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Kirkwood-Dirac nonclassicality, support uncertainty and complete incompatibility

Stephan De Bièvre1
1Univ. Lille, CNRS, UMR 8524, Inria - Laboratoire Paul Painlevé, F-59000 Lille, France

Given two orthonormal bases A = {|ai〉} and B = {|bj〉} in a d-dimensional Hilbert space H, one
associates to each state its Kirkwood-Dirac (KD) quasi-probability distribution. KD-nonclassical
states – for which the KD-distribution takes on negative and/or nonreal values – have been shown
to provide a quantum advantage in quantum metrology and information, raising the question of
their identification. Under suitable conditions of incompatibility between the two bases, we provide
sharp lower bounds on the support uncertainty of states that guarantee their KD-nonclassicality. In
particular, when the bases are completely incompatible, a notion we introduce, states whose support
uncertainty is not equal to its minimal value d+1 are necessarily KD-nonclassical. The implications
of these general results for various commonly used bases, including the mutually unbiased ones, and
their perturbations, are detailed.

I. INTRODUCTION

The nonclassical features of quantum mechanical states can be of a very diverse nature. Incompatible, noncom-
muting and complementary observables, (de)coherence, interference, uncertainty principles, negativity or non-reality
of quasi-probability distributions, entanglement, noncontextuality and nonlocality constitute a non-exhaustive list
of concepts used to evaluate the degree to which quantum states of a variety of physical systems may or may not
exhibit manifestly nonclassical behaviour in various experimental situations. Partially in order to obtain a better
understanding of quantum mechanics and partially because such nonclassical behaviour has proven essential for a
number of tasks in quantum information theory and metrology, the study of their properties and of the relationship
between them attracts continued attention [1–17]. This is in particular so when the Hilbert space of states H is finite
dimensional, as for systems of qudits or qubits, which is our focus here.

Given orthonormal bases A = {|ai〉} and B = {|bj〉}, the Kirkwood-Dirac (KD) distribution of a state ψ [18, 19] is
the quasi-probability distribution

Q(ψ)ij = 〈ai|ψ〉〈ψ|bj〉〈bj |ai〉, 1 ≤ i, j ≤ d, (1)

similar in spirit to the Wigner distribution [20, 21] in continuous variable quantum mechanics. It is complex-valued and
satisfies

∑
ij Q(ψ)ij = 1, with marginals

∑
j Q(ψ)ij = |〈ai|ψ〉|2,

∑
iQ(ψ)ij = |〈bj |ψ〉|2. A state ψ ∈ H is KD-classical if

its KD-distribution is real nonnegative everywhere so that its KD-distribution is a probability distribution. If not, it is
KD-nonclassical. KD-nonclassicality is used in quantum tomography [5, 6, 9] as well as in the theory and applications
of weak measurements, (non)contextuality, and their relation to nonclassical effects in quantum mechanics [2, 7, 8, 12].
Also, KD-nonclassicality provides an operational quantum advantage in postselected metrology [14].

This poses the question how to ensure the prevalence of KD-nonclassical states? The KD-distribution and hence
the KD-nonclassicality of ψ depend not only on ψ, but also on A and B. In applications their choice is linked to
the identification of two observables A and B of which they are eigenbases. The questions are therefore: under what
conditions on A and B are most states KD-nonclassical and where in H are those states located?

A form of incompatibility or of noncommutativity is needed between the projectors |ai〉〈ai| and |bj〉〈bj | for KD-
nonclassical states to exist. Indeed, if for example A and B have nondegenerate spectra, and if they are compatible in
the usual sense that [A,B] = 0, then all those projectors commute, and therefore each |ai〉 is up to a phase equal to some
|bj〉. It is then immediate from (1) that Qij(ψ) ≥ 0 for all ψ so that there are no KD-nonclassical states in H. Under
the assumption that A and B are incompatible in the sense that they do not commute, a sufficient but non-optimal
condition for a state to be KD-nonclassical was given in [15]. In the present paper, we sharpen and optimize that
result in several ways. We start our analysis from the observation that the above notion of incompatibility, and others
close to it [3, 10, 13, 16, 17], is weak, since it is based on the negation of a very strong notion of compatibility, namely
that A and B commute. We introduce two increasingly restrictive notions of incompatibility, strong incompatibility
and complete incompatibility, not obtained by negating a form of commutativity, but emanating directly from an
analysis of incompatible successive measurements.

We show that under these hypotheses, the KD-(non)classical states can be identified through their support un-
certainty, a measure of their uncertainty with respect to their A- and B-representations [See Eq. (2)]. We illustrate
the power of these general results by analyzing the KD-nonclassicality for spin bases, for mutually unbiased bases
(MUBs), including the discrete Fourier transform (DFT), and their perturbations.
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II. STRONGLY INCOMPATIBLE BASES

Let U be the unitary transition operator between A and B, defined as U |aj〉 = |bj〉, with matrix elements Uij =
〈ai|bj〉 in A. Let m2

A,B = mini,j |〈ai|bj〉|2, M2
A,B = maxi,j |〈ai|bj〉|2, then

0 ≤ mA,B ≤ d−1/2 ≤MA,B ≤ 1.

