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PURSUING AUTOMATED CLASSIFICATION OF HISTORIC PHOTOGRAPHIC PAPERS FROM RAKING LIGHT PHOTOMICROGRAPHS

ABSTRACT

Surface texture is a critical feature in the manufacture, marketing and use of photographic paper. Raking light reveals texture through a stark rendering of highlights and shadows. Though raking light photomicrographs effectively document surface features of photographic paper, the sheer number and diversity of textures used for historic papers prohibits efficient visual classification. This work provides evidence that automatic, computer-based classification of texture documented with raking light photomicrographs is feasible by demonstrating an encouraging degree of success sorting a set of 120 photomicrographs made from samples of historic silver gelatin paper.

Using this dataset, four university teams applied different image processing strategies for automatic feature extraction and degree of similarity quantification. All four approaches were successful in detecting strong affinities among similarity groupings built into the dataset as well as identifying outliers. The creation and deployment of the algorithms was carried out by the teams without prior knowledge of the distributions of similarities and outliers. These results indicate that automatic classification of historic photographic paper based on texture photomicrographs is feasible and should be aggressively pursued. To encourage the development of other classification schemes, the 120 sample "training" dataset used in this work is available to other academic researchers at www.PaperTextureID.org.

TEXTURE IN PHOTOGRAPHIC PAPER

Texture is a defining attribute of photographic paper. Starting in the early 20th century, manufacturers manipulated texture to differentiate their products and to satisfy the aesthetic and functional requirements of photographers. Especially prior to WWII, when black and white silver gelatin paper was the dominant photographic medium [START_REF] Messier | Les Emulsion Industrielles[END_REF], dozens of manufacturers worldwide produced a wide array of surfaces. From this period a book of specimen prints by the Belgian company Gevaert lists twenty five different surfaces made up of combinations of texture, reflectance, color and paper thickness (Gevaert Company of America c.1935). Around the same time, a sample book from the Defender Company of Rochester New York lists twenty seven surfaces (Defender Photo Supply Company c.1935), Mimosa twenty six (Mimosa AG c.1935) and Kodak twenty two (Eastman Kodak c.1935). Each listed surface was proprietary to the different manufacturers and each was used across their multiple brands of paper with changes, additions, and deletions occurring over a span of many years.

A vital factor in the evaluation of paper surface, texture impacts the visibility of fine detail and thus provides insight into the intent of the photographer and the envisioned purpose of a particular print. For example, prints made for reproduction or documentary functions tend to be better suited to smooth-surface papers that render details with sharpness and clarity whereas more impressionistic or expressive subjects, especially those depicting large unmodulated masses of shadows or highlights, are best suited for papers with rough, broadly open textures (Eastman Kodak Company c.1935). A result of a careful and deliberate manufacturing process, texture applied to silver gelatin paper is designed to be distinct and distinguishable through processing and post-processing procedures. Likewise manufacturer-applied texture endures despite localized defects such as abrasions and deterioration caused by poor handling, storage environment and enclosures. Given these attributes, an encyclopedic collection of surface textures could reveal vital clues about a photographic print of unknown origin. Likewise a method for classifying textures could provide a means to link prints to specific photographers or to other prints of known provenance.

Previous work [START_REF] Parker | Automating Art Print Authentication Using Metric Learning[END_REF]Messier, Messier and Parker 2010) not only established the practicality of the image data collection procedure described in the next section, but also suggested that more sophisticated approaches to automated classification would yield sufficient levels of success such that the ultimate aim of developing a highly reliable texture matching methodology might be achieved. This paper heads in that direction.

TEXTURE IMAGE PREPARATION

Sample papers dating from 1908 to 1977 were selected from a large reference collection of photographic paper. Each sample was identified by manufacturer, brand, date, and manufacturer-assigned surface designation. The reference collection and the methods used to identify the samples have been described elsewhere (Messier et al. 2004;[START_REF] Connors-Rowe | Optical Brighteners in Black-and-White Photographic Paper: Appearance and Degradation[END_REF]).

