes and general appearances. Characteristics 

of form (i.e., cumuliform or fibrous), brightness pattern (i.e., bands, eddies, etc.), size and 

wavelength, when applicable, are used in classifying clouds.

Taking advantage of multispectral satellite radiometers, standard cloud algorithms rely 

on multispectral signatures to identify high, medium and low clouds. To date, most of cloud 

classification schemes apply a bispectral approach with a combination of infrared (IR) and 

visible channels (VIS) (Tsonis 1984, Inoue 1987, Rossow and Shiffer 1991). Other methods 

use cloud liquid water path derived from microwave channels (Alishouse et al. 1990, Liu and 

Curry  1992,  Liu  and  Curry  1993,  Greenwald  et  al. 1997),  or  combined  infrared  and 

microwave satellite data (Liu et al. 1993, Masunaga et al. 2002). In these classical methods 

the  main  cloud  types  are  separated  according  to  height  (by  reference  to  IR  values)  and 

thickness (by reference to the VIS values). However, most of these schemes have difficulties 
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in distinguishing particular  subspecies cloud types often classifying cloud merely as high, 

medium or low. A mixture of feature types has been shown on other examinations (Garand 

1988, Chen  et al. 1989, Key 1990, Lee  et al. 1990, Gu and Duncan, 1991, Arai, 1993) to 

provide higher classification accuracies than the use of a single or a bispectral type. A review 

of the available schemes is provided by Pankiewicz (1995). Although textural features (Ebert 

1987, Welch  et al. 1988, Kuo et al. 1989, Bankert 1994, Christodoulou et al. 2003) can be 

used to classify cloud subclasses, a drawback of this pixel-by-pixel method, is that it cannot 

detect mesoscale cloud pattern (Garand 1988).  In fact, although useful at a local scale, many 

of these procedures are less efficient in regional applications. 

While the number of approaches to cloud classification continually increases, there 

have been few attempts  to  perform mesoscale  cloud classification  (Garand and Weinman 

1986,  Garand  1988,  Browning  1989,  Carvalho  et  Dias  1998).  However  in  the  visual 

observations  of  satellite  images,  clear  differences  usually  appear  in  mesoscale  spatial 

distribution of the main cloud types,  specially  between scattered cumulus,  composed of a 

large number of clouds or cloud groups and more homogeneous stratiform clouds (Cho 1978, 

Hozumi  et al. 1982). Both theoretical and observational evidences have been presented to 

support cloud field clustering in some cases and cloud field regularity in other cases (Parker 

et al.  1986, Weger et al. 1992, Zhu et al. 1992, Weger et al. 1993). Synoptic analyses have 

been successfully developed (Lau and Crane 1995), but these are most useful when describing 

weather types or air masses within an area up to few thousand kilometres squared.  The fact 

that  organizations  within the earth's  atmosphere are  not infinite  in  form despite  their  rich 

variety in detail, but are composed instead of small group of basic shapes which may recur 

across a wide range of scales raises the question: “Can we translate these observations in a 

statistical way?” 

For mesocale studies the scale of analysis should be compatible with the structure of 

cloud patterns. In their work on image modelling of cloud field, Garand and Weinman (1986) 
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found that  this  scale  should be between 100 and 250 km. Such scale is large enough for 

mesoscale  pattern  to  be  recognizable,  and  small  enough  to  insure  a  high  probability  of 

homogeneity of the cloud type. From these considerations, the scale of analysis employed in 

this study is 128 km, a scale similar to that of climate models. 

The strategy of  this  study is  to  provide  a  simple  index for  regional  cloud studies 

depending on a limited number of parameters characterizing the cloud field. To this aim, we 

use an analogy with a parameter used in ecology and measuring diversity. Indeed, different 

statistical methods have been introduced to characterize the diversity of ecosystems. One of 

these methods is the so-called Shannon-Weaver diversity index (Magurran 1988), which is 

based on the frequency of occurrence of species in a given ecosystem. 

This new methodology, classifying cloud strictly on the basis of spatial infrared brightness 

patterns  derived  from  a  single  channel  is  a  conceptual  reversal  of  schemes  that  use  a 

combination of different channels or sensors. Indeed, only few investigations are concerned 

with  the  potentiality  of  a  single-channel  spatial  classification  scheme.  Only  Welch  et  al. 

(1988) and Lee et al. (1990) have presented a classification based on textural features alone, 

derived from a single near-infrared channel and visible channel respectively. 

The objective of the present study is to investigate the application of a combined DI-neural 

network approach to the cloud classification at mesoscale. As will be shown later in the paper, 

the  neural  network  classifier  only  using  a  single-channel  infrared  imagery  will  allow  an 

accurate characterization of cloud pattern in a simple form, without the explicit  cloud top 

temperature or cloud top pressure information.