It is easily seen that A and B are incompatible in the sense of “noncommuting” iff there exist 1 ≤ i, j ≤ d so that
0 < |〈ai|bj〉|2 < 1. Hence, if MA,B < 1, the bases are incompatible. The converse is not true; however, we note that
MA,B = 1 if and only if there exist k ≥ 1 states in A that are equal, up to a phase, to states in B. Reordering the
bases, we have |ai〉 = |bi〉 for i ∈ J1, kK. The KD-distribution then satisfies Qij = |〈ai|ψ〉|2δi,j for i, j ∈ J1, kK. It
is moreover block-diagonal and one can therefore restrict the KD-nonclassicality analysis to the (d − k)-dimensional
Hilbert subspace orthogonal to the common basis vectors. Without loss of generality, we therefore assume that
MA,B < 1.

Definition 1. We say A and B are strongly incompatible (STROINC) bases if, for all 1 ≤ i, j ≤ d, 〈ai|bj〉 6= 0 or,
equivalently, if 0 < m2

A,B ≤ |〈ai|bj〉|2 ≤M2
A,B < 1.

Strong incompatibility is easily checked to be equivalent to the requirement that none of the projectors |ai〉〈ai|
commutes with any of the |bj〉〈bj |. It is therefore stronger than the usual notion of incompatibility, which only requires
that at least one pair of those projectors does not commute. For example, consider an integer spin s. Then it is easily
checked using the explicit expression for the Wigner rotation matrices [22] that

mJxJz := min
m,m′

|〈mx = m|mz = m′〉| = 0,

where Jx, Jy, Jz are the spin operators and, for m ∈ J−s, sK, J`|m` = m〉 = m|m` = m〉. (See Appendix D.) For
example, when s = 1, 〈mz = 0|mx = 0〉 = 0. Hence, Jx and Jz do not commute, but they are not strongly
incompatible.

The condition mA,B > 0 means that, if the system is in the state |ai〉, and a measurement in the B-basis is made,
then any of the post-measurement states |bj〉 occurs with a nonvanishing probability |〈ai|bj〉|2 ≥ m2

A,B. The same holds
with the roles of A and B reversed. Consequently, the larger mA,B, the greater the uncertainty in the measurement
outcomes. Hence a larger value of mA,B points to a stronger incompatibility. The uncertainty is maximal when
m2
A,B = d−1, in which case one easily sees |〈ai|bj〉|2 = d−1 for all i, j so that all the aforementioned measurement

outcomes are equally probable. In view of this observation such bases can be considered maximally incompatible. They
are known as mutually unbiased bases (MUBs) and have found numerous applications in various quantum information
protocols [5, 23–27]. We refer to [28, 29] for reviews on MUBs. We can conclude that strong incompatibility naturally
interpolates between mere incompatibility and mutual unbiasedness with the parameter 0 < mA,B ≤ d−1/2 providing
a measure of the strength of the incompatibility.

III. SUPPORT UNCERTAINTY

To decide if ψ is KD-nonclassical with respect to two STROINC bases, we use its support uncertainty nA,B(ψ), a
notion of uncertainty that has proven useful in various contexts previously [30–34]:

nA,B(ψ) := nA(ψ) + nB(ψ). (2)

Here nA(ψ) (respectively nB(ψ)) is the number of nonvanishing 〈ai|ψ〉 (respectively 〈bj |ψ〉). One should think of nA(ψ)
as the size of the support or the “spread” of the probability distributions |〈ai|ψ〉|2 and 〈bj |ψ〉|2 of the state ψ in the A-
and B-representations, which is one possible measure of their uncertainty. Many other such measures exist, notably the
entropic ones [35, 36]. More precisely, we introduce the A-support and B-support of ψ: Sψ = {i ∈ J1, dK | 〈ai|ψ〉 6= 0}
and Tψ = {j ∈ J1, dK | 〈bj |ψ〉 6= 0}. Then

nA(ψ) = |Sψ| 6= 0, nB(ψ) = |Tψ| 6= 0; (3)

here |S| denotes the number of elements in S. Clearly, nA,B(ψ) is a global measure of the uncertainty inherent in ψ,
with respect to these two representations. We also introduce the minimal support uncertainty nmin

A,B of the bases A,B
as nmin

A,B = minψ 6=0 nA,B(ψ). We call the collection of all points (nA, nB) in the nA-nB plane for which there is a ψ

so that nA(ψ) = nA and nB(ψ) = nB the uncertainty diagram of the bases; see Fig. 1. To delimit the uncertainty
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FIG. 1. Uncertainty diagrams. Dashed curve: nA(ψ)nB(ψ) = M−2
A,B. Dot-dashed line: nA(ψ) + nB(ψ) = d + 1. Diamonds

(blue): KD-nonclassical states. Squares (red): KD-classical states. (a) Complex MUBs; d = 4, M−2
A,B = 4, nmin

A,B = 4 < 5. (b)

Perturbed MUB as in Eqn. (7); d = 4, ε = 0.1, M−2
A,B = 2.97 < 4, nmin

A,B = 5. (c) DFT; d = 5, M−2
A,B = 5, nmin

A,B = 6. (d) DFT,

d = 6, M−2
A,B = 6, nmin

A,B = 5 < 7. (e) Spin 2 transition matrix; d = 5, M−2
A,B = 8/3 < 5, nmin

A,B = 4 < 6. Hexagons (magenta):
KD-classical and KD-nonclassical states.

diagram from below, we use an uncertainty principle originally shown for the Fourier transform on finite groups [30],
but which has much larger validity [33, 34]. It reads

nA(ψ)nB(ψ) ≥M−2A,B. (4)

This follows immediately from

1 = |
∑
ij

Qij | ≤
∑
ij

|Qij | ≤MA,B
∑
ij

|〈ai|ψ〉||〈bj |ψ〉|

≤MA,B(
∑
i∈Sψ

|〈ai|ψ〉|)(
∑
j∈Tψ

|〈bj |ψ〉|)