The texture images were acquired with a microscope system assembled using an Infinity 2-3 imager manufactured by the Lumenera Corporation fitted with an Edmund Optics VZM 200i lens, as shown in Figure 1. The imager incorporates an Interline Sony ICX262 3.3 megapixel color progressive scan CCD sensor producing images that incorporate 1536 x 2080, 3.45µm, square pixels. The imaged area on each sample measured 1.00 x 1.35 cm. Raking light photomicrographs were made using a fixed point illumination source using a 3 inch LED line light manufactured by Advanced Illumination placed at a 25 • raking angle to the surface of the photographic paper. Each raking light photomicrograph generated a 16-bit TIFF. Typical samples are shown in Figure 2. The image capture technique is non-contact / non-destructive and therefore easily adapted for use on photographic prints of high intrinsic value.

COLLABORATIVE COMPETITION

As part of a materials-based characterization project of modernist photographs at The Museum of Modern Art (MoMA), raking light photomicrographs were made from each print from the Thomas Walther Collection to document surface texture. This work stimulated interest in developing an automated scheme to cluster like prints based on surface texture. An appeal was made to university teams with signal processing experience to initiate a collaborative competition to develop methods for sorting texture images.

Four university teams joined this project:

• University of Wisconsin: Sethares

• Worcester Polytechnic Institute: Klein, Brown, Do, and Klausmeyer

• Ecole Normale Superieure de Lyon: Abry, Jaffard, Wendt, Roux, and Pustelnik • Tilburg University: van Noord, van der Maaten, and Postma Each team adopted a different approach to the development of the two standard parts of an automatic classifier: (1) feature vector extraction and (2) degree of similarity quantification. These strategies stem from a broad variety of basic approaches to texture image classification [START_REF] Haralick | Statistical and structural approaches to texture[END_REF] and are described in the following section.

Prototype algorithms were constructed by the four teams using a training set of 50 samples with some known texture matches. This preliminary work established that the orientation of the primary paper fiber direction relative to the raking light had no significant impact on results (this finding does not exclude a priori that photo paper textures may possess other forms of anisotropy). This work also resulted in the design of a 120 sample dataset of raking light photomicrographs of photographic papers with known metadata including manufacturer, brand, date, gloss, and texture classification, and offering varying degrees of self-similarity (the Appendix lists all samples used in this study). The dataset delivered to the teams for testing was largely composed of nine groups of ten paper samples each. Within these groups, there were three similarity subsets: (1) images made from the same sheet of paper, (2) images made from sheets taken from the same manufacturer package of paper and, (3) images from papers made to the same manufacturer specifications over a period of time. The remaining thirty samples were picked without concern for texture similarity but instead were selected to span the range of textures associated with historic silver gelatin paper.

Conventional wisdom suggests that any raking light photomicrograph taken from different spots on a single sheet of paper would appear nearly identical. Likewise, texture images from different sheets of paper taken from the same manufacturer package also should show strong similarity. Furthermore, shots from papers manufactured to the same specifications but made at different times should show strong similarity, but to a somewhat lesser degree. For the thirty remaining samples, selected to demonstrate diversity, some would appear similar to the group of ninety textures and some would appear to be unique. The challenge posed to the teams was to discover these similarity groupings and isolate unique textures by producing a system of texture affinities that described the entire set.

TECHNICAL APPROACHES

The approaches taken by the four teams can be divided into two categories [START_REF] Haralick | Statistical and structural approaches to texture[END_REF][START_REF] Gonzalez | Digital Image Processing[END_REF] based on the approach to feature definition: (1) non-semantic / Wisconsin and Tilburg and (2) multiscale / Lyon and WPI. The fundamental difference is that non-semantic features are derived directly from the image data where multiscale features are based on a structural model presupposed as relevant to the encountered data.

EIGENTEXTURES (WISCONSIN)

In the eigentexture approach, a collection of small patches are chosen from each photographic image. These patches are gathered into a large matrix and then simplified to retain only the most relevant eigendirections using a singular value decomposition (SVD) [START_REF] Moon | Mathematical Methods and Algorithms for Signal Processing[END_REF]. The preparation stage consists of two steps:

1. For each imaged paper j, randomly pick N p × p pixel patches X j,i ∈ R p×p for i = 1, 2, ..., N (with N = 2000 and p = 25 in this case). Lexigraphically reorder the X j,i into column vectors a j,i ∈ R p 2 .

2. Create matrices A j = [a j,1 a j,2 ... a j,N ] consisting of the N column vectors and calculate the SVDs A j = U j ΣV j for all j. Extract the m columns of U j corresponding to the m largest singular values and call this U j (with m selected as 15 in this case).

