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Abstract

Projected changes in precipitation extremes and their uncertainties are evaluated using

an ensemble of global climate models from phase 6 of the Coupled Model Intercomparison

Project (CMIP). They are scaled by corresponding changes either in global mean surface

temperature (∆GSAT) or in local surface temperature (∆T) and are expressed in terms of

20-yr return values (RV20) of annual maximum one-day precipitation. Our main objective

is to quantify the model response uncertainty and to highlight the regions where changes

may not be consistent with the widely used assumption of a Clausius-Clapeyron (CC) rate

of ≈7%/K. When using a single realization for each model, as in the latest report from the

Intergovernmental Panel on Climate Change (IPCC), the assessed inter-model spread includes

both model uncertainty and internal variability, which can be however assessed separately

using a large ensemble. Despite the overestimated inter-model spread, our results show a

robust enhancement of extreme precipitation with more than 90% of models simulating an

increase of RV20. Moreover, this increase is consistent with the CC rate of ≈7%/K over

about 83% of the global land domain when scaled by (∆GSAT). Our results also advocate for

producing multiple single model initial condition ensembles in the next CMIP projections, to

better filter internal variability out in estimating the response of extreme events.

Keywords Climate change, Precipitation, Uncertainty, Extremes

Introduction

Global climate models provide an increasingly comprehensive representation of the clima

tem and are used as a primary tool for understanding and projecting changes in climate mea

iability and extremes due to human activities. The Intergovernmental Panel on Climate Chan

CC) in its sixth assessment report (AR6) has re-estimated an increase in the observed glob

an surface temperature of 1.09◦C in 2011–2020 relative to the beginning of the industrial rev

on (1850-1900), which can be fully attributed to a human influence (IPCC AR6 SPM Masso

motte et al. (2021)). This anthropogenic global warming is reckoned to have long-term co

uences on all components of the climate system, including changes in the daily precipitati

ribution. Several generations of multi-model simulations contributing to the Coupled Model
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omparison Project (CMIP), supported by observational evidence, show that both the frequen

intensity of extreme daily precipitation events have increased over recent decades (Allen a

ram, 2002; Asadieh and Krakauer, 2015; Scherrer et al., 2016; Karl and Easterling, 1999; Kha

l., 2013; Min et al., 2011; O’Gorman, 2015). This is also documented in the IPCC special

t on Managing the Risks of Extremes Events to Advance Climate Change Adaptation (SRE

eviratne (2012)).

In the absence of moisture limitation and of significant dynamical response, the extrem

cipitation intensity is expected to increase exponentially with the atmospheric temperature

te determined by the Clausius–Clapeyron (CC) relationship. A robust scaling of daily preci

ion extremes with global warming across scenarios was confirmed by Li et al. (2020) who fou

t changes in precipitation extremes follow changes in global warming at roughly the CC rate

%/°C in the latest-generation CMIP6 models. Several studies based on climate model simu

s show a future increase of precipitation extremes with temperature at a rate comparable to

her than the CC rate (Li et al., 2020; Kharin et al., 2007; Pall et al., 2007; Allan and Sode

8; Sugiyama et al., 2010; Kao and Ganguly, 2011; Muller et al., 2011). However, wet extrem

not expected to intensify in all regions (Trenberth, 2011; Pfahl et al., 2017).

All these studies either show the multi-model mean or median and have not yet assessed t

ertainties in global CMIP6 projections. A suite of different model projections often exhibit

e spread (Lehner et al., 2020) and can even disagree on a particular region becoming wetter

r (sign change in the future). Even where there is an overall consensus among the models on t

of changes in the projected extremes due to a warmer climate, the magnitude of such chang

differ considerably. Though the climate models have improved over recent decades (Wy

l., 2020; Zelinka et al., 2020), these improvements do not necessarily result in a reduced spre

ong the projections (Douville et al., 2021). Thus, the main focus of this paper is to quantify t

del uncertainties in extreme precipitation projections based on CMIP6 models. We also aim

vide a blueprint on using these projections to identify regions where the projected changes

ly precipitation extremes are consistent with the CC rate and those where they are not.
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Changes in extreme precipitation against a backdrop of warming climate arise both d

thermodynamic and dynamic effects (Pfahl et al., 2017). A sub-CC relation or even negat

endence on global mean temperature has been found for precipitation extremes over some

ns, especially over the climatologically dry oceanic regions in the subtropics, presumably as

lt of decreasing moisture availability and enhanced large-scale subsidence (Berg et al., 200

dwick Jones et al., 2010; Utsumi et al., 2011; Pfahl et al., 2017). But the question of an a

priate choice of temperature for scaling extreme precipitation is still an open question and t

ilable studies differ in scope (Zhang et al., 2019; Schroeer and Kirchengast, 2018; Sun et a