≤MA,B
√
nA(ψ)nB(ψ). (5)

It follows the entire uncertainty diagram lies above or on the hyperbola nAnB = M−2A,B. Eqn. (4) implies that

nmin
A,B ≥

2

MA,B
. (6)

Eqn. (4) yields more information when MA,B is small than when MA,B is large. In the case of MUBs, Eqns. (4)

and (6) become nA(ψ)nB(ψ) ≥ d, nmin
A,B ≥ 2

√
d. Fig. 1 (a)-(d) shows representative examples of uncertainty diagrams

of STROINC bases, on which the KD-(non)classical nature of the states has also been indicated. [For the details
of the computations, see below and the Appendices.] In dimension 4, all MUBs are known [37]. They all display
the same uncertainty diagram, shown in Fig. 1-(a). Fig. 1-(b) shows the uncertainty diagram for a perturbed MUB
matrix U of the form

U(ε) = exp(−iεL)U, (7)

where L is self-adjoint. In the figure, Ljk = −Lkj = i, 1 ≤ j < k ≤ d. Fig 1-(c)&(d) concern bases with transition
matrix UDFT,i,j := 〈ai|bj〉 = 1√

d
exp(i 2πd ij), the discrete Fourier transform (DFT) in dimensions d = 5 and d = 6.

Fig. 1-(e) shows the uncertainty diagram for the eigenbases of Jz and Jx for a spin 2. As indicated above, these bases
are not STROINC. One notes the presence of numerous classical states in the uncertainty diagram, a phenomenon
we shall explain.

Our results below show that the observed location of the KD-(non)classical states in these and other uncertainty
diagrams can be predicted from the incompatibility properties of the bases used and the uncertainty properties of the
states considered.

IV. CHARACTERIZING KD-NONCLASSICALITY

One observes in all panels of Fig. 1 that there are no KD-classical states above the nonclassicality edge, by which we
mean the line segment in the first quadrant defined by nA + nB = d+ 1. This is explained by the following theorem.
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Theorem 2. Let A,B be STROINCs on a d-dimensional Hilbert space H. Then, if ψ ∈ H satisfies

nA,B(ψ) > d+ 1, (8)

then ψ is KD-nonclassical. Equivalently, if ψ is KD-classical then nA,B(ψ) ≤ d+ 1.

The proof, which sharpens an argument in [15], is given in Appendix A. The lower bound in (8) is optimal in
the sense that the support uncertainty of the basis vectors of STROINCs, which are all KD-classical, equals d + 1.
Nevertheless, while both optimal and sufficient for KD-nonclassicality, (8) is not necessary: as can be observed in
Fig. 1 (a)-(d), KD-nonclassical states may occur below and on the nonclassicality edge. While the transition matrix
between the Jz and Jx bases for a spin 2 is not STROINC since it contains zeroes, it will be shown elsewhere [38]
that the conclusion of the theorem holds under weaker conditions than strong incompatibility that are satisfied in
this case. This explains the absence of KD-classical states above the nonclassicality edge in Fig. 1-(e).

In [15], it was shown that, if none of the |ai〉 are equal (up to a phase) to any of the |bj〉, then the condition

nA(ψ) + nB(ψ) > b3d/2c (9)

implies ψ is KD-nonclassical; here bxc is the integer part of x. While this estimate holds under weaker conditions on
the overlaps 〈ai|bj〉 than mA,B > 0, it is not optimal as for example when the bases are STROINC and if d ≥ 4, since
then b3d/2c > d + 1; the difference between the lower bounds is increasingly pronounced for larger d. For example,
for d = 6 (see Fig. 1 (d)), our bound shows all states with nA,B ≥ 8 are KD-nonclassical, while the bound of [15] only
guarantees this if nA,B ≥ 10.

The theorem provides an upper bound to the support uncertainty of KD-classical states. As such, it is interesting
to compare the situation with the one familiar from quantum mechanics and quantum optics where the “classical”
states are the coherent states. They can be characterized as those that minimize the total noise (∆Q)2 + (∆P )2, a
known measure of uncertainty for pure states [39–42]. Here Q and P are two conjugate observables that satisfy the
canonical commutation relation [Q,P ] = i which expresses the very strong sense in which they fail to commute, and
– in this sense – their very strong incompatibility. The question then naturally arises in the discrete setting as well
under which condition on the bases A and B the support uncertainty of all KD-classical states equals the minimal
support uncertainty nmin

A,B? Note that this is the case in Fig. 1-(b)&(c), but not in Fig. 1-(a), (d)&(e). We show
below that a sufficient condition for this to happen is that the two bases are completely incompatible, a notion we now
introduce.

V. COMPLETE INCOMPATIBILITY

A. Completely incompatible bases: definition

Let A be as above and define, for any index set S ⊂ J1, dK, the orthogonal projector

ΠA(S) =
∑
i∈S
|ai〉〈ai|.

We write ΠA(S)H for the |S|-dimensional subspace of H onto which it projects. One should think of ΠA(S)H as the
set of all states ψ whose A-support Sψ lies in S.

Definition 3. We say that two bases A and B are completely incompatible (COINC) if and only if all index sets S, T
in J1, dK for which |S|+ |T | ≤ d have the property that ΠA(S)H ∩ΠB(T )H = {0}.

