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ABSTRACT

Surface texture is a critical feature in the manufacture, marketing and use of
photographic paper. Raking light reveals texture through a stark rendering of
highlights and shadows. Though raking light photomicrographs effectively
document surface features of photographic paper, the sheer number and diversity
of textures used for historic papers prohibits efficient visual classification. This
work provides evidence that automatic, computer-based classification of texture
documented with raking light photomicrographs is feasible by demonstrating an
encouraging degree of success sorting a set of 120 photomicrographs made from
samples of historic silver gelatin paper.

Using this dataset, four university teams applied different image processing
strategies for automatic feature extraction and degree of similarity quantifica-
tion. All four approaches were successful in detecting strong affinities among
similarity groupings built into the dataset as well as identifying outliers. The
creation and deployment of the algorithms was carried out by the teams without
prior knowledge of the distributions of similarities and outliers. These results
indicate that automatic classification of historic photographic paper based on
texture photomicrographs is feasible and should be aggressively pursued. To
encourage the development of other classification schemes, the 120 sample
“training” dataset used in this work is available to other academic researchers at
www.PaperTextureID.org.

1 TEXTURE IN PHOTOGRAPHIC PAPER

Texture is a defining attribute of photographic paper. Starting in the early 20th
century, manufacturers manipulated texture to differentiate their products and to
satisfy the aesthetic and functional requirements of photographers. Especially
prior to WWII, when black and white silver gelatin paper was the dominant
photographic medium (Messier 2008), dozens of manufacturers worldwide
produced a wide array of surfaces. From this period a book of specimen prints
by the Belgian company Gevaert lists twenty five different surfaces made up
of combinations of texture, reflectance, color and paper thickness (Gevaert
Company of America c.1935). Around the same time, a sample book from the
Defender Company of Rochester New York lists twenty seven surfaces (Defender
Photo Supply Company c.1935), Mimosa twenty six (Mimosa AG c.1935) and



Kodak twenty two (Eastman Kodak c.1935). Each listed surface was proprietary
to the different manufacturers and each was used across their multiple brands of
paper with changes, additions, and deletions occurring over a span of many years.

A vital factor in the evaluation of paper surface, texture impacts the visibility
of fine detail and thus provides insight into the intent of the photographer and the
envisioned purpose of a particular print. For example, prints made for reproduc-
tion or documentary functions tend to be better suited to smooth-surface papers
that render details with sharpness and clarity whereas more impressionistic
or expressive subjects, especially those depicting large unmodulated masses
of shadows or highlights, are best suited for papers with rough, broadly open
textures (Eastman Kodak Company c.1935). A result of a careful and deliberate
manufacturing process, texture applied to silver gelatin paper is designed to be
distinct and distinguishable through processing and post-processing procedures.
Likewise manufacturer-applied texture endures despite localized defects such as
abrasions and deterioration caused by poor handling, storage environment and
enclosures. Given these attributes, an encyclopedic collection of surface textures
could reveal vital clues about a photographic print of unknown origin. Likewise
a method for classifying textures could provide a means to link prints to specific
photographers or to other prints of known provenance.

Previous work (Parker and Messier 2009; Messier, Messier and Parker 2010)
not only established the practicality of the image data collection procedure de-
scribed in the next section, but also suggested that more sophisticated approaches
to automated classification would yield sufficient levels of success such that
the ultimate aim of developing a highly reliable texture matching methodology
might be achieved. This paper heads in that direction.

2 TEXTURE IMAGE PREPARATION

Sample papers dating from 1908 to 1977 were selected from a large reference
collection of photographic paper. Each sample was identified by manufacturer,
brand, date, and manufacturer-assigned surface designation. The reference
collection and the methods used to identify the samples have been described
elsewhere (Messier et al. 2004; Connors Rowe et al. 2007).

The texture images were acquired with a microscope system assembled



using an Infinity 2-3 imager manufactured by the Lumenera Corporation fitted
with an Edmund Optics VZM 200i lens, as shown in Figure 1. The imager
incorporates an Interline Sony ICX262 3.3 megapixel color progressive scan
CCD sensor producing images that incorporate 1536 x 2080, 3.45µm, square
pixels. The imaged area on each sample measured 1.00 x 1.35 cm. Raking
light photomicrographs were made using a fixed point illumination source using
a 3 inch LED line light manufactured by Advanced Illumination placed at a
25◦ raking angle to the surface of the photographic paper. Each raking light
photomicrograph generated a 16-bit TIFF. Typical samples are shown in Figure
2. The image capture technique is non-contact / non-destructive and therefore
easily adapted for use on photographic prints of high intrinsic value.