The paper is  organized as follows. Section 2 describes  the data.  Section 3 introduces  the 

concept of the diversity index. Section 4 presents the analysis of low-level clouds by means of 

the  diversity  index  and  describes  the  neural  network  approach  applied  to  the  cloud 

classification.  As an application of this method, we compare in section 4c observed cloud 
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patterns associated with two climatic events. Finally, some conclusions and further remarks 

are given in section 5. 

2. Data

For this work we have used a database of cloud patterns representative of different 

cloud types at 1 km resolution obtained from AVHRR-NOAA 16 between June 2003 and 

February  2004  over  ocean.  Six  different  types  of  cloud  patterns  are  used:  stratus  (ST), 

stratocumulus (SC), cumulus (CU), altocumulus (AC), cumulonimbus (CB) and cirrus (CI). 

The cloud fields are obtained from random grids of 128  128 pixels within AVHRR-channel 

4 scenes, calibrated to brightness temperature, giving 40 test grids for a given cloud type. The 

satellite images were labelled into six cloud types by expert analysis (i.e. cloud mask based on 

IR threshold, completed by visual analysis) from the CMS (Centre de Météorologie Spatiale). 

Figure 1 provides examples  of infrared images  for six different  cloud types.  Stratus field 

(figure 1a) is recognizable by its smooth texture and is arranged in a uniform, featureless layer 

of  cloud.  Stratocumulus  (figure  1b)  are  characterized  by a  layer  of  patches  composed of 

masses  arranged in  groups,  lines  or  waves  and having a  soft,  grey  appearance.  Cumulus 

(figure 1c) are detached, dense, clouds typically formed by clouds of width limited to few 

kilometres and often with streets and rolls, both obviously directional patterns. For convective 

regions, one would expect either highly inhomogeneous cloud situations with a large part of 

clear sky, or overcast scenes (figure 1e). Even worse still, from the point of view of a 1-km 

resolution radiometer, clouds are frequently broken or discontinuous, but we will not take into 

account this subpixel heterogeneity. In section 4 we shall try to identify clouds comparing DI 

with well identified cloud types obtained from the CMS experts.
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3. Method

3.1. Diversity Index

The intrinsic variability of cloud’s properties is used to extract structural information 

on clouds and thus to infer subgrid parametrization. This additional information can consist 

either in spectral or in spatial features. Usually, statistical tools are used in order to quantify 

the heterogeneity of clouds: structure functions (Davies et al. 1997), standard deviation (Sèze 

and Desbois 1987, Dioszeghy and Fejes 1995), variance (Miletta and Katsaros 1995) or other 

more complex parameters (Roberti et al. 1994, Mc Collum and Krajewski 1998). However for 

our scale of study, these parameters do not appear adequate to describe the complexity of 

cloud  patterns.  Indeed,  in  a  mesoscale  study  more  information  is  needed  than  the  one 

available  in  radiance  measurements  from each channel  of  an  isolated  pixel.  The required 

additional  information  could  be  obtained  by  textural  features  (spatial  distribution 

characteristics  of gray levels),  but the information on cloud form is  lost  in  the averaging 

process over large area. 

A different way to characterize variability or diversity of a sample is to quantify the 

information within the framework of the information theory. Indeed, quantity of the form: 

 2.log ( )i i
i

H p p      (1)

plays  a central  role in the theory of information  as a measurement  of information  and is 

recognized as the entropy as defined in certain formulations of statistical mechanics where ip  

is the probability of a system being in a state i (Shannon 1948, Weaver and Shannon 1949). 

The  choice  of  a  logarithmic  base  corresponds  to  the  choice  of  a  unit  for  measuring  the 

information. If the base 2 is used, the resulting units are called  bits. The diversity index is 
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inferred  from  the  method  of  calculation  of  the  Shannon-Weaver  diversity  index  (i.e.  a 

parameter  based  on  H  and  devoted  to  the  measurement  of  the  diversity  of  ecosystems) 

(Magurran 1988).  For a given sample, N elements and S classes are considered. As it is only 

a sample, the probabilities are replaced by the observed frequency:

i
i i

N
p f

N
    (2)

where Ni is the size of the ith class in the sample and N the total number of elements in the 

sample  (Ni=N).  The  Shannon-Weaver  diversity  index  corresponds  to  the  entropy,  H’, 

calculated in these conditions: 

 2' .log ( )
S

i i
i

H f f    (3)

In order to adapt the Shannon-Weaver diversity index to cloud patterns analysis, we 

first need to define a suitable parameter and the classes of the system. 