As a first motivation for this definition, we point out that, while it is only formulated in finite dimension, conjugate
operators Q and P satisfy an analogous property. Indeed, it is well known that there do not exist states ψ for which

both the Q-representation ψ(x) vanishes outside some bounded set S ⊂ R and the P -representation ψ̂(p) vanishes
outside some bounded set T ⊂ R [43]. The above definition naturally transcribes this crucial property of conjugate
operators to the finite-dimensional case. The restriction |S| + |T | ≤ d is then unavoidable since, for dimensional
reasons, whenever |S|+ |T | > d, the intersection ΠA(S)H ∩ΠB(T )H must be nontrivial.

While the definition is purely algebraic, its physical interpretation is readily given in terms of the quantum theory
of selective projective measurements [1, 44, 45]. Given a basis A, to every partition S1, . . . , SL of J1, dK we associate
a projective partition of unity ΠA(S1), . . .ΠA(SL). If initially the system is in the state ψ ∈ H and the outcome
S` is realized in a selective projective measurement then the post-measurement state is ΠA(S`)ψ/‖ΠA(S`)ψ‖. The
probability of this outcome is ‖ΠA(S`)ψ‖2. This is referred to as a measurement in the basis A. When L = d and
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S` = {`}, for ` = 1, . . . , d, the measurement is said to be fine-grained. Otherwise it is coarse-grained. When L = 2,
the corresponding measurement has only two possible outcomes and one has S1 = S, S2 = Sc, for some S ⊂ J1, dK.
Here Sc = J1, dK \ S, the complementary set of S. Note that projectors are observables with eigenvalues 1 and 0.
Repeated selective measurements of ΠA(S) and of ΠB(T ) on a system initially prepared in ψ systematically yield the
outcome 1 if and only if ΠB(T )ΠA(S)ψ belongs to ΠA(S)H\{0}. Hence, if this occurs, ΠA(S)H∩ΠB(T )H 6= {0}. In
other words, the definition of COINC bases (COINCs) is equivalent to the statement that such repeated compatible
selective measurements cannot occur for any S, T for which |S| + |T | ≤ d; they cannot occur for any insufficiently
coarse-grained measurements. Since, whenever |S| + |T | > d, necessarily ΠA(S)H ∩ ΠB(T )H 6= {0}, sufficiently
coarse-grained measurements can be compatible.

When A,B are COINC, 〈ai|bj〉 6= 0 for all i, j and hence they are STROINC. Indeed, if for example 〈a1|b1〉 = 0,
then |a1〉 belongs to ΠA(S)H ∩ ΠB(T )H for S = {1} and T = {2, . . . , d}. But since |T | + |S| = d, this contradicts
the definition. Hence each basis vector |ai〉 of A has full B-support and mA,B > 0. Suppose one now introduces
some uncertainty in the pre-measurement state ψ by considering a coherent superposition of two basis vectors ψ =
c1|a1〉 + c2|a2〉 with c1 6= 0 6= c2. Then, by choosing c1, c2 to ensure 〈b1|ψ〉 = 0 one reduces the uncertainty on the
measurement outcomes of a measurement in the basis B in the sense that the post-measurement state can no longer
be |b1〉. In other words, we can give up some of the precision on a measurement in A in order to reduce the uncertainty
on a measurement in B. Provided A and B are COINC, it then follows that 〈bj |ψ〉 6= 0, for all j 6= 1. Indeed, if for
example 〈b2|ψ〉 = 0 as well, then ψ ∈ ΠA(S)H ∩ΠB(T )H with S = {1, 2} and T = {3, 4, . . . , d} so that nA,B(ψ) ≤ d,
which is a contradiction. In this sense, when the bases are COINC, the increase of information on a measurement in
B is constrained optimally by the loss of information on a measurement in A.

B. Complete incompatibility: a criterion and examples

A useful criterion for complete incompatibility is:

Lemma 4. A and B are COINC if and only if none of the minors of the matrix U vanishes.

Recall that a k-minor of U is the determinant of a k by k submatrix of U obtained by removing d − k rows and
d− k columns from U . The statement and proof are implicit in [32]; we give a straightforward argument using linear
algebra in Appendix E.

As an immediate application, one sees that, in dimensions d = 2 and d = 3, two bases A and B are COINC iff
they are STROINC, i.e. iff 1 ≤ i, j ≤ d, 〈ai|bj〉 6= 0. In dimension 2 this is obvious. In dimension 3, note that
each column of U is a multiple of the complex conjugate of the vector product of the two other columns. Since the
components of the vector product are minors of order 2, their nonvanishing follows from the nonvanishing of all matrix
elements of U . Hence the bases are COINC. In dimension more than three, the above is no longer true. Indeed, it is
proven in [32] that none of the minors of the DFT transition matrix vanish if and only if the dimension d is a prime
number. Lemma 4 then implies the DFT is COINC iff d is a prime number. This implies MUBs – although maximally
incompatible in the sense explained above – are not necessarily COINC. In fact, when d = 4, no MUBs are COINC,
as easily seen from their explicit expression in Eqn. (B1), and using Lemma 4.

C. Complete incompatibility, support uncertainty, and KD-nonclassicality.

The link between complete incompatibility and support uncertainty is given by:

Theorem 5. A and B are COINC iff nmin
A,B = d+ 1.