3 COLLABORATIVE COMPETITION

As part of a materials-based characterization project of modernist photographs
at The Museum of Modern Art (MoMA), raking light photomicrographs were
made from each print from the Thomas Walther Collection to document surface
texture. This work stimulated interest in developing an automated scheme to
cluster like prints based on surface texture. An appeal was made to university
teams with signal processing experience to initiate a collaborative competition
to develop methods for sorting texture images.

Four university teams joined this project:

• University of Wisconsin: Sethares

• Worcester Polytechnic Institute: Klein, Brown, Do, and Klausmeyer

• Ecole Normale Superieure de Lyon: Abry, Jaffard, Wendt, Roux, and

Pustelnik

• Tilburg University: van Noord, van der Maaten, and Postma

Each team adopted a different approach to the development of the two standard
parts of an automatic classifier: (1) feature vector extraction and (2) degree of
similarity quantification. These strategies stem from a broad variety of basic
approaches to texture image classification (Haralick 1979) and are described in
the following section.



Prototype algorithms were constructed by the four teams using a training
set of 50 samples with some known texture matches. This preliminary work
established that the orientation of the primary paper fiber direction relative to the
raking light had no significant impact on results (this finding does not exclude
a priori that photo paper textures may possess other forms of anisotropy). This
work also resulted in the design of a 120 sample dataset of raking light photomi-
crographs of photographic papers with known metadata including manufacturer,
brand, date, gloss, and texture classification, and offering varying degrees of
self-similarity (the Appendix lists all samples used in this study). The dataset de-
livered to the teams for testing was largely composed of nine groups of ten paper
samples each. Within these groups, there were three similarity subsets: (1) im-
ages made from the same sheet of paper, (2) images made from sheets taken from
the same manufacturer package of paper and, (3) images from papers made to
the same manufacturer specifications over a period of time. The remaining thirty
samples were picked without concern for texture similarity but instead were
selected to span the range of textures associated with historic silver gelatin paper.

Conventional wisdom suggests that any raking light photomicrograph taken
from different spots on a single sheet of paper would appear nearly identical.
Likewise, texture images from different sheets of paper taken from the same
manufacturer package also should show strong similarity. Furthermore, shots
from papers manufactured to the same specifications but made at different
times should show strong similarity, but to a somewhat lesser degree. For the
thirty remaining samples, selected to demonstrate diversity, some would appear
similar to the group of ninety textures and some would appear to be unique.
The challenge posed to the teams was to discover these similarity groupings and
isolate unique textures by producing a system of texture affinities that described
the entire set.

4 TECHNICAL APPROACHES

The approaches taken by the four teams can be divided into two categories (Har-
alick 1979; Gonzalez and Woods 2008) based on the approach to feature defi-
nition: (1) non-semantic / Wisconsin and Tilburg and (2) multiscale / Lyon and
WPI. The fundamental difference is that non-semantic features are derived di-
rectly from the image data where multiscale features are based on a structural
model presupposed as relevant to the encountered data.



4.1 EIGENTEXTURES (WISCONSIN)

In the eigentexture approach, a collection of small patches are chosen from each
photographic image. These patches are gathered into a large matrix and then
simplified to retain only the most relevant eigendirections using a singular value
decomposition (SVD) (Moon and Stirling 2000). The preparation stage consists
of two steps:

1. For each imaged paper j, randomly pick N p× p pixel patches Xj,i ∈ Rp×p

for i = 1, 2, ..., N (withN = 2000 and p = 25 in this case). Lexigraphically
reorder the Xj,i into column vectors aj,i ∈ Rp2.

2. Create matrices Aj = [aj,1 aj,2 ... aj,N ] consisting of the N column vectors
and calculate the SVDs Aj = UjΣVj for all j. Extract the m columns of
Uj corresponding to the m largest singular values and call this Uj (with m
selected as 15 in this case).

The Uj are the representatives of the classes and may be thought of as vec-
tors pointing in the most-relevant directions. During the classification stage, a
number of similarly-sized patches are drawn from the tested photographic paper.
Each of these patches is compared to the representatives of the classes via a least
squares (LS) procedure.