1). There is a large-scale warming contrast between the continental landmass and the ocea

h certain regions over the ocean experiencing a negligible or limited change in the project

face temperature. The larger warming observed over land may result in a lower scaling w

l mean temperature, which may not be considered as a sub-CC scaling rate (Wang et al., 201

y departure from the CC rate can be an indication of a dynamical response which may be eith

plified or offset by a thermodynamic response regionally (Pfahl et al., 2017; Sherwood et a

0; O’Gorman, 2015). Thus here we explore changes in extreme precipitation simply scaled

er global mean or local surface air temperature changes.

Several studies (Alexander et al., 2006; Tebaldi et al., 2006; Sillmann et al., 2013a,b) ha

d various indices as a proxy for different features of precipitation extremes. Here we focus

reme events with typical return periods of 20 years (or 20-year return values, RV20) as estimat

the annual maximum one-day precipitation (RX1DAY). Projected long-period RX1DAY retu

e changes are larger than changes in mean RX1DAY and increase with increasing rarity (Mizu

Endo, 2020; Wehner, 2020). Here we did not explore longer (e.g., 50 or 100 years) return perio

e the associated uncertainties would be even stronger than for our RV20 estimations due to t

ited sampling.

The goal of this study is to assess the uncertainties of projected changes in extreme p

itation based on the multi-model CMIP6 ensemble, to discuss the limitations of assessing t

r-model spread using such ensembles of opportunity, and to highlight the regions where p

ed changes may not be consistent with the widely used assumption of a Clausius-Clapeyr

4
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e of ≈7%/K (Kharin et al., 2013; Westra et al., 2013; Seneviratne et al., 2021). For this pu

e, we use the SSP5-8.5 scenario from 35 CMIP6 models. The total spread in this ensemble

refore a combination of both model response uncertainty and internal variability. Therefore,

assess the potential contribution of internal variability to the inter-model spread by analyzi

projected changes of the RV20 in the CanESM5 model with 25 realizations, with the sam

centration scenario.

The rest of the paper is structured as follows. We start by introducing in section 2 the mod

methods used in this study. Turning to the results in section 3, we address the uncertainties

model projections along with a discussion on the role of internal variability using the ensemb

ulations from CanESM5. The role of local versus global temperature scaling is also assesse

tion 4 summarises the main findings. Other supporting figures and tables are available in t

ine supplementary material.

Data and methods

Data

Daily precipitation data from 35 global climate models from the CMIP6 repositories (Eyri

l., 2016) are used in this study. We combine the historical simulations (1850-2014) with o

red socioeconomic pathways (SSPs) projections (O’Neill et al., 2016) running from 2015

0. The ”end of the road” scenario SSP5-8.5 with the highest emissions is used to get maximu

ate change signals and, therefore, better isolate the forced RX1DAY response from intern

iability without using large initial condition ensembles (which are only available for a limit

ber of models). We use the one-model-one-vote approach i.e., without giving any particu

ghts, although there are inter-dependencies across models (eg Knutti and Masson (2013); Bad

l. (2018)). For each available CMIP6 model, only one member of the historical and SSP5-8

ulations are used — a treatment that is consistent with the recent IPCC AR6, and which ensu

t all models are treated equally. As the total uncertainty in the projected changes is the sum

h model uncertainties and internal climate variability, we here also analyze a single model init

dition large ensemble, provided by the CanESM5 model (Swart et al., 2019), with 25 individu

5



Journal Pre-proof

me120

2.2121

st-122

ord ns123

(ty ily124

pre on125

Cli126

ies127

of K ed128

the e129

Val ers130

(Co ue131

(Ea to132

dom on133

co-134

he135

loca ot136

uni en137

pre ful138

bec ed139

in r l.,140

201 er141

inc on142

fun143

1)
Jo
ur

na
l P

re
-p

ro
of

mbers. Hence we can quantify an upper bound for the total uncertainties.