Proof. For all states ψ, ψ ∈ ΠA(Sψ)H ∩ ΠB(Tψ)H 6= {0}. If the bases are COINC, this implies |Sψ| + |Tψ| > d.
so nmin

A,B > d. Since for the basis vectors we know nA,B(|ai〉) = d + 1, we conclude nmin
A,B = d + 1. We prove the

converse by proving its contraposition. Suppose A and B are not COINC. Then there exist S, T , with |S| + |T | ≤ d
and ΠA(S)H ∩ ΠB(T )H 6= {0}. Let 0 6= ψ ∈ ΠA(S)H ∩ ΠB(T )H. For this state nA(ψ) ≤ |S|, nB(ψ) ≤ |T |. Hence
nA,B(ψ) ≤ d and nmin

A,B ≤ d.
The theorem asserts that the uncertainty diagram of A,B lies above the KD-nonclassicality edge iff the bases are
COINC. This is illustrated in Fig. 1 where panels (a), (d) and (e) show the uncertainty diagram of bases that are not
COINC as follows from our previous analysis: one does indeed observe states below the nonclassicality edge. Panels
(b) and (c) on the other hand concern COINCs.

When two bases are COINC, Theorems 2 and 5 imply that all KD-classical states ψ have minimal support un-
certainty: nA,B(ψ) = nmin

A,B = d + 1 (Fig. 1-(b)&(c)). Note however that it is not true that all states with minimal
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support uncertainty are KD-classical contrary to what happens with conjugate continuous variables Q and P . In
other words, when the bases are COINC all states, except possibly some of those with minimal support uncertainty
are KD-nonclassical.

VI. CONCLUSION

It has been observed recently that KD-nonclassical states can furnish a quantum advantage. This raises the question
under what conditions on the observables used to define the KD-distribution such KD-nonclassicality prevails in Hilbert
space? We have established that complete incompatibility – a notion we introduce – implies only states with minimal
support uncertainty can be KD-classical, all others being KD-nonclassical. This is therefore the optimal situation
when the goal is to reduce to a minimum the presence of KD-classical states. Our findings further imply that if
two bases are mutually unbiased as well as completely incompatible, their incompatibility mimicks most closely the
incompatibility of two conjugate observables in continuous variable quantum mechanics. When the bases are strongly
but not completely incompatible, the support uncertainty of states still can serve as a witness of KD-nonclassicality.
A number of open questions will be explored elsewhere [38], in particular the link between strong incompatiblity
and noncommutativity. Our findings provide an improved understanding of the general structural properties of KD-
nonclassicality which we expect to be important for the conception of experiments and protocols capable of harnessing
KD-nonclassicality for quantum information tasks.
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APPENDICES

Appendix A: Proof of Theorem 2

The proof follows from a refinement of the arguments in [15]. We proceed by contradiction and suppose ψ is KD-
classical. Since the KD-distribution is insensitive to global phase rotations |ai〉 → exp(iφi)|ai〉, |bj〉 → exp(iφ′j)|bj〉,
we can suppose that all 〈ai|ψ〉 and 〈ψ|bj〉 are nonnegative (hence real) for 1 ≤ i, j ≤ d. Possibly relabeling the basis
vectors, we can suppose that 〈ai|ψ〉 6= 0 6= 〈bj |ψ〉 for 1 ≤ i ≤ nA(ψ), 1 ≤ j ≤ nB(ψ) whereas all other 〈ai|ψ〉, 〈bj |ψ〉
vanish. By hypothesis, the KD-distribution of ψ is real and nonnegative. Hence, for the same range of i and j, we
can conclude 〈ai|bj〉 is real and nonnegative. Since, by hypothesis, 〈ai|bj〉 6= 0, this implies that 〈ai|bj〉 > 0 for these
values of i and j.

Suppose now first that nA(ψ) = d = nB(ψ). Then all matrix elements Uij are real and nonnegative. This is in
contradiction with the fact that the columns of U are orthogonal. Let us now assume that nB(ψ) ≤ nA(ψ) < d. Then,
for 1 ≤ j < j′ ≤ nB(ψ), we have

0 = 〈bj |bj′〉 =

nA(ψ)∑
i=1

〈bj |ai〉〈ai|bj′〉+

d∑
i=nA(ψ)+1

〈bj |ai〉〈ai|bj′〉.

From the above, we know that

nA(ψ)∑
i=1

〈bj |ai〉〈ai|bj′〉 > 0. (A1)

It then follows that, for all 1 ≤ j < j′ ≤ nB(ψ), one has

d∑
i=nA(ψ)+1

〈bj |ai〉〈ai|bj′〉 < 0.
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Defining, for each 1 ≤ j ≤ nB(ψ) the vector dj = (〈anA(ψ)+1|bj〉, . . . , 〈ad|bj〉) ∈ Cd−nA we see from the above that
〈dj |dj′〉 < 0. It then follows from Lemma 6 below that

nB(ψ) ≤ d− nA(ψ) + 1.

This proves the result. The case where nA(ψ) ≤ nB(ψ) < d is treated similarly, inverting the roles of the columns
and the rows.

It remains to prove the following lemma, which puts an upper bound on the number of vectors in Cn that can have
an obtuse angle between them, two by two. It is a refinement of an argument in [15].

Lemma 6. Let n, k ∈ N∗ and v1, v2, . . . , vk ∈ Cn. Then the following holds: if 〈vi|vj〉 < 0 for all 1 ≤ i < j ≤ k, then
k ≤ n+ 1.