A grid was superimposed on the satellite image. Selected image of 128 km  128 km 

is subdivided into square tiles of 8 km  8 km, for which the clouds are frequently broken or 

discontinuous, thus giving 256 subframes for a given cloud pattern (figure 2). Therefore, each 

subframe encompasses 64 AVHRR pixels. Such a scene-frame-subframe decomposition has 

already been used by Coakley and Baldwin (1984) and Chang and Coakley (1993) in cloud 

cover analyses at two different scales.

Here,  using (3),  with fi the frequency of the ith  class of the standard deviation  of 

brightness temperature, we defined 10 classes of BT (S=10). From these 10 BT-class, one can 

calculate for a given grid, a combination that only depends on the standard deviation of the 

infrared brightness temperature, the diversity index: 
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 
10

2.log ( )
S

i i
i

DI f f


    (4)

with fi=Ni/N and N the total number of 8 km  8 km subframes in the grid area, and Ni the 

number of members of the ith class (fi=Ni/256). To check the dependence of DI on the number 

of  classes,  we have varied  this  parameter  from 8 to  12.  A 10-class  scheme seems to be 

appropriate for a simple and complete description of the cloud patterns. The diversity index 

generally met in all samples, ranges from 1 (0.5 is a very low value) to around 3 and the 

maximum DI is realized by the equal frequency of classes, and are equal to the logarithm in 

basis 2 of the number of classes, here log2(10).

Next,  this  method  works  following  two  steps:  the  first  step  calculates  the  local 

standard  deviation  for  each  subframes  then  the  second one calculates  the  diversity  index 

assigning this BT  to one of 10 defined classes. 

This index differs from the recognized texture measurement of entropy used by other 

investigators who apply texture methods because it uses a fixed grid and is directly defined 

for the entire cloud scene without averaging process. 

 

3.2. Neural network

Neural networks have been applied to a variety of geophysical and remote sensing studies 
(Krasnopolsky and Shiller, 2003; Krasnopolsky and Chevallier, 2003) to solve inverse 
problems either in modelling studies (Tsintikidis et al, 1997, Faure et al. 2001), or in practical 
cloud classification study (Jourdan et al. 2003). Previous results of cloud observation (Aviolat 
et al, 1998), cloud segmentation (Peak and Tag 1994, Yahnn and Simpson 1995) and cloud 
classification (Key et al. 1989, Lee et al. 1990, Welch et al. 1992, Bankert 1994, Bankert and 
Aha 1996, Miller and Emery 1997, Tian et al. 1999) also demonstrate the potential of neural 
network algorithm in cloud study. Neural network are composed of many nonlinear 
computational elements (called neurons) operating in parallel and linked to each other through 
connections. This structure makes neural networks inherently suitable for solving nonlinear 
problems. The determination of the adapted architecture is done in an empirical way, testing 
for various architectures, but there appears to be no simple way for determining the exact 
number of nodes required for these layers to function properly (Lee et al. 1990). Various 
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combinations are investigated with respect to accuracy of the cloud classification. There is no 
simple method of determining the minimum number of hidden nodes for a given problem. We 
find that two hidden layers consisting of 5 and 6 components (neurones) respectively are 
sufficient for the present problem. It seems that fewer nodes do not extract enough 
information to separate the classes adequately and that too many nodes slow-down the 
learning phase without improving accuracy. For the supervised learning, initiated by selecting 
a representative set of pattern examples, the neural network is trained using the Levenberg-
Marquardt algorithm for the back-propagation with MacKay's Bayesian regularization 
(MacKay 1992). The MATLAB neural network toolbox was used. 

The input data are DI and the standard deviation of the infrared brightness temperature 

at 11 µm for the entire scene, c, obtained from AVHRR channel 4.  The outputs are the six 

cloud types namely, ST, SC, AC, CU, CB and CI. Training with the labelled cloud patterns 

allows varying the input  and output  parameters  freely and ensures the consistency of the 

training data. We have to test the generalization ability of the NN trained above to evaluate its 

performance in retrieving the different cloud types. Accordingly, a test data is prepared by 

sampling  randomly  patterns  from  our  database.  Thus,  the  whole  database,  consisting  of 

patterns (128128 km2) chosen randomly within AVHRR cloud scenes of 500 km  500 km 

and 300 km   300 km,  is  randomly  divided into  one  learning  database  and one  testing 

database. To create a relatively large dataset, 25 images are taken from 7 maritime regions of 

the  Pacific  Ocean,  in  the  Northern  Hemisphere  between June  2th and 26th  2003 for  the 

training data, and between June 2003 and February 2004 for the testing data. The training data 

are  taken  at  different  location  and  time.  Therefore,  the  scenes  are  confined  to  neither  a 

specific location nor time of the year. From this set of 25 infrared images, 240 cloud patterns 

(128 km  128 km) were extracted. One-half of the total 240 cloud scenes is used to generate 

the training data for the classifier. The remaining data, consisting of 120 cloud patterns from 

independent  scenes  are  used  as  test  data  to  determine  classifier  accuracy.  Results  of  this 

neural network (NN) methodology, applied to mesoscale cloud classification from channel 4 

emissive band from AVHRR and MODIS data are given in the following section. 