Climate extreme indices and GEV analysis

We first interpolate the daily precipitation data for each model onto a 1◦x1◦ grid using a fir

er conservative remapping. This allows us to compare multiple models with different resolutio

pically 1–2◦). For each model, grid point and year, we calculate the annual maximum da

cipitation (RX1DAY), which is a widely used extreme index defined by the expert group

mate Change Detection and Indices (ETCCDI) (Karl et al., 1999; Peterson et al., 2001).

We then analyze changes in the return values of RX1DAY, in line with some previous stud

harin et al. (2013) and Wehner et al. (2020). To estimate the 20-year return values, we model

annual maxima of precipitation at each grid point using a nonstationary Generalized Extrem

ue (GEV) distribution using log(CO2) as the co-variate for both the location and scale paramet

les et al., 2001). The parameters are fitted using the Maximum Likelihood Estimate techniq

sterling et al., 2016). log(CO)2 is used as a single co-variate since it has long been recognized

inate the world mean temperature projections (Arrhenius, 1896) and allows us to use a comm

variate for all models without introducing any internal variability (Wehner et al., 2020).

In this study, the GEV estimates are computed by introducing a linear co-variate into t

tion and the scale parameters while the shape parameter is fitted as constant in time (but n

form across models and grid cells). In a warming world, all GEV parameters may vary betwe

sent-day and future climates, but a time-varying shape parameter would not be meaning

ause of high estimate uncertainties due to the limited sampling. This assumption was advocat

ecent related studies (e.g., (Cooley et al., 2007)) and widely used since then (Kharin et a

3; Wehner et al., 2020). In contrast, non-stationary location and scale parameters may furth

rease the quality of the fitted RX1DAY distribution in some regions. The cumulative distributi

ction for a non-stationary GEV distribution for a random variable X is:

F (x) = exp


−

[
1 + ξ

(x− µ(t))
σ(t)

] −1
ξ



 (

6
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where the co-variate appears linearly in the GEV location parameter as µ(t) = µ0+µ1 log(C

in the scale parameter as σ(t) = σ0+σ1 log(CO2) while ξ is constant in time. This non-stationa

is performed for each grid point.

To reduce statistical uncertainty in fitting the GEV distributions, the entire RX1DAY tim

es from 1850 to 2100 was used for all models. Having fitted GEV distribution, the precipitati

remes of our interest are defined as the 20-year return values. Return values are calculated

exceedance of the annual extreme with probability p or as the quantiles of a GEV distributio

e changes in the intensity of extreme events can be accordingly estimated for different futu

iods or periods of different warming levels. Changes in the future (2051–2100) are comput

h respect to the historical period (1951–2014), while changes at different warming levels a

ressed relative to their intensity during the pre-industrial period (1850–1900).

Global warming levels

We frame the projections by considering the changes at a specified global warming targ

.5, 2 and 3 K above the pre-industrial level. Climate sensitivity, or the simulated global me

face air temperature response to more comprehensive radiative forcings, is different across diff

models (Vial et al., 2013; Lee et al., 2021). As a consequence, the point in time when specifi

bal warming levels (GWLs) are achieved differs largely across models. Models with higher c

te sensitivity reach specified GWLs earlier than others. However, some models may not ev

ch the highest specified GWL before 2100. The first year when GWLs are reached for the

IP6 models used in this study under the scenario SSP5-8.5 is shown in the supplementary ma

(Table S.1). The extreme precipitation statistics are then calculated for each model individua

r 21 years, extending from 10 years before and after the ”central year”. We have used a movi

rage of 21 years before computing the central year.

Scaling of extreme precipitation with local and global temperature changes.

We scale changes in extreme precipitation (∆RV20) with both global mean surface air te

ature change (∆GSAT) and local surface air temperature change (∆T). ∆GSAT is calculated

7
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difference between the areal mean surface temperatures for the projected period and referen

iod (cf. Table S1). Similarly, ∆T is estimated as the local change in the climatological surfa

perature or the rate of change of mean surface temperature at each grid point for the sam

iods as above. Instead of considering the linear rate of change (Rlin = ∆Pext/∆Tsurf ) of t

reme precipitation, we assume a multiplicative rate of change, i.e., ∆Pext + 1 = (1 +Rmul)∆Tsu

e multiplicative rate of change is thus calculated as:

Rmul = (∆Pext + 1)
1

∆Tsurf − 1, (

ere ∆Pext is the change in precipitation extremes (here, ∆RV20) and ∆Tsurf is the change

face temperature (either ∆GSAT or ∆T). Both the linear and the multiplicative rates becom

roximately equal (Rlin ≈ Rmul) when ∆RV20 � 1 mm/day. Another important point to no

e is that for scaling with local temperature changes we masked the regions where the temperatu

nges are too small (i.e., ∆T �1 K) to avoid the infinite scaling while using equation (2). T

sking is done only for those models which show ∆T �1 K, while we keep the others so that t

lts are calculated for the models which project a minimum surface warming.