Proof. The proof goes by induction. For n = 1, one may note that one can always take v1 > 0, by applying a common
phase rotation to all vi ∈ C, which does not change the inner products vivj between them. Hence vj < 0 for all j 6= 1.
But if k > 2, then this contradicts the requirement that v2v3 > 0. So k ≤ 2 when n = 1. Suppose now the result
holds for some n ∈ N∗. We show it holds for n + 1. Let v1, . . . , vk ∈ Cn+1. As above, we can suppose v1 = a1e1,
a1 > 0. Write vj = aje1 + wj , with 〈wj , e1〉 = 0, for all j = 2, . . . , k. By hypothesis, 〈v1|vj〉 < 0, so that all aj < 0.
As a result, for all 2 ≤ i < j ≤ k,

0 > 〈vi|vj〉 = aiaj + 〈wi|wj〉.

Hence, for all 2 ≤ i < j ≤ k, 〈wi|wj〉 < 0. They therefore constitute (k − 1) nonvanishing vectors in Cn, and since
their mutual inner products are all negative, the induction hypothesis allows to conclude that k − 1 ≤ n+ 1 so that
k ≤ (n+ 1) + 1 which is the desired result.

Appendix B: Uncertainty diagrams for the mutually unbiased bases in dimension 4

We will, in this section, draw up the uncertainty diagrams for all mutually unbiased bases (MUBs) in dimension
d = 4. Before doing so, we remark that the definitions of strong and complete incompatibility as well as of mutual
unbiasedness depend on the two bases A and B only through the unitary transition operator between them, defined
as U |aj〉 = |bj〉, with matrix elements Uij = 〈ai|bj〉 in the A-basis. Indeed, if A′ and B′ are two other bases, where,
for some unitary operator V , |a′i〉 = V |ai〉 and |b′j〉 = V |bj〉, then A and B are strongly/completely incompatible or
mutually unbiased if and only if A′ and B′ are, as is readily checked; the unitary transition matrix is the same in both
cases. One could in fact identify H with Cd and systematically use the canonical basis of Cd as the A-basis. The
choice of the B basis is then completely determined by the choice of a unitary transition matrix U . We will say U is
strongly/completely incompatible or mutually unbiased whenever the bases A and B are. These properties are also
not affected by a renumbering of the basis vectors, nor by global phase changes of the basis vectors as is also readily
checked.

Up to permutations of rows and columns, and global phase rotations, the transition matrices of mutually unbiased
bases (MUBs) in dimension 4 are known to be all of the form [37]

U(s) =
1

2

1 1 1 1
1 1 −1 −1
1 −1 s −s
1 −1 −s s

 , |s| = 1;U†(s) = U(s). (B1)

The case s = i corresponds to the discrete Fourier transform (DFT) in dimension 4. It is clear U is not completely
incompatible (COINC) since it has vanishing 2-minors (Lemma 4). We now draw up the uncertainty diagram of U(s),
for s 6= ±1. The results are shown in Fig. 1-(a).

It is readily checked that for all points (nA, nB) above the nonclassicality edge nA + nB = 5 there exists ψ ∈ H
so that nA(ψ) = nA and nB(ψ) = nB. Since Theorem 2 applies we can conclude that all corresponding states are
KD-nonclassical.

Consider then states along the nonclassicality edge nA(ψ)+nB(ψ) = 5. The basis vectors, with nA(ψ) = 1, nB(ψ) =
4 or vice versa, are in this case; they are KD-classical.

Next, if ψ is such that Tψ = {1, 2}, then |Sψ| 6= 3 as is readily checked. The same is true when Tψ = {3, 4}.
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Consider therefore ψ so that Tψ = {1, 3}. To obtain |Sψ| = 3, one needs ψ = ψ±, where

ψ+ =
1√
2

(|b1〉+ |b3〉)

=
1

2
√

2
(2|a1〉+ (1 + s)|a3〉+ (1− s)|a4〉)

ψ− =
1√
2

(|b1〉 − |b3〉)

=
1

2
√

2
(2|a2〉+ (1− s)|a3〉+ (1 + s)|a4〉) .

Then Sψ+ = {1, 3, 4} and Sψ− = {2, 3, 4} since s 6= ±1. The corresponding KD-distributions are

Q+ =
1

4

 1 0 1 0
0 0 0 0

1/2(1 + s) 0 1/2(1 + s) 0
1/2(1− s) 0 1/2(1− s) 0

 ,

Q− =
1

4

 0 0 0 0
1 0 1 0

1/2(1− s) 0 1/2(1− s) 0
1/2(1 + s) 0 1/2(1 + s) 0

 .

Consequently, ψ± are both KD-nonclassical. The case where Tψ = {1, 4} is similar, with s replaced by −s. The
cases where Tψ = {2, 3} or T = {2, 4} and |Sψ| = 3 are obtained by permuting the rows and/or the columns of the
KD-distributions Q± obtained above. One therefore sees in this example that, along the nonclassicality edge, there
co-exist both KD-classical states and KD-nonclassical states. The only KD-classical states are the basis vectors. Since
U†(s) = U(s), the same results are obtained when one switches the roles of A and B.

As a result of Eq. (4) it only remains to investigate the states for which nA,B(ψ) = 4. This can only happen when
nA(ψ) = 2 = nB(ψ) since U has no zeros. Straightforward calculations show such states exist and that they are all
KD-classical. The latter statement also follows from (5), which can be rewritten as

1 ≤ NNC(ψ) ≤MA,B
√
nA(ψ)nB(ψ), (B2)

where in the present case MA,B = 1
2

NNC(ψ) =
∑
i,j

|Qij | ≥ 1, (B3)

is the so-called nonclassicality of the state. Clearly, a state is KD-nonclassical if and only if NNC(ψ) > 1. Hence
Eqn. (B2) implies that if ψ saturates the uncertainty principle (4), then it is KD-classical.