4. Results and discussion
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4.1. Low clouds separation

Usually, the necessary separation between clear and cloudy conditions,  based upon 

infrared  threshold,  strongly  depends  on  regional  conditions,  and  on  the  sensor  spatial 

resolution. Here, the use of  BT provides two advantages upon current thresholding method: 

first, no threshold for clear sky, second: the capacity to separate low-clouds from satellite IR 

data should provide important information during the night when visible data are unavailable. 

Figure  1a-c  shows  examples  of  the  variability  of  low-cloud  cover  in  AVHRR  infrared 

imagery.

If we assume the cloud level known,  DI can be applied for separation into various 

subclasses.  The  three  basic  cloud  subclasses  are  identified  in  table  1,  where  cumulus, 

stratocumulus, stratus are recognized specifically. DI values calculated for infrared images of 

figure 1 are 0.27 (a), 2.44 (b), 2.9 (c), 3.1 (d), 1.42 (e), 2.40 (f) respectively. DI takes high 

values when the AVHRR is observing broken clouds. On the basis of DI we may differentiate 

sheet-like clouds, cumulus-like clouds with a transitional category between the two. For cloud 

patterns belonging to the two stratus classes (stratus and stratocumulus), DI ranges from 0 to 

2.5. For cases (b-c), corresponding to stratocumulus and cumulus, all the values of  DI are 

greater than 1, whereas stratus clouds (figure 1a) tend to have very small values, usually less 

than 1, especially when one get closer to homogenous, overcast scene.  Stratocumulus clouds 

have a larger value of DI than stratus clouds, because fully cloudy pixels with low variability 

of the standard deviation are relatively more frequent for stratiform clouds. Values greater 

than 2.5 correspond to cumulus clouds, with the greatest values for scattered cumulus (>3). 

Figure 1b shows that stratocumulus is composed of closely packed cells of similar brightness. 

Stratiform cloud fields contain clouds of approximately uniform cover, but even within these 

regions, significant variability can exist (Zuidema et Hartmann 1995), therefore  BT can be 

used, and then DI. As described previously, in stratus region, DI exhibits values lower than 1. 

The decrease of DI over this cloud field could be explained by the fact that stratiform patterns 
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are homogeneous,  and near  overcast  sky pattern  exists.  Whereas  cumulus  exhibits  a  high 

variability, stratus is quite regular and DI is low. Note that, the more uniform the distribution 

of clouds, the lower is the variability and the lower becomes the DI. On the other hand, high 

DI indicates high variability and irregular cloud patterns. 

In order to test the effect of sensor spatial resolution upon  DI, we have applied our 

index to degraded 2 km-resolution AVHRR data simply obtained by spatial averaging and to 

4  km-resolution  GOES-12  infrared  radiance  data  (channel  4)  calibrated  to  brightness 

temperature for July 7th 2003 over Indian Ocean (figure 3). 

The contrast of cloud patterns that appeared between figure 1 and figure 3 is found in 

table 2, that shows the classification obtained for AVHHR-degraded and GOES data, where 

the stratus class corresponds to any stratiform class (stratus, stratocumulus), and hence the 

different classes tend to overlapped. This difference in cloud separation reflects changes in 

apparent cloud pattern, and suggests that DI strongly depends on the spatial resolution. DI has 

also been evaluated at higher scale (256256 km2), using GOES data, but the 4 km resolution 

renders cloud character more difficult to discern. The individual components of many types of 

clouds fields are also too smoothed for resolve cloud types. The spatial scale enters in very 

important way in the definition of the diversity index, because when the grid size changes, 

new causes of heterogeneity may be introduced and diversity can either increase or decrease. 

Finally, for a complete classification,  DI alone does not allow to separate middle and high-

levels cloud to low-levels, as in the case of altocumulus (figure 1d) which may be put into the 

same class  as  cumulus.  However,  this  kind  of  separation  can  be  more  reliably  achieved 

through a combined analysis of DI with another parameter. In the next sections,  thanks to a 

NN approach  using  DI and  an  additional  spatial  feature,  the  cloud  classification  will  be 

extended to middle and high-level clouds. 