Hypothesis testing

We also aim to identify the regions where the change in extreme precipitation may occur

per-CC rate or sub-CC rate. In the latest IPCC report, (Seneviratne et al., 2021) conclude w

h confidence that precipitation extremes are controlled by both thermodynamic and dynam

cesses, and that warming-induced thermodynamic change results in an increase in extreme p

itation at a rate that closely follows the CC relationship at the global scale. Any departure fro

CC rate could therefore indicate an additional large-scale dynamical response. Attributi

dies such as Pall et al. (2017) show the local dynamical responses lead to non-CC rates. Sm

le dynamical responses such as enhanced convection, orographic lifting in atmospheric rivers,

d intensification in tropical cyclones, can also induce a non-CC rate of change at the local sca

ever, our analysis is only based on coarse resolution global CMIP6 models with parameteriz

vection so that the dynamical response here does not account for explicit mesoscale changes

storm dynamics that could also modulate the extreme precipitation response (e.g. Chan et a

8
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0). Thus, the large scale dynamics are the only non-thermodynamic mechanisms that can

ulated by these models.

The blueprint we provide in section 4 will serve as a framework to an extended analysis

matter. This can provide us with much confidence in the areas that are dominated by warmi

those regions where changes in the circulation patterns may also matter. For this, we u

imple hypothesis test, where we identify the regions where, e.g., there is no change, using t

confidence intervals we obtained from the multi-model framework. If the targeted Rmul (ra

hange of RV20 with temperature) does not fall within the confidence interval calculated fro

35 models, we conclude that our hypothesis is rejected. When it comes in the range of t

fidence interval, we accept the null hypothesis, and the regions are identified accordingly.

ntify the regions with no change, we consider the null-hypothesis Rmul = 0%/C, while Rmul

/K is used as our second hypothesis to find regions of sub-, super-, or consistent with the C

e.

Results

Intensification of extreme precipitation

Figure 1 shows the analysis for the median, 10th, and 90th percentiles along with the u

tainty range, which is, the difference between the 90th and 10th percentiles, of the extrem

cipitation changes scaled by both the global mean (∆GSAT, left panel) and local mean (∆

t panel) surface air temperature changes. The extreme precipitation rate as a function of bo

SAT and ∆T shows a clear increase in its intensity with respect to the historical period (195

4). The global average of the multi-model median changes is 5.0%/K (Figure 1 c) for the scali

h ∆GSAT, while it is 5.3%/K (Figure 1 d) for that of ∆T. These close values are slightly smal

n the CC rate of ≈ 7%/K, which suggests some negative dynamical influence at the region

le in increasingly subsiding regions, but also some water limitation in such dry regions.

From the maps in figure 1 c, d, the overall large-scale patterns of change remain similar

h temperature scalings, although changes are a bit more pronounced for the scaling with lo

peratures. The largest percentage of increase occurs over the tropical areas followed by t

9
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h latitudes for the global temperature scaling. For the local scaling, the largest percentage

nges occurs over the tropics followed by the mid-latitude oceans. The stronger warming ov

continental landmass can be a major reason for these differences (Wang et al., 2017). Certa

ions over the ocean like the north Atlantic and the southern oceans in figure 1c are characteriz

moderate to high scaled changes in precipitation extremes, which can be linked to the limit

nges in the projected local surface temperatures.

Changes in extreme precipitation with ∆GSAT and ∆T scalings vary substantially acro

globe. Over most of the mid-latitude land areas, changes do not strongly depend on the scali

thod and exhibit a sub-CC rate of 0–4%/K. Over the subtropics, the assessed rate of chan

iates further from the CC rate. In particular, there are high rates (super CC) over the Saha

the intertropical convergence zone (ITCZ), while the climatological dry areas like the bas

he South Pacific, the north and the south Atlantic, and the south Indian Ocean are mark

reduced, or even negative, rates of change in the extremes. Again, this deviation from t

rate (≈7%/K) indicates some other factors apart from the thermodynamic features might

play. Notably, a remarkable property is the increased multi-model spread over these regio

., supplementary material), in line with the less robust dynamical response across global clima

dels (Pfahl et al., 2017). Large departures, whether it is positive or negative, from the CC ra

associated with a larger inter-model spread, suggesting that these regions may be influenc

less robust changes in atmospheric circulation, possibly related to model-dependent patterns

surface temperature anomalies or land-sea temperature contrasts (Douville and John, 202

other noticeable feature is the impact of the scaling method over the northern high-latitud

is is partly linked to the Arctic amplification, where the Arctic region gets warm more than tw

ast as the global average (Cohen et al., 2014).