When s = ±1, the situation is slightly different. There are then, for example, no states with |Sψ| = 3 and |Tψ| = 2,
as is readily checked.

In Fig. 1-(b) we show the uncertainty diagram of the unitary U(ε) of Eqn. (7), with ε = 0.1, which is a perturbation
of a MUB. We checked numerically that all its minors are nonvanishing, thereby proving it is COINC. When ε 6= 0, it
is no longer possible to obtain simple closed analytical expressions for the various states along the nonclassicality edge.
We therefore proceeded to a numerical computation of those states and we established they are KD-nonclassical, with
the exception of the basis states themselves.

Appendix C: The discrete Fourier transform

Recall that the discrete Fourier transform (DFT) is

Uij = 〈ai|bj〉 =
1√
d

exp(i
2π

d
ij).

It is convenient to choose 0 ≤ i, j ≤ d − 1. When d is prime, it follows from Lemma 4 and [32] that the DFT is
COINC. As a result, nA(ψ) + nB(ψ) ≥ d+ 1 for all ψ. This is no longer true when d is not prime: in that case, there
do exist states for which nA(ψ) + nB(ψ) < d+ 1 as we will see below. This is illustrated in Fig. 1-(c)&(d).
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For all dimensions, Theorem 2 implies that all states for which nA(ψ) + nB(ψ) > d + 1 are KD-nonclassical. It
remains therefore to investigate the KD-nonclassicality of the states with nA(ψ) + nB(ψ) ≤ d + 1. Recall that the
support uncertainty principle guarantees that

nA(ψ)nB(ψ) ≥ d.

When d is not prime, there may therefore exist states in the region of the (nA, nB)-plane on or above the hyperbola
nAnB = d and on or below the straight line segment nA+nB = d+ 1 that we refer to as the nonclassicality edge. We
know that all KD-classical states lie in this region. But, as we shall illustrate, there may also be some KD-nonclassical
states there. We will investigate these issues now, one dimension at a time.

When d = 2, and U is the DFT, it follows from what precedes that all states except the basis states are KD-
nonclassical.

When d = 3, the DFT is equivalent, after dephasing and permuting rows and columns, to

U =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 , where ω = exp(i
2π

3
). (C1)

Using Lemma 4 it is easily checked to be COINC, a fact that also follows also from the general result cited, since
3 is prime. Straigthforward explicit computations show that, when |Sψ| = 2 = |Tψ|, ψ is KD-nonclassical. As in
dimension 2, the only classical states are the basis vectors.

The case d = 4 was treated in the previous section (s = i). Note that the classical states are now on the hyperbola
nAnB = d which contains one point nA(ψ) = 2 = nB(ψ) strictly below the nonclassicality edge nA(ψ) + nB(ψ) =
d + 1 = 5. So this is the lowest dimension for which the DFT admits classical states other than the basis states
(Fig. 1-(a)).

When d = 5 the DFT is COINC, since 5 is a prime number. There are now no states below the KD-nonclassicality
edge nA + nB = 6. It remains to investigate the KD-nonclassicality for the states on the nonclassicality edge. Apart
from the basis states, which are classical, they are of three types: nA(ψ) = 2, nB(ψ) = 4; nA(ψ) = 3, nB(ψ) = 3;
nA(ψ) = 4, nB(ψ) = 2. We computed those states numerically and showed they are nonclassical by observing
numerically that NNC(ψ) > 1. (See Fig. 1-(c).)

Suppose now d is not prime and 2 < d = pq, with 1 < p, q < d; the divisors p and q need not be prime. One can
then show that that the DFT is not COINC by noting that there exist states ψ for which nA(ψ) +nB(ψ) ≤ d. In fact,
it is easy to construct states for which nA(ψ) = q, nB(ψ) = p, so that the lower bound nA(ψ)nB(ψ) = d is reached in
this case. For that purpose, consider, for 0 ≤ m < p, 0 ≤ s < q,

|m, s〉 =
1
√
q

q−1∑
k=0

exp(i
2π

q
sk)|akp+m〉,

which are readily checked to form an orthonormal basis. Clearly nA(|m, s〉) = q. For j = `q+ r, 0 ≤ ` < p, 0 ≤ r < q,
one has

〈bj |m, s〉 =
1
√
q

exp(−i2π
d
mj)δsr.

Hence nB(|m, s〉) = p. It can be shown (see [31] and references therein) that the |m, s〉 are the only states with
the property that nA(ψ)nB(ψ) = d. As a result of (B2), these states are all KD-classical. The smallest non-prime
dimension is d = 4, which we already treated above. When d = 6, the previous development shows there are classical
states with nA(ψ) = 2, nB(ψ) = 3 and vice versa. We know from Theorem 2 that all states with nA(ψ) + nB(ψ) > 7
are KD-nonclassical. However, we are no longer ensured that, given a point (nA, nB) with nA+nB > 7, there exists a
state with nA(ψ) = nA, nB(ψ) = nB since the DFT is not COINC when d = 6. In addition, there may now be points
(nA, nB) below the nonclassicality edge and above nAnB = d for which such a state does exist.