4.2. Application to cloud classification
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The  positive  results  in  the  previous  section  prompt  a  more  general  classification, 

presented in this section.  In order to generalize the class separation process, a further step has 

to  be added to the low-clouds separation  of  section 4a.  Although largely used,  the mean 

brightness temperature seems not adequate because at this scale, the presence of large holes 

within clouds makes the influence of the ground dominating. We prefer to exploit the spatial 

information  with  an  additional  parameter  taking  into  account  the  variations  of  infrared 

radiances over the cloudy scene. Sèze and Desbois (1987) and Dioszeghy and Fejes (1995) 

suggested the use of the standard deviation fields of the brightness values, as a simple textural 

information  of  the  cloud.  Here  we  use  the  standard  deviation  of  the  infrared  brightness 

temperature, c,  computed in the 128128 pixel square. 

Thus,  only two features  that  characterize inhomogeneous clouds were selected:  DI 

calculated from equation (3), and c.  The steps of the classification scheme are as follows: 1) 

the  cloud  patterns  are  subdivised  in  88  subframes,  2)  for  each  subframe,  the  standard 

deviation of the infrared britghtness temperature (BT) is estimated in order to calculate DI, 3) 

For each 128128 subframe the standard deviation of the infrared brightness temperature (c) 

is derived, 4)  DI and mean c are combined and are used as inputs of the NN algorithm. 

Results are illustrated in terms of comparisons between cloud classes from NN and 

from the experts’ classification. Theses results produce the confusion matrix shown in table3, 

which shows that the algorithm works well for identifying the main cloud types. As shown in 

table  3,  63.8% of the SC are classified correctly  and 13.5 % are misclassified as stratus. 

However, SC has the lowest accuracy of 63.8%, with a strong tendency to be misclassified 

either as stratus or as CU, AC and CB. ST is classified with an accuracy of 85.5% and shows 

tendencies to be misclassified, both as AC and as SC. CB is classified with an accuracy of 

76.3% and shows tendencies to be classified either as SC or CI. Likewise, 97.7% of cumulus 

are classified correctly, with none misclassified as altocumulus, cumulonimbus and cirrus and 
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2.1% misclassified as stratocumulus. Finally, 69.7% CI are classified correctly, with 30.3% 

misclassified as stratocumulus. In 5 of the 6 classes, 70% or more of the samples are correctly 

classified. However, there are common problems such as discriminating the CB from CI, the 

two cloud types are often classified as the same type. For example, in the common case of 

frontal cloudiness, cirrus can overlap nimbostratus leading to a misclassification of these two 

particular cloud types. Moreover,  a significant portion of the misclassification also occurs 

between cirrus and SC. A possible explanation stems from the fact that high-level cirriform 

cloud fields often show "fuzzy" patterns and stretch along the wind field. Nevertheless, the 

overall classification accuracy is 77.5%. 

As the high variability regions of cumulus cloud fields exhibit highest accuracy values, 

this  method may be applied  to cumulus  detection,  which is  crucial  for the knowledge of 

cumulus cloud climatology, and to develop realistic models for cloud field structure useful in 

radiative transfer models (see for example Wielicki and Welch 1986, Sengupta et al. 1990). 

The main advantage of the presented neural network method consists in the possibility 

to easily achieve different levels of classification. As an example, table 4 exhibits the result 

obtained using DI and mean m as NN inputs for a three-class algorithm. Clouds are classified 

as high (CB, CI), middle (AC) and low (ST, SC, CU) clouds. Here, middle clouds have the 

lowest  classification  accuracy  in  this  approach  (64.8%).  This  poor  performance  is  partly 

attributed  to  the  lack  of  samples  (middle  clouds  count  only  one  class).  Low  clouds  are 

retrieved with an accuracy of 87.8%, and high at 85.5%. The misclassification of high clouds 

as low one is due in part to overcast CB characterized by homogeneous distribution associated 

with DI values close to those of ST. Overall accuracy for the classifier is 79.4%. 

As there is no mesoscale classification using neural network algorithms, the accuracy 

which can be attained at this scale remain poorly documented and we can only compare our 

results with those at pixel scale. For example, Bankert and Aha (1996) found accuracies of 
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92.0%, 83.0% and 90.9% for low, middle and high clouds respectively, for a five-class NN 

classifier, with 2 channels (IR, VIS) and 13 spectral and textural features. 

In any case, our method provides an efficient way to classify cloud types that can be 

used in climatological or meteorological applications. In the following section we shall report 

on our attempts to classify the main cloud patterns that occur during two climatic conditions 

over ocean.