3. Select Q (with Q = 2000 used here) p× p pixel patches Qi from the tested
paper and reorder into vectors qi ∈ Rp2. Calculate the distance from the ith
patch to the jth class:

d(i, j) = ||qi −Uj(U
T
j qi)||2.

Every patch is closest to one of the classes, and the number of patches closest to
the jth class is recorded.

4. For each patch i, fi = argminj d(i, j) locates the smallest of the d(i, j),
indicating that class j is the best fit for patch i. Tally the set of all such fi,
i = 1, 2, ..., Q.

The commonest entry among the fi is the most likely class for this image. The
second most common entry is the next most likely class for this image, etc.

4.2 RANDOM-FEATURE TEXTRON METHOD (TILBURG)

This method combines random features and textons, i.e., the random-feature
texton method. This method was developed by Liu and Fieguth (Liu and Fieguth,



2012) and is an adaptation of the texton approach (Varma and Zisserman 2009)
using random features. Textons are prototypical exemplar image patches captur-
ing the “essence” of the texture of an image. Random-features (RF) are random
projections of image patches with N × N pixels to vectors with D elements
(N = 9, D = 20, D < N × N ). More specifically, a random feature (RF)
is defined as a D × N 2 matrix, the elements of which are sampled from the
standard multivariate normal distribution N (0, 1).

The application of the random-feature texton method on the 120 sample
dataset is conducted as follows. A set of X sub-images of M × M pixels is
selected for each gray-value texture image in the 120 sample dataset (M = 512).
The sub-images are defined to be the central regions of M ×M pixels of which
the intensity distributions are normalized to zero mean and unit variance. A
sample of 45,000 randomly selected N ×N (N << M ) patches (represented as
vectors of length N 2) of the normalised sub-images are contrast-normalised and
subsequently multiplied with RFs, yielding RF vectors of length D.

Subsequently, a texton dictionary is created by applying k-means clustering
to all RF vectors of the X sub-images of each texture image of the 120 sample
dataset. Each image of the dataset is transformed into a texture histogram
by comparing all of its patches (represented as RF vectors) to the entries in
the texton dictionary. Finally, the histograms are classified using a k-nearest
neighbour algorithm using the χ2 similarity measure.

4.3 ANISOTROPIC WAVELET MULTISCALE ANALYSIS (LYON)

This method relies on the use of the Hyperbolic Wavelet Transform (HWT) (De
Vore et al. 1998; Roux et al. 2013), which is a variation of the 2D-Discrete
Wavelet Transform (2D-DWT) (Mallat 2008). The HWT explicitly takes into
account the possible anisotropic nature of image textures. Indeed, instead of
relying on a single dilation factor a used along both directions of the image (as
is the case for the 2D-DWT), HWT relies on the use of two independent factors
a1 = 2j1 and a2 = 2j2 along directions x1 and x2 respectively. The Hyper-
bolic Wavelet coefficients of imaged paper i, denoted as Ti((a1, a2), (k1, k2)) are
theoretically defined as: Ti((a1, a2), (k1, k2)) = 〈i(x1, x2), 1√

a1a2
ψ(x1−k1

a1
, x2−k2

a2
)〉.

From these HWT coefficients, structure functions, consisting of space aver-



ages at given scales a1, a2, are defined as :

Si((a1, a2), q) =
1

na

∑
k

|Ti((a1, a2), (k1, k2))|q,

where na stands for the number of Ti((a1, a2), (k1, k2)) actually computed and
not degraded by image border effects.

To measure proximity between two images i and j, a cepstral distance be-
tween their structure functions Si((a1, a2), q) and Sj((a1, a2), q) is computed.
It consists of a classical Lp norm computed on log-transformed normalized

structure functions: d(i, j) =
(∑

a |S̃i(a, q)− S̃j(a, q)|p
) 1

p

, with S̃i(a, q) =

ln Si(a,q)∑
a′ Si(a′,q)

.