We now explore these phenomena.
We first consider all states for which nB(ψ) = 2. It is easy to check that, for 0 ≤ k1 < k2 ≤ 5, 0 ≤ i1 < 5

|k1, k2, i1〉 =
1√
2

(
ωi1k2 |bk1〉 − ωi1k1 |bk2〉

)
is the only state with the property that

〈ai1 |k1, k2, i1〉 = 0.
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Hence nA(k1, k2, i1) ≤ 5. Now note that, with 0 ≤ i1 < i2 ≤ 5,

〈ai2 |k1, k2, i1〉 = 0

as well if and only if (k2 − k1)(i2 − i1) = 0 modulo 6. Hence, if this condition is not satisfied, then nA,B(k1, k2, i1) =
2 + 5 = 7 and if it is, nA,B(k1, k2, i1) ≤ 2 + 4 = 6. We have computed the nonclassicality of these states numerically
and have observed the states are KD-nonclassical except when nA,B(k1, k2, i1) = 2 + 3 = 5, as we saw above. The
same observations hold true when the roles of A and B are interchanged.

We have further established through a numerical computation that there are no states for which nA = 3 = nB. For
that purpose, we constructed all states of the form

|k1, k2, k3〉 = dk1 |bk1〉+ dk2 |bk2〉+ dk3 |dk3〉,

for which 〈ai1 |k1, k2, k3〉 = 0 = 〈ai2 |k1, k2, k3〉 = 〈ai3 |k1, k2, k3〉, with 0 ≤ k1 < k2 < k3 ≤ 5, 0 < i1 < i2 < i3 ≤ 5 and
computed for each nA and nB. Clearly, for all such states, nA ≤ 3, nB ≤ 3. As it turns out, equality is achieved for
none.

We similarly explored the pairs (nA, nB) = (3, 4) and (4, 3). We found numerically all ψ so that nA(ψ) = 3,
nB(ψ) = 4 and observed they are all KD-nonclassical. The results of these computations are summarized in Fig. 1-
(d).

It is of course impractical to treat the case of general d in this manner. An analytic treatment would probably
involve a fair amount of number theory, such as the techniques used to prove that for prime d, the DFT is COINC [32].
A question that comes to mind when looking at the uncertainty diagrams for the dimensions 2 ≤ d ≤ 6 is whether it
is true that the only KD-classical states for the DFT are the ones on the hyperbola nAnB = d? For prime dimensions,
this would mean the only KD-classical states are the basis states.

Appendix D: Spin s

For general integral spin s we show that the Jx and Jz bases are not STROINC. For that purpose, we need to
investigate the matrix elements

〈Jz = m′|Jx = m〉 = 〈Jz = m′| exp(−iβJy|Jz = m〉

= d
(s)
m′,m(β)

with β = π
2 and where the matrix d

(s)
m′,m(β) is Wigner’s well-known little matrix [22]. It is known that

d
(s)
m,m′(β) = (−1)m

′−md
(s)
m′,m(β).

From Wigner’s formula for d
(s)
m′,m(π/2) one readily concludes that, for all integer s, and m ≥ 0,

d
(s)
0,m(π/2) = s!

s∑
k=m

(−1)k
√

(s+m)!(s−m)!

(s− k)k!(s− (k −m))!(k −m)!
.

Making the change of variables k′ = s+m− k, one observes that d
(s)
0,m(π/2) = 0 for all odd m when s is even and for

all even m when s is odd. Indeed, there are s−m+ 1 terms in the sum above and they cancel two by two whenever
this number is even, which means s−m must be odd.

When s = 2, the explicit form of the Wigner matrix is readily computed:

U =
1

2



1
2 1

√
3
2 1 1

2

−1 −1 0 1 1√
3
2 0 −1 0

√
3
2

−1 1 0 −1 1
1
2 −1

√
3
2 −1 1

2


.

We constructed the uncertainty diagram of U numerically, proceeding as for the DFT in the previous section. The
result is displayed in Fig. 1-(e). Note that, along the nonclassicality edge, when nA = 2, nB = 4 (or vice versa), there
exist both KD-classical and KD-nonclassical states in this case.
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Appendix E: Proof of Lemma 4

Proof of ⇒. We proceed by contraposition. Suppose a k-minor of U vanishes, for some 1 ≤ k ≤ d− 1. Reordering
the rows and columns of U (which amounts to relabeling the basis vectors), we can assume that the matrix〈a1|b1〉 . . . 〈a1|bk〉...

...
...

〈ak|b1〉 . . . 〈ak|bk〉


has vanishing determinant. Hence there exist (β1, . . . βk) 6= 0 so that |ψ〉 =

∑k
j=1 βj |bj〉 satisfies, for all i ∈ J1, kK,

〈ai|ψ〉 = 0. So ψ ∈ ΠA(S)H ∩ ΠB(T ) with S = Jk + 1, dK and T = J1, kK. Since |S| + |T | = d, this implies A and B
are not COINC.
Proof of ⇐. We proceed again by contraposition. Suppose A and B are not COINC. Then there exist S, T ⊂ J1, dK
with |S| + |T | ≤ d, and for which ΠA(S)H ∩ ΠB(T )H 6= {0}. Let 0 6= ψ ∈ ΠA(S)H ∩ ΠB(T )H. Possibly reordering

the elements of B, we can suppose T = J1, kK and write ψ =
∑k
j=1 βj |bj〉. By hypothesis ΠA(Sc)|ψ〉 = 0 so that, for

all i ∈ Sc, 〈ai|ψ〉 = 0. Since |S|+ |T | ≤ d, |T | ≤ |Sc|. Reordering the basis A, we can assume Sc = J1, `K, with k ≤ `.
It follows that 〈a1|b1〉 . . . 〈a1|bk〉...

...
...

〈a`|b1〉 . . . 〈a`|bk〉


β1...
βk

 = 0.

Since (β1, . . . βk) 6= 0, one can extract from the ` by k matrix in the left-hand side a vanishing k-minor of U .
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