4.3. Climatological application

Satellite identification of clouds and cloud organizations remain the main key to many 

uses of satellite images in meteorology and climatology. Mesoscale approaches can generally 

be  subdivided  by the  type  of  climatological  phenomena  evaluated,  as  well  as  the  spatial 

applicability of each approach (Browning 1989). Here, in such climatological perspective, DI 

is applied to the climatology of clouds occurrence during two climatic conditions associated 

with  the  El  Niño  Southern  Oscillation  (ENSO).  El  Niño  occurs  when  sea-surface-

temperatures in the equatorial Pacific Ocean remain significantly above average for three or 

more months, which can change atmospheric and weather patterns around the world (Neelin 

et al. 1998). In the beginning of 2003, El Niño has reached its mature stage (Vecchi and 

Harrisson 2003), whereas in February 2004 the conditions in the equatorial Pacific are near 

average, or what meteorologists call, ENSO-neutral. During the ENSO-neutral periods other 

climate patterns, such as the Pacific North America pattern, become dominant players that 

could affect cold-season temperature and precipitation patterns over North America, and there 

is  a  higher  degree  of  uncertainty  in  what  we  can  expect  in  regards  to  temperature  and 

precipitation patterns. Our ability to predict El Niño is dependent of our global understanding 

of the air-sea interaction over the Pacific area, and therefore on our understanding of clouds 

dynamics and occurrences.
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For this climatological application, the same procedure as in section 4b is applied but 

this time with satellite  images collected over the Pacific ocean (1°N-1°S, 103°W-99°W) from 

the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  aboard  Terra  platform. 

MODIS measures radiation in 36 narrow spectral bands situated between 0.4 and 14.4 µm, in 

sun-synchronous orbits. The 1B data channel 31, at 1 km resolution is used in this application.

Each image is  divided into eight  128   128 pixel  subregions for classification.  A 

further subdivision of each of these regions into sets of 88 pixel smaller subregions is made 

for the computation of the diversity  index. Each of the grids is  identified and labelled as 

belonging to one of six classes. For the two months, daily index of the cloud type are built 

from about 500 scenes categorized into 6 classes. We focus on cloudy patterns in selecting 

only grid with cloud fraction higher than 5%.

Regional  diurnal  cloud  variability  is  examined  using  cloud  patterns  derived  from 

February 2003 and February 2004 MODIS 11 µm infrared data. Figure 5 describes the zone 

of study (512 km  256 km). An example image with MODIS channel 31 sample regions 

(128  128) marked in boxes is presented in figure 5. Figure 6 depicts representative cloud 

patterns and their associated  DI. We can observe complex patterns in the convective cloud 

fields, whereas a continuous gradient is more apparent for ST. In particular, as for AVHRR 

data,  low  values  are  associated  with  stratiform  clouds,  whereas  higher  DI is  found  for 

convective clouds at various stages of development.  DI ranges between 0.71 (ST) and 3.07 

(CU) over the wide range of observed conditions. For (c) and (d) DI is near 2.5 and no rough 

differences are found among CU and AC. Convective clouds have an horizontal dimension of 

few kilometres, which is small compared to our scale of study. Only a part of the grid is  

therefore usually covered by clouds (cf. figure 6a). Stratus (figure 6a) are predominantly pale 

grey and contrast markedly with the very bright appearances of cumulonimbus (figure 6d and 

6e).
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Frequency of occurrence of each cloud type has been established to interpret the prevailing 

sky conditions. Table 5 provides the cloud type occurrences for February 2003 and 2004 in 

six classes and clear sky, in a 4°2° area, yet permits rapid comparison of monthly cloud 

pattern across a relative large region. 

The low occurrence of CU (7.5 %) in 2003 indicates a low variability of the cloud 

sequences containing sparse patterns like in figure 6b. Completely overcast conditions (ST) 

are  more  likely  to  be  found during  this  period,  which  shows a  quite  uniform repartition 

between  the  different  cloudy  patterns.  On  the  other  hand,  February  2004  exhibits  more 

complex patterns, through the presence of CB. A closer look reveals that February 2004 was 

characterized  by  several  convective  events  that  lasted  8  days  between  the  tenth  and 

seventeenth. As a result, mesoscale convective patterns (CB) are more frequent during this 

period. The comparative analysis between the two months reported differences among cloud 

patterns  within  the  same region. First,  the  largest  cloud variations  occur  for  CB with  an 

increase of 10% between the two events. Further comparisons show that in 2004 CB generally 

appear two times more than CI.  February 2003 show an opposite occurrence. A remarkable 

result is that ST occurred less than 5% of the time as opposed to 22.5% for convective clouds. 