The U j are the representatives of the classes and may be thought of as vectors pointing in the most-relevant directions. During the classification stage, a number of similarly-sized patches are drawn from the tested photographic paper.

Each of these patches is compared to the representatives of the classes via a least squares (LS) procedure.

3. Select Q (with Q = 2000 used here) p × p pixel patches Q i from the tested paper and reorder into vectors q i ∈ R p 2 . Calculate the distance from the ith patch to the jth class:

d(i, j) = ||q i -U j (U T j q i )|| 2 .
Every patch is closest to one of the classes, and the number of patches closest to the jth class is recorded.

4. For each patch i, f i = argmin j d(i, j) locates the smallest of the d(i, j), indicating that class j is the best fit for patch i. Tally the set of all such f i , i = 1, 2, ..., Q.

The commonest entry among the f i is the most likely class for this image. The second most common entry is the next most likely class for this image, etc.

RANDOM-FEATURE TEXTRON METHOD (TILBURG)

This method combines random features and textons, i.e., the random-feature texton method. This method was developed by Liu and Fieguth [START_REF] Liu | Texture classification from random features[END_REF] and is an adaptation of the texton approach (Varma and Zisserman 2009) using random features. Textons are prototypical exemplar image patches capturing the "essence" of the texture of an image. Random-features (RF) are random projections of image patches with N × N pixels to vectors with D elements (N = 9, D = 20, D < N × N ). More specifically, a random feature (RF) is defined as a D × N 2 matrix, the elements of which are sampled from the standard multivariate normal distribution N (0, 1).

The application of the random-feature texton method on the 120 sample dataset is conducted as follows. A set of X sub-images of M × M pixels is selected for each gray-value texture image in the 120 sample dataset (M = 512). The sub-images are defined to be the central regions of M × M pixels of which the intensity distributions are normalized to zero mean and unit variance. A sample of 45,000 randomly selected N × N (N << M ) patches (represented as vectors of length N 2 ) of the normalised sub-images are contrast-normalised and subsequently multiplied with RFs, yielding RF vectors of length D.

Subsequently, a texton dictionary is created by applying k-means clustering to all RF vectors of the X sub-images of each texture image of the 120 sample dataset. Each image of the dataset is transformed into a texture histogram by comparing all of its patches (represented as RF vectors) to the entries in the texton dictionary. Finally, the histograms are classified using a k-nearest neighbour algorithm using the χ 2 similarity measure.

ANISOTROPIC WAVELET MULTISCALE ANALYSIS (LYON)

This method relies on the use of the Hyperbolic Wavelet Transform (HWT) (De Vore et al. 1998;Roux et al. 2013), which is a variation of the 2D-Discrete Wavelet Transform (2D-DWT) (Mallat 2008). The HWT explicitly takes into account the possible anisotropic nature of image textures. Indeed, instead of relying on a single dilation factor a used along both directions of the image (as is the case for the 2D-DWT), HWT relies on the use of two independent factors a 1 = 2 j 1 and a 2 = 2 j 2 along directions x 1 and x 2 respectively. The Hyperbolic Wavelet coefficients of imaged paper i, denoted as T i ((a 1 , a 2 ), (k 1 , k 2 )) are theoretically defined as:

T i ((a 1 , a 2 ), (k 1 , k 2 )) = i(x 1 , x 2 ), 1 √ a 1 a 2 ψ( x 1 -k 1 a 1 , x 2 -k 2 a 2 ) .
From these HWT coefficients, structure functions, consisting of space aver-ages at given scales a 1 , a 2 , are defined as :

S i ((a 1 , a 2 ), q) = 1 n a k |T i ((a 1 , a 2 ), (k 1 , k 2 ))| q ,
where n a stands for the number of T i ((a 1 , a 2 ), (k 1 , k 2 )) actually computed and not degraded by image border effects.

To measure proximity between two images i and j, a cepstral distance between their structure functions S i ((a 1 , a 2 ), q) and S j ((a 1 , a 2 ), q) is computed. It consists of a classical L p norm computed on log-transformed normalized structure functions: d(i, j) = a | Si (a, q) -Sj (a, q)| p 1 p , with Si (a, q) = ln S i (a,q) a S i (a ,q) .