4.4 PSEUDO-AREA-SCALE ANALYSIS (WPI)

Area-scale analysis is a technique which has been applied to various problems
in surface metrology (Brown et al. 1993). Much as the measured length of a
coastline depends on the scale of observation and therefore the resolvability of
small features, the measured area of a surface is also a function of the scale
of observation. The area-scale approach uses fractal analysis to decompose a
surface into a patchwork of triangles of a given size. As the size of the triangles
is increased, smaller surface features become less resolvable and the ‘relative
area’ of the surface decreases. The topological similarity of two surfaces is
computed by comparing relative areas at various scales. The technique has
traditionally been employed on topographic data sets containing height infor-
mation over a surface. Though lacking a direct measure, area-scale analysis
can be applied to the photomicrographs using light intensity as a proxy for height.

The proposed approach proceeds in three steps: (1) preprocessing, (2) feature
extraction, and (3) classification. The preprocessing step extracts a squareN×N
region from the center of the image (where N was chosen to be 1024), and nor-
malizes the intensity of the resulting extracted image. The N×N grid of equally
spaced points (representing pixel locations) is decomposed into a patchwork of
2(N−1s )2 isosceles right triangles where s is a scale parameter representing the
length of two legs of each triangle. The pixel values at each of the triangle ver-
tices are then taken as the ‘pseudo-height’ of each of the vertices. The area of
each triangle in 3-D space is then computed and the areas of all triangular regions



are summed, resulting in the total relative area As at the chosen scale s. To con-
duct feature extraction, the relative area for an image is computed over a range
of scale values; in this study, 8 scale values were used ranging from 1 pixel to 34
pixels, which correspond to lengths of 6.51 µm to 0.221 mm, respectively. Fi-
nally, to classify and compare the similarity of two images i and j, a χ2 distance
measure d(i, j) is computed via

d(i, j) =
∑
s∈S

(
A

(i)
s − A(j)

s

)2
A

(i)
s + A

(j)
s

where A(i)
s is the relative area of image i at scale s and S is the set of chosen

scale values. Small values of d(i, j) indicate high similarity between images i
and j, while large values indicate low similarity.

5 RESULTS AS AFFINITY MAPS

From the metadata and each teams’ automatic classifiers the degree of sim-
ilarity (affinity) was tabulated for each possible pairing of images in the
120 sample dataset. These scores were then converted to a grey-scale with the
darkest intensities indicating the greatest affinity and the lightest the least affinity.

To visualize these values a table containing 120 rows and 120 columns was
created, one row and column for each sample in the data set. Each of the result-
ing 14,400 cells in the table was shaded according to the similarity of compared
samples with black describing an exact match, white a total mismatch and
gray-scale values in between describing a range of better or worse similarities.
For example, the top diagram in Figure 3, shows predicted similarities within
the sample group suggested by the metadata including manufacturer, texture,
brand, and date. As expected, the nine dark blocks starting in the upper left and
continuing down along the diagonal show a high degree of affinity (dark gray
and black) as these blocks depict the nine groups of similar textures. Lesser
degrees of similarity are scattered throughout the figure with the 30 samples
selected to show diversity (poorer levels of similarity) falling in the lower right
quadrant and along the right side and bottom edge.

Gray-scale affinity maps produced to display the results from each of the
four teams are also shown in Figure 3. The principal similarity among the five



affinity maps in Figure 3 are the nine dark squares along the upper left to lower
right diagonal. Given the construction of the dataset, these blocks should be
dark due to the high affinity of the samples in these groups. The light stripes
in the right and bottom quarters of the affinity maps, due to some relatively
matchless textures among samples 91-120, are also shared by all five affinity
maps. While small local differences among the five maps indicate that work
remains to find an ideal automated scheme, striking fundamental similarities
between the metadata-based affinity map and the four produced by automated
schemes validate raking light photomicrographs as having sufficient texture in-
formation to support the automated classification of historic photographic papers.

6 OBSERVATIONS

As shown in Figure 3 there is a relatively high level of agreement between the
affinity pairings prepared by the classification algorithms and those derived from
metadata and subject-matter expertise. As discussed in the previous section, the
principal correspondence among the five affinity maps is the nine dark squares
along the diagonal running from upper left to lower right. Given the construction
of the dataset, the samples in these blocks are very similar and these texture
affinities were recognized both by a subjective metadata sort and by the four
automated solutions. In addition, both ‘human’ and automated solutions are
sensitive to the increased levels of diversity within samples 81-90 (ninth dark
block on the diagonal) that track a manufacturer’s surface over a fairly extended
period of twenty two years. Besides the nine similarity groupings added to
the dataset by design, both the human observer and the automated solutions
discovered another strong affinity between subsets 11-20 and 31-40 (shown
along the cross diagonal axis adjoining the third dark square on the diagonal).
As shown in the Appendix, these samples have the same manufacturer, brand,
surface designation and date but are taken from different paper packages.