February 2004 is characterized by a value of ST 10% lower than in February 2003. As these 

two types of clouds have an opposite radiative role, one can expected very different radiative 

effects. Not all patterns demonstrate this magnitude of temporal variability (CB and ST) for 

example CU and SC are quite constant. Finally, high clouds (CI), and midlevel clouds occur 

most frequently during the 2003 ENSO-related event. On the average, clear sky varied about 

10% in this area too. The increase of CB during the neutral period could be explained by the 

presence of highly unstable air. Most complex structures can be observed in such patterns, 

develop  in  response  to  a  wide  variety  of  atmospheric  and  surface  factors,  including  the 

strength of horizontal air motion, the intensity of convection and its organization, vertical and 

horizontal variations in wind speeds.
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Stratus (ST) tend to occur extensively or not at all; extensive stratus occurred on 5, 6 

and  16  February  but  no  such  cases  happened  in  February  2004,  resulting  in  a  marked 

discrepancy for that class. The patterns related to convection (CB and CU) account for 30% of 

the samples in Feb 2004, whereas they account for only 15% in 2003.

Throughout these spatial and temporal changes, the influence of large scale climatic 

regime on regional cloud pattern is clear. Results from this analysis has revealed dominant 

patterns which tended to be replaced by other patterns which were in minority in the previous 

conditions. The amount of cloud patterns in the different classes gives insight on the variation 

in atmospheric conditions which could be associated with changes in oceanic conditions such 

as increase or decrease in SST. Indeed, most tropical precipitation can be characterized by 

convective  and  stratifom systems  (Houze  1993).  Convective  systems  are  associated  with 

strong  vertical  velocity  fields,  small  area  coverage  cells,  and  high  rainfall  intensities. 

Stratiform systems are characterized by widespread slow ascent velocity  fields,  associated 

with low rainfall intensities. At low latitudes convective systems heat the atmosphere due to 

condensation of water vapor, while stratiform system cool the atmosphere due to evaporation 

of raindrops. As a result of the above differences, each system impacts on the ocean mixed 

layer characteristics and the sea surface surface temperature differently (Webster and Lukas 

1992). However, a detail analysis of ocean and climate dynamic over this region is beyond the 

scope of this cloud study.

Regions such as the tropics will present a great challenge because of a frequent overlapping of 

various  clouds  types.  Due  to  the  above  difference  the  two  systems  have  different  latent 

heating profiles which impact the earth's climate differently. Therefore, the presence of CB, as 

opposed to low-stratiform clouds may have a larger impact upon cloud albedo. The proposed 

method  will  help  to  quantify  the  complexities  of  cloud  patterns,  important  information 

especially for modellers, who have to parameterize subgrid effects for a better knowledge of 
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radiative effects of inhomogeneity (Stubenrauch et al. 1999). Categorization into cloud type 

provides the capability of directly assessing changes in the clear-sky albedo and long-wave 

flux.  However,  there  is  still  considerable  research  (field  measurements  and  numerical 

simulations as well) required to fully understand the physical process which maintain cloud 

fields and their properties.

As a summary, despite the fact that these results are only of regional meteorological 

significance, the DI-NN method could have important climatological applications, such as the 

determination of climatic changes based on variations in cloud frequencies and character, and 

in precipitation characteristics (convective or stratiform). 

5. Conclusions

In  the  present  study,  we  investigated  the  application  of  a  new  index  of  cloud 

variability,  the  "diversity  index",  combined  to  a  NN  approach  applied  to  the  cloud 

classification.  The characterization of cloud fields is  investigated in terms of the standard 

deviation  of  infrared  brightness  temperature  variability  at  two different  scales  (local-  and 

mesoscale). The  advantages of this new method are the small amount of computing time, and 

that no other data are required than one of infrared channel values, for each grid. Moreover, as 

this  method uses  only infrared  radiances,  it  should provide  equally  good results  for  both 

daytime and night time observations. And, especially, as this classification does not depend 

on clear-sky threshold, it could be applied over land, and therefore, to cloud scenes confined 

to neither a specific location nor time of year. A significant finding is that relatively high 

accuracies are attained with this simple approach only based on two features as inputs of the 

neural network classifier, without information related with cloud top temperature or cloud top 

pressure. An analysis of AVHRR data revealed that, assuming the cloud-level known, DI can 

be  used  to  separate  low-level  clouds  into  three  subspecies  (stratocumulus,  cumulus  and 

stratus). This window technique, allows a fairly good separation of cumulus fields from those 
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covered  by  stratiform  clouds,  a  difficult  exercise  in  a  pixel-by-pixel  analysis.  Then,  a 

classification algorithm, implemented and tested with AVHRR data at 1 km resolution,  is 

presented. In contrast to most existing cloud classification algorithms that combine visible and 

infrared  channel,  our  NN method only  incorporates  two parameters:  DI and  the  standard 

deviation  of  the  infrared  brightness  temperature  at  11  µm (c),  representing  texture  and 

heterogeneity characteristics of the cloud fields respectively. This study finds that a DI-based 

neural network classifier only using single-channel infrared data can achieve overall cloud 

identification accuracy of 77.5% for six cloud types. Stratus is retrieved with an accuracy of 