PSEUDO-AREA-SCALE ANALYSIS (WPI)

Area-scale analysis is a technique which has been applied to various problems in surface metrology (Brown et al. 1993). Much as the measured length of a coastline depends on the scale of observation and therefore the resolvability of small features, the measured area of a surface is also a function of the scale of observation. The area-scale approach uses fractal analysis to decompose a surface into a patchwork of triangles of a given size. As the size of the triangles is increased, smaller surface features become less resolvable and the 'relative area' of the surface decreases. The topological similarity of two surfaces is computed by comparing relative areas at various scales. The technique has traditionally been employed on topographic data sets containing height information over a surface. Though lacking a direct measure, area-scale analysis can be applied to the photomicrographs using light intensity as a proxy for height.

The proposed approach proceeds in three steps: (1) preprocessing, ( 2) feature extraction, and (3) classification. The preprocessing step extracts a square N ×N region from the center of the image (where N was chosen to be 1024), and normalizes the intensity of the resulting extracted image. The N × N grid of equally spaced points (representing pixel locations) is decomposed into a patchwork of 2( N -1 s ) 2 isosceles right triangles where s is a scale parameter representing the length of two legs of each triangle. The pixel values at each of the triangle vertices are then taken as the 'pseudo-height' of each of the vertices. The area of each triangle in 3-D space is then computed and the areas of all triangular regions are summed, resulting in the total relative area A s at the chosen scale s. To conduct feature extraction, the relative area for an image is computed over a range of scale values; in this study, 8 scale values were used ranging from 1 pixel to 34 pixels, which correspond to lengths of 6.51 µm to 0.221 mm, respectively. Finally, to classify and compare the similarity of two images i and j, a χ 2 distance measure d(i, j) is computed via

d(i, j) = s∈S A (i) s -A (j) s 2 A (i) s + A (j) s where A (i)
s is the relative area of image i at scale s and S is the set of chosen scale values. Small values of d(i, j) indicate high similarity between images i and j, while large values indicate low similarity.

RESULTS AS AFFINITY MAPS

From the metadata and each teams' automatic classifiers the degree of similarity (affinity) was tabulated for each possible pairing of images in the 120 sample dataset. These scores were then converted to a grey-scale with the darkest intensities indicating the greatest affinity and the lightest the least affinity.

To visualize these values a table containing 120 rows and 120 columns was created, one row and column for each sample in the data set. Each of the resulting 14,400 cells in the table was shaded according to the similarity of compared samples with black describing an exact match, white a total mismatch and gray-scale values in between describing a range of better or worse similarities. For example, the top diagram in Figure 3, shows predicted similarities within the sample group suggested by the metadata including manufacturer, texture, brand, and date. As expected, the nine dark blocks starting in the upper left and continuing down along the diagonal show a high degree of affinity (dark gray and black) as these blocks depict the nine groups of similar textures. Lesser degrees of similarity are scattered throughout the figure with the 30 samples selected to show diversity (poorer levels of similarity) falling in the lower right quadrant and along the right side and bottom edge.

Gray-scale affinity maps produced to display the results from each of the four teams are also shown in Figure 3. The principal similarity among the five affinity maps in Figure 3 are the nine dark squares along the upper left to lower right diagonal. Given the construction of the dataset, these blocks should be dark due to the high affinity of the samples in these groups. The light stripes in the right and bottom quarters of the affinity maps, due to some relatively matchless textures among samples 91-120, are also shared by all five affinity maps. While small local differences among the five maps indicate that work remains to find an ideal automated scheme, striking fundamental similarities between the metadata-based affinity map and the four produced by automated schemes validate raking light photomicrographs as having sufficient texture information to support the automated classification of historic photographic papers.