Range of projected responses in extreme precipitation

Figure 1 a, b, e and f illustrate the 10th and 90th percentiles of extreme precipitation ra

scalings with with global and local warming. The lower and the upper tails of distribution he

o study the worst possible case scenarios and more importantly quantify the uncertainties. T

er tails of extreme precipitation rates are characterized by large-scale features like the negat

10
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ling over the subtropical oceans in the western continental boundaries for both global and lo

perature scaling. It is important to note that these regions are predominantly dry areas d

the descending branches of the Hadley cells. The rest of the globe is marked by very sm

nges either positive or negative that are very close to zero. However, the 90th percentile ma

he upper tail of the distribution show a strong positive increase in precipitation extremes almo

rywhere around the globe. These are consistent with super-CC rates (stippling) for the scali

h global warming and, to a large extent, with local warming. Typical to the local warmi

ling, the northern mid- and high-latitude land areas are not stippled. This means that the ra

hange in extreme precipitation with local warming is sub-CC over these regions even for t

quantiles. Moreover, this is consistent across the three maps in the right panel of Figure 1

. This results directly from a larger and consistent local warming over these areas, especially

Arctic.

Another noticeable result is the zero or low-density stippling over the tropical Atlantic ocea

thern Europe, Chilean Coast, Continental North America and South Africa in all maps of bo

bal and local temperature scalings (figure 1). This implies a sub-CC rate over these are

spective of the scaling choice. We speculate that the circulation changes, such as a broadeni

he subtropical subsidence region, might be responsible for this (Pfahl et al., 2017). Inde

kind of extension can effectively replace a low-level moisture convergence zone with a regim

h low-level divergence where there is a weaker connection between the projected changes

cipitable water versus temperature.
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ure 1: Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by both glo
n surface temperature change (∆GSAT in K, left panel) and local mean surface temperature chan

in K, right panel). The changes are calculated for the future period of 2051-2100 relative to
orical period of 1951-2014 using the SSP5-8.8 scenario. (a),(b) show the 10% quantile maps, (c),
ws the median maps and (e),(f) show the 90% quantile maps, calculated from the CMIP6 multimo
emble. The bottom panel shows the width of the confidence range of extreme precipitation, computed
difference between the 90% and 10% quantile maps. Stippling highlights the grid cells where the rate
nge is more than 7%/K for respective scalings with ∆GSAT (left panel) and ∆T (right panel). GM
otes the global mean differences.

12



Journal Pre-proof

ile272

valu he273

upp on274

cha rn275

is v .1276

(als er277

tro ge278

in t lls,279

the is280

sim ed281

cha ies282

the al)283

are of284

con te.285

ue286

to d ls’287

clim nt288

from er289

unc he290

inte he291

use in292

the293
Jo
ur

na
l P

re
-p

ro
of

The bottom panels (g, h) in figure 1 show the difference between the 10th and 90th percent

es as simulated by a single realization from 35 CMIP6 models. Large differences between t

er and lower quantiles indicate a substantial spread in the projected extreme precipitati

nges. These maps quantify the uncertainties in extreme precipitation response and the patte

ery similar to those of the inter-model standard deviation maps as stated earlier in section 3

o ref., supplementary material). As clearly depicted in these figures, the spread is larger ov

pical areas than the rest of the globe. Particularly, over the tropics, the values are notably lar

he regions which are climatologically dry or wet, e.g., the subsidence zones of the Hadley ce

ITCZ, and the Saharan desert. We also see that the overall pattern of the inter-model spread

ilar for both temperature scalings. Table 1 reflects the range of model uncertainty in project

nges in extreme precipitation with respect to both local as well as global warming. It summar

areal averages of the median, 10%-, 90%- quantiles and their difference for the total (glob

a, the global land, and global ocean areas separately. It is clear from this Table that the width

fidence range averaged globally is large, about 10.5%, which is more than the average CC ra