These findings are reinforced by Figure 4 which shows a normalization of the
distances between each texture pairing within the tested groups. The shape of the
curves are remarkably consistent with the automated solutions and the human
observer detecting very similar degrees of affinity across the groups. The chart
confirms there is no measurable difference between texture images made from
the same sheet of paper as compared to images made from different sheets from
the same manufacturer package. Further, depending on the technique, textures



within the same manufacturing standard produced over time show fair to good
levels of similarity. These results, though not a surprise given high levels of
manufacturing regularity, are important for the possible development of future
systems that rely on indices of known ‘exemplar’ textures to identify unknowns.

7 CONCLUSIONS AND NEXT STEPS

This project opens a path toward a machine vision system that provides
meaningful results for the study of photographic prints. To have meaning, an
automated classification system cannot produce results simply based on an
internal, self-referential ‘sameness/difference’ parameter but instead must render
results that are relevant to trained practitioners such as conservators and curators.
For example, the photomicrographs made from ten spots on the same sheet of
paper, though totally different images, need to be recognized as the ‘same’.
Likewise the two other similarity groups made from different sheets from the
same manufacturer package and from papers manufactured to the same standard
must be recognized as related. A useful system needs to reliably cluster these
groups together though be discriminating enough to set these groups apart from
others that might have similar textures but, for example, are made by different
manufacturers. Using different techniques, each of the four teams met this
standard. The fundamental outcome of this experiment is the intuitive ‘human
/ expert observer’ conception of a classification system based on sameness /
difference can be replicated through imaging and signal processing techniques.

The techniques described in this work could engender new modes of schol-
arship based on the discovery of materials-based affinities. Work at MoMA is
underway to determine how these techniques might meaningfully be applied to
prints in its Thomas Walther collection. Moving forward, reference libraries
of surface textures, containing papers grouped by photographer or paper man-
ufacturer can be assembled and used as a basis of comparison. This work is
already underway through the assembly of large paper reference collections
categorized by manufacturer, brand, surface finish and date as well as for
individual artists including Man Ray (1890-1976) and Lewis Hine (1874-1940).
With standardized imaging techniques and a networked infrastructure, conser-
vators could query such texture libraries to detect similar papers held by other
collections, potentially characterizing and identifying works in their collection
as well as revealing relationships within an artist’s body of work and between



artists. These methodologies are being applied to other media, including ongoing
work with ink-jet papers and the platinum papers of F. Holland Day (1864-1933).

A website, www.PaperTextureID.org, has been created to distribute the
dataset of silver gelatin textures used as the basis for this study. In addition, an
ink-jet paper dataset composed using similar specifications is also posted at this
site. The availability of these image sets should encourage and assist other teams
to develop their own automated classification and sorting schemes.
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Appendix: PAPER SAMPLES USED IN THE SILVER
GELATIN DATASET

For the following tables ID is the sequential numbering system suggested by the teams following image
processing. Date refers to the paper expiration dates applied to manufacturer packages or estimates made
based on packaging, M ID is the Messier Reference Collection catalog number. Other descriptors, such
as brand and paper characteristics are taken directly from the manufacturer packaging.

10 samples from the same sheet (X 3 sheets)
ID Manufacturer Brand Surface Texture Reflectance Date M ID
1-10 Kodak Vitava Athena C Smooth Matte 1943 10
11-20 Kodak Kodabromide E Fine Grain Lustre 1967 2952
21 - 30 Leonar Rano Kraftig Chamois 1910 4869

10 samples from the same package (X 3 packages)
ID Manufacturer Brand Surface Texture Reflectance Date M ID
31-40 Kodak Kodabromide E Fine Grained Luster 1967 2216
41-50 Ilford Contact 1P Glossy 1955 2750
51-60 Ilford Plastika Special Grained Half Matt 1940 944