85.5%, and stratocumulus is worst, with an accuracy of 63.8%. Cirrus can be distinguished 

from low-layer cloudiness with an accuracy of 69.7%. In a more general classification in three 

cloud types (low, medium and high), near 80% of the samples are accurately classified. It is 

significant that the present method is capable of distinguishing high clouds from low-level 

clouds strictly on the basis of spatial brightness patterns. However, misclassifications may 

occur with confusion between stratocumulus break-up regions and cumulus, between overcast 

scenes with cumulonimbus or stratus, or when different types of cloud are met within a grid 

box.  Therefore,  further  analysis  should  be  directed  towards  the  detection  of  mixed  and 

multilayered clouds. 

As a simple illustrative application of this technique we extend our analysis to a brief 

climatological study from the high resolution MODIS data for February 2003 and February 

2004. The main conclusion is that the method clearly enables one to distinguish different 

cloud pattern occurrences, and is also particularly suited for determining regional changes, 

such as climatic variability. In an ENSO-neutral comparison of cloud types over a limited 

region,  we  observed  a  significant  increase  in  CB  in  2004  associated  to  larger  scale 

phenomenon. Moreover, as this infrared technique, gives reasonable results in terms of the 

breakdown of the cloud fields into convective and stratiform categories, it raises hope in a use 

in precipitation regime analysis. Throughout this regional study, the ability of the algorithm to 

22



characterize the main cloud types observed by satellite with a limit number of parameters is 

clearly demonstrated. However, this classification could be improved with other configuration 

of the network (see for example Bankert (1994) with a two-layer, three-network system that 

produces the classification from a more general to a more specific class). The classification 

accuracy can also be improved by increasing the data base to obtain the most representative 

cloud situations. 
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Table Captions

Table 1. DI from AVHRR infrared measurements versus low-cloud subspecies.

Table 2. DI from infrared measurements versus low-cloud subspecies for AVHRR-2 km  and 

GOES data. 

Table 3. NN cloud classification from AVHRR data test. Overall accuracy is 77.5%.

Table 4. Three classes classification. Overall accuracy is 79.4%.

Table 5. Occurence of cloud types (%) during February 2003 and February 2004.
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Figure Captions

Figure 1:  Infrared (right)-visible (left) pairs of AVHRR cloud patterns (128 128 km2): ST 

(a), SC (b), CU (c), AC (d), CB (e), CI (f). The clouds in the image appear as bright 

shades against a dark  ocean background.

Figure 2: Method of calculation of the Diversity Index.

Figure 3:  Infrared (down)-visible (up) pairs of GOES-12 images (128 128 km2), ST (a), SC 

(b), and CU (c).

Figure 4:  Location of the region of analysis over equatorial Pacific.

Figure 5:  High-resolution images from 11 µm radiances for eight 128   128 km2 regions 

over the Pacific ocean centred at 0°N-101°W, for February 4th, 2004. The clouds in the 

image appear as bright shades against a dark ocean background.

Figure 6:  Examples of MODIS cloud patterns classify as ST (a), CU (b), CB (c, d, e) and CI 

(e). DIs are 0.96, 3.07, 2.74, 2.46, 2.07, and 2.71 respectively. 
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Cloud Type Stratus Stratocumulus Cumulus
Diversity Index 0-1 1-2.5 > 2.5

Table 1.

Stratus Stratocumulus Cumulus
DI from AVHRR 2 km 1.5-2.9 2.3-2.9 > 2.9
DI from GOES 4 km

128´128 km2
0.5-1.9 1.5-2 1.5-2

DI from GOES 4 km

256´256 km2
0-3 2.8-3 2.5-3.1

Table 2. 

ST SC CU AC CB CI
ST 85.5 7.4 0.3 6.8 0 0
SC 13.5 63.8 7.2 7.1 7.2 1.2
CU 0.2 2.1 97.7 0 0 0
AC 8.8 9.5 0.6 71.8 8.9 0.3
CB 0.3 11.1 0.8 0.8 76.3 10.9
CI 0.2 30.3 0 0 0 69.7

Table 3. 

Low Middle High
Low 87.8 7.3 4.9

Middle 17.9 64.8 17.3
High 14.3 0.2 85.5

Table 4. 

ST SC CU AC CB CI Clear
Feb. 2003

ENSO
13.6 10.9 7.5 14.3 7.5 16.4 29.8

Feb. 2004
neutral

3.6 9.1 9.7 4.3 22.5 11.6 39.2

Table 5. 
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