Several sources of uncertainty can contribute to this spread. The main source is likely d

ifferent representations of the relevant physical processes and to related biases in the mode

atology of present-day precipitation. Moreover, the non-homogeneous temperature gradie

the equator to the poles and the land/sea temperature differences is also a source of larg

ertainty in the local temperature scaling maps. Another potential source of uncertainty is t

rnal climate variability which also gets translated differently into the total uncertainty with t

of different temperatures for scaling. We discuss potential contribution of internal variability

next section.
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10 med 90 width (90-10)

Total

GSAT
CMIP6 0.7 5.0 9.5 8.8

CanESM5 3.3 4.8 6.2 2.9

T
CMIP6 0.2 5.3 10.7 10.5

CanESM5 3.2 5.0 6.8 3.6

Land

GSAT
CMIP6 1.5 5.8 11.1 9.5

CanESM5 4.3 5.9 7.4 3.1

T
CMIP6 1.0 4.6 9.3 8.3

CanESM5 3.4 4.7 6.0 2.5

Ocean

GSAT
CMIP6 0.3 4.6 8.8 8.5

CanESM5 2.9 4.3 5.7 2.8

T
CMIP6 -0.1 5.6 11.4 11.5

CanESM5 3.1 5.1 7.1 4.0

le 1: Areal mean values (in %/K) of 10%-, 90%- quantiles and median of the extreme precipitati
nges scaled by both ∆GSAT and ∆T over the total global area, global land, and global oceans. T
e includes the respective values for both the CMIP6 multi-model changes and CanESM5 multi-ensem
nges.

14



Journal Pre-proof

3.3294

ed295

so f m-296

plin al297

var al298

forc ip-299

itat ss300

me of301

the P6302

mo It303

is a ed304

for P6305

ens306

ce307

bet ge308

for th309

tro ce310

zon ts,311

and in312

figu 5313

sho in314

the re315

sup he316

Can tal317

unc 1318

aga tal319

(glo320
Jo
ur

na
l P

re
-p

ro
of

Role of internal variability

The spread among the single realizations of CMIP6 projections has been mainly interpret

ar as model uncertainty. Yet, it can also arise from internal variability given the limited sa

g. In the case of historical extreme precipitation changes at a multi-decadal time scale, intern

iability was shown to be a significant driver due to the cancellation between different extern

ings (Nath et al., 2018). To get more insight into this, we analyzed the rate of change in prec

ion extremes in the 25-member ensemble of the CanESM5 model, and assess the spread acro

mbers (figure 2). We consider the large ensemble from CanESM5 as a representative estimate

internal variability range. It should be noted that CanESM5 is one of the low-resolution CMI

dels, with moderate skill in simulating global extreme precipitation (Wehner et al., 2020).

lso one of the CMIP6 models with the highest climate sensitivity, but this effect is account

by the scaling. The globally averaged median values are thus very close between the CMI

emble and the CanESM5 ensemble for both scaling with ∆GSAT and ∆T (Table 1).

Figure 2 shows the same diagnostics as in figure 1, but we see an obvious visible differen

ween them along with a few matching large scale patterns. For instance, the rates of chan

both ∆GSAT and ∆T match over the climatologically dry regions like the north and sou

pical Atlantic oceans as well as over primarily wet regions like the inter-tropical convergen

e. Furthermore, the regions like North American inland, Europe and Eurasia, Chilean Coas

South Africa are marked by a sub-CC rate of change with both temperature scales, likewise

re 1. Another noticeable result here is the changes in the areas that are stippled. CanESM

ws areas of super-CC (>7%/K) even for the 10th percentile maps which are not observed

CMIP6 ensemble. While for 90th percentile maps we see a decrease in the regions that a

er-CC rated. The range of uncertainties (2.9%/K for ∆GSAT and 3.6%/K for ∆T) across t

ESM5 ensemble members is evidently less than that across the CMIP6 models. The to

ertainties depicted in Figure 2 (bottom panel) is just the result of internal variability. Table

in summarizes the mean value of median, 10%-, 90%- quantiles and their difference for the to

bal) area, the global land, and global ocean areas separately.
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Figure 2: Same as figure 1, but for the ensemble of 25 individual members of CanESM5 model.