10 samples from the same manufacturer surface finish (X 3 manufacturers)
ID Manufacturer Brand Surface Texture Reflectance Date M ID
61 Kodak Velox F Smooth Glossy 1938 97
62 Kodak Kodabrom F Smooth Glossy 1939 1019
63 Kodak Kodabrom F Smooth Glossy 1939 1020
64 Kodak Azo F Smooth Glossy 1931 1503
65 Kodak Azo F Smooth Glossy 1935 1530
66 Kodak Azo F Smooth Glossy 1937 1531
67 Kodak Azo F Smooth Glossy 1937 1532
68 Kodak Azo F Smooth Glossy 1930 2370
69 Kodak Vitava Athena F Smooth Glossy 1928 2447
70 Kodak [no brand] F Glossy 1930 2924
71 Dupont-Defender Apex A Semi Matte 1947 112
72 Dupont-Defender Velour Black A Semi Matte 1951 1427
73 Dupont-Defender Velour Black A Semi Matte 1951 1434
74 Dupont-Defender Velour Black A Semi Matte 1951 1435
75 Dupont-Defender Velour Black A Semi Matte 1951 1436
76 Dupont-Defender Velour Black A Semi Matte 1951 1440
77 Dupont-Defender Varigam A Semi-Matt 1953 2302
78 Dupont Varigam A Semi Matte 1958 2921
79 Dupont-Defender Velour Black A Semi-Matt 1953 4842
80 Dupont-Defender Velour Black A Semi-Matt 1953 4843
81 Agfa-Gevaert Brovira B 119 Lustre 1965 167
82 Agfa-Gevaert Brovira B 119 Luster 1976 1540
83 Agfa Brovira B 119 Crystal Lustre 1955 1791
84 Agfa Brovira B 119 Crystal Luster 1955 1838
85 Agfa-Gevaert Brovira B 119 Glossy 1965 2079
86 Agfa Brovira B 119 Crystal 1960 2365
87 Agfa-Gevaert Brovira B 119 Lustre 1974 2438
88 Agfa-Gevaert Brovira B 119 Filigran Glossy 1964 2547
89 Agfa-Gevaert Brovira B 119 Fine Grained Lustre 1964 2634
90 Agfa-Gevaert Lupex Glossy 1964 2640



30 samples showing diversity
ID Manufacturer Brand Surface Texture Reflectance Date M ID
91 Defender Argo Matte 1912 2775
92 Ansco Cyko 1918 971
93 Darko Developing Matte 1923 3205
94 Kodak Velvet Velox Velvet Semi Gloss 1921 25
95 Agfa Ansco Convira B Glossy 1938 2306
96 Kodak Velox F Smooth Glossy 1944 2277
97 Kodak Kodabromide G Fine Grained Lustre 1953 1851
98 Unicolor B W 1973 2234
99 Ansco Cyko Linen Buff 1914 321
100 Darko [no brand] Velvet 1924 3208
101 Kodak Carbon Velox Matte 1908 98
102 Agfa Ansco Cykora Silk 1948 203
103 Kodak Ektamatic SC F Smooth Glossy 1977 2626
104 Kodak Azo A Smooth Luster 1916 235
105 Defender Argo Normal Gloss 1916 1444
106 Kodak (Canadian) Azo F Glossy 1926 1981
107 Ansco Cyko Buff 1925 994
108 Defender Veltura Matte 1932 38
109 Ilford Clorona Porcelain 1938 2761
110 Kodak Velox F Smooth Glossy 1946 1040
111 Delaware Photo. Enlarging Semi Matte 1940 9
112 Kodak Kodabromide E Fine Grained Buff Luster 1950 1709
113 Kodak Panalure F Smooth Glossy 1969 2623
114 Agfa-Gevaert Brovira B 111 Glossy 1975 335
115 Agfa Ansco Brovira B 119 Lustre 1974 2439
116 Agfa Ansco Convira Glossy 1950 857
117 Kodak Kodabromide F Smooth Glossy 1959 864
118 Defender Veltura Matte 1932 40
119 Agfa-Gevaert Brovira B 119 Lustre 1974 2438
120 Agfa Ansco Cykora Kashmir 1948 204
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Figure 1: Raking-light photomicrograph acquisition



Figure 2: Examples of raking-light photomicrographs



Figure 3: Top: Affinities (dark: strong, light: weak) from metadata and expert domain knowl-
edge. Bottom Quartet: Wisconsin (upper left), Tilburg (upper right), Lyon (lower left), WPI
(lower right).



Figure 4: Normalized image pair distances for the dataset of texture images (Diagonal blocks 1-3
same sheet, 4-6 same package, 7-9 same manufacturing standard and, 10-12 diverse samples)