OBSERVATIONS

As shown in Figure 3 there is a relatively high level of agreement between the affinity pairings prepared by the classification algorithms and those derived from metadata and subject-matter expertise. As discussed in the previous section, the principal correspondence among the five affinity maps is the nine dark squares along the diagonal running from upper left to lower right. Given the construction of the dataset, the samples in these blocks are very similar and these texture affinities were recognized both by a subjective metadata sort and by the four automated solutions. In addition, both 'human' and automated solutions are sensitive to the increased levels of diversity within samples 81-90 (ninth dark block on the diagonal) that track a manufacturer's surface over a fairly extended period of twenty two years. Besides the nine similarity groupings added to the dataset by design, both the human observer and the automated solutions discovered another strong affinity between subsets 11-20 and 31-40 (shown along the cross diagonal axis adjoining the third dark square on the diagonal). As shown in the Appendix, these samples have the same manufacturer, brand, surface designation and date but are taken from different paper packages. These findings are reinforced by Figure 4 which shows a normalization of the distances between each texture pairing within the tested groups. The shape of the curves are remarkably consistent with the automated solutions and the human observer detecting very similar degrees of affinity across the groups. The chart confirms there is no measurable difference between texture images made from the same sheet of paper as compared to images made from different sheets from the same manufacturer package. Further, depending on the technique, textures within the same manufacturing standard produced over time show fair to good levels of similarity. These results, though not a surprise given high levels of manufacturing regularity, are important for the possible development of future systems that rely on indices of known 'exemplar' textures to identify unknowns.

CONCLUSIONS AND NEXT STEPS

This project opens a path toward a machine vision system that provides meaningful results for the study of photographic prints. To have meaning, an automated classification system cannot produce results simply based on an internal, self-referential 'sameness/difference' parameter but instead must render results that are relevant to trained practitioners such as conservators and curators. For example, the photomicrographs made from ten spots on the same sheet of paper, though totally different images, need to be recognized as the 'same'. Likewise the two other similarity groups made from different sheets from the same manufacturer package and from papers manufactured to the same standard must be recognized as related. A useful system needs to reliably cluster these groups together though be discriminating enough to set these groups apart from others that might have similar textures but, for example, are made by different manufacturers. Using different techniques, each of the four teams met this standard. The fundamental outcome of this experiment is the intuitive 'human / expert observer' conception of a classification system based on sameness / difference can be replicated through imaging and signal processing techniques.

The techniques described in this work could engender new modes of scholarship based on the discovery of materials-based affinities. Work at MoMA is underway to determine how these techniques might meaningfully be applied to prints in its Thomas Walther collection. Moving forward, reference libraries of surface textures, containing papers grouped by photographer or paper manufacturer can be assembled and used as a basis of comparison. This work is already underway through the assembly of large paper reference collections categorized by manufacturer, brand, surface finish and date as well as for individual artists including Man Ray (1890-1976) and Lewis Hine (1874-1940). With standardized imaging techniques and a networked infrastructure, conservators could query such texture libraries to detect similar papers held by other collections, potentially characterizing and identifying works in their collection as well as revealing relationships within an artist's body of work and between artists. These methodologies are being applied to other media, including ongoing work with ink-jet papers and the platinum papers of F. Holland Day (1864Day ( -1933)).

A website, www.PaperTextureID.org, has been created to distribute the dataset of silver gelatin textures used as the basis for this study. In addition, an ink-jet paper dataset composed using similar specifications is also posted at this site. The availability of these image sets should encourage and assist other teams to develop their own automated classification and sorting schemes.

Paul Messier is an independent conservator of photographs working in Boston Massachusetts, USA. Founded in 1994, his studio provides conservation services for private and institutional clients throughout the world. The heart of this practice is unique knowledge and ongoing research into photographic papers. The Messier Reference Collection of Photographic Papers plays a vital role in this work. Messier is the corresponding author. Address: 103 Brooks Street, Boston, MA 02135. Email: pm@paulmessier.com 
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 1 Figure 1: Raking-light photomicrograph acquisition
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 3 Figure 3: Top: Affinities (dark: strong, light: weak) from metadata and expert domain knowledge. Bottom Quartet: Wisconsin (upper left), Tilburg (upper right), Lyon (lower left), WPI (lower right).

Figure 4 :

 4 Figure 4: Normalized image pair distances for the dataset of texture images (Diagonal blocks 1-3 same sheet, 4-6 same package, 7-9 same manufacturing standard and, 10-12 diverse samples)
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Appendix: PAPER SAMPLES USED IN THE SILVER GELATIN DATASET

For the following tables ID is the sequential numbering system suggested by the teams following image processing. Date refers to the paper expiration dates applied to manufacturer packages or estimates made based on packaging, M ID is the Messier Reference Collection catalog number. Other descriptors, such as brand and paper characteristics are taken directly from the manufacturer packaging.