The evidenced range of uncertainty for the large ensemble of CanESM5 suggests that intern

iability can contribute significantly to the total uncertainty of extreme precipitation rates, wh

mated from one single simulation, even in a very high emission scenario. Figure 3 depicts t
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io of the width of the confidence range (the difference between 90% and 10% quantiles) of t

ESM5 large ensemble to that of the CMIP6 cross model ensemble. We clearly see that for me

reme precipitation rates scaled by global mean surface temperature, internal variability alo

induce a range of response about half as large as the CMIP6 multi-model spread (global avera

40%). For the high- and mid-latitude regions, internal variability is even larger and expla

nge of response ≈75% (darker shades of blue) as large as the total uncertainty. These regio

ibit a low to moderate increase in the percentage response of the extreme precipitation (as show

gures 1, 2) which explains the strong influence that internal variability may have on the extrem

cipitation signals. However, throughout the equatorial belt and the adjacent tropical areas,

a rather less but non-negligible contribution from internal variability. Interestingly, most

se regions fall along with the average position of the ITCZ, which is characterized by high valu

xtreme precipitation changes. Here, model uncertainty is very likely the major contributor

assessed inter-model spread, whereas internal variability only contributes to about 0–20% b

till potentially significant.

ure 3: Ratio of the width of confidence range of extreme precipitation in large ensemble CanESM5
CMIP6 multi-model ensemble. The result shown here is for scaling with global mean surface temperat
nge (∆GSAT).

Overall, these results suggest that internal variability contributes substantially to the assess

ertainty (i.e., the width of the 80% confidence range) reported in Figure 1. As a consequen

deling uncertainty alone is probably less than shown in Figure 1. Filtering out internal variabil

ld be done by using multiple members for each CMIP6 model involved — but such data are n

17



Journal Pre-proof

ava342

3.4343

of344

RV es345

(fig of346

≈ 7 to347

dep el348

me e349

mo ty.350

A n to351

dec th352

per ge353

neg ).354

Als er-355

cen an356

valu for357

hig s,358

the is359

pro ip-360

itat er361

tha al362

var ds363

to a364

lon365
Jo
ur

na
l P

re
-p

ro
of

ilable for all models so far.

Sensitivity of precipitation extremes at different global warming levels

Figure 4 provides analyses of the 10%- and 90%- quantiles of global climate sensitivity

20 in the CMIP6 ensembles at GWLs of 1.5 K, 2 K, and 3 K respectively. The median chang

ure not shown) relative to the preindustrial period for all GWLs are close to the CC rate

%/K. Not surprisingly, globally these scaled rates of change in precipitation do not appear

end on the selected GWL. There is only a slight difference of 0.7%/K in the average multi-mod

dian as the GWL is increased from 1.5K to 3 K possibly due to a non-linear response in som

dels (e.g., Pendergrass et al. (2019) based on a CMIP5 model), or just a sampling uncertain

otable observation as summarized in Table 2 is that the inter-model uncertainty range tends

rease as the GWL increases. The lower-tail of the extreme precipitation rates shown by 10

centile maps for the three GWLs (figure 4 left panel) reveals a very small decrease in the avera

ative precipitation rate values from 1.2%/K (+1.5K) to 1.1%/K (+2K) and to 1.0%/K (+3K

o, as seen from the right panel of Figure 4, the upper-tail of the distribution or the 90th p

tile maps show that the upper bound of extreme precipitation rates move closer to the medi

e from 14.9%/K (+1.5K) to 13.6 %/K (2K) and 12.1%/K (3K). This reduced uncertainty

her GWLs is consistent with the expected contribution of internal variability. At lower GWL

forced response remains limited, and the additional noise resulting from internal variability

portionally larger. This finding provides support for investigating changes in extreme prec

ion at high GWLs. Moreover, we notice that the uncertainty at +3K GWL remains larg

n that reported in Figure 1. Again, this is consistent with a smaller contribution of intern

iability in Figure 1 compared to a +3K GWL — consistent with the fact that SSP5-8.5 lea

global warming higher than +3K in most CMIP6 models, and that estimating changes over

ger period (50-yr in Fig 1, vs 20-yr for GWLs) leads to better filtering of internal variability.
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ure 4: Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by global me
ace temperature change (∆GSAT in ◦K) at global warming levels of 1.5, 2 and 3 ◦K above the pre
trial (1850-1900) average values. The left panel shows the 10% quantile maps and the right panel sho

quantile maps for the CMIP6 multimodel changes. Stippling marks the grid cells where the rate
nge is more than 7%/K. GMD denotes the global mean differences.
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10 med 90 width (90-10)

Total

1.5K 1.2 6.5 14.9 13.7

2K 1.1 6.2 13.6 12.5

3K 1.0 5.9 12.0 11.0

Land

1.5K 2.0 7.5 19.3 17.4

2K 1.9 7.2 17.3 15.4

3K 1.8 6.8 14.8 13.0

Ocean

1.5K 0.8 6.0 12.9 12.1

2K 0.8 5.8 12.0 11.2

3K 0.6 5.4 10.8 10.2

le 2: Areal mean values (in %/K) of 10%- and 90%- quantiles of the extreme precipitation chan
ed by ∆GSAT over the total global area, global land, and global oceans for three target global warm
ls of 1.5, 2, and 3 ◦K.

Regions of hypothesis tests

Using a simple hypothesis test as described in Section 2.5, we classified the global areas in

ee categories. Here we have considered two general hypotheses — (H0) extreme precipitati

s not change with global warming, and (H1, H2) the change in extreme precipitation follo

CC rate of ≈ 7%/K for ∆GSAT and ∆T scaling, respectively. Figure 5 shows the regio

egorized accordingly to our hypotheses. Red and blue colors are regions where the hypothesis

cted while yellow represents regions where the hypothesis is accepted. It is important to not

t accepting a hypothesis doesn’t mean that this hypothesis is true. It rather means that t
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othesis is plausible, i.e., there is not enough evidence to reject it.

ure 5: Global maps of confidence areas (80% confidence interval) for the CMIP6 using 35 individ
els with a single realization. The maps show where the rate of extreme precipitation changes is cons
with constant rates of ≈0%/K or ≈7%/K. Red color denotes the regions where the changes are alwa
than the constant, yellow denotes areas where the constant falls within the confidence interval and b

otes areas where the rates are always greater than the constant. Map (a) shows the areas where the r
hanges in extreme precipitation remains unchanged or consistent to 0%/K when scaled with ∆GSA
ps (b), (c) show the global areas where the rate of changes are consistent with the CC rate of ≈7%

respect to ∆GSAT and ∆T. The values on top of colorbar show the percentage of each colored a
r the global land surface, while the values at the bottom indicate the same over the total global surfa
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Figure 5 a shows the regions all over the globe where the rate of precipitation change

SAT is consistent with ≈0%/K (i.e., no significant change, yellow color). We see that t

ions for which H0 cannot be rejected are limited and these are especially over the global ocea

s to be noted that over these regions the median values of the projected precipitation chang

consistently low and close to zero. The same results are found for the local temperature scali

th a correlation ≈99%). Over these regions, the cohort of CMIP6 models does not provide robu

ence that global warming will intensify extreme precipitation. While the small patches of r

red regions over subtropical ocean west to the continents indicate that the hypothesis is reject

the changes are negative. Another notable feature over the yellow and red colored regions

similarity of negative scaling the figure 5a to the patterns of negative dynamic contributi

observed in figure 3 of Pfahl et al. (2017) for the CMIP5 models. This implies a consisten

ween the CMIP5 and CMIP6 projections of extreme precipitation, possibly for a common reaso

haps, a less robust dynamical response. The negative dynamic factors may perchance responsib

keeping the extreme precipitation not to increase at large as it does with moisture increase

rest of the globe. Remarkably, there is no land region where extreme precipitation is robus

ected to decrease in response to global warming.

Figure 5 b, c shows the regions where the hypotheses H1, H2 are accepted or rejecte

h H1 and H2 are used for identifying the regions where the extreme precipitation changes a

sistent with the CC rate of ≈7%/K with respect to ∆GSAT and ∆T respectively. These ma

be used as a blueprint to identify the regions which are consistent with the CC rate and tho

ich are not. The first outcome is that a vast majority of places on Earth, about 83% of the glob

d area, are expected to undergo a change in extreme precipitation that is consistent with the C

e, particularly with the ∆GSAT scaling. This doesn’t mean that these regions will experienc

nge of exactly +7%/K. It means that, over these regions, the expected change in RX1d is n

ustly sub-CC or super-CC, i.e., not inconsistent with CC. The majority of regions that follow

-CC rate of change for both temperature scalings are over the oceans, especially at the weste

tinental boundaries, which are climatologically dry regions. A few continental regions like t

th American continent, South and Central Eastern Europe, Chilean Coast, South Africa a
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th Australia are also marked by the sub-CC rate for both scaling temperatures. There are a

ches of consistent super-CC rates over the equatorial Pacific and the Sahel region. Scaling w

different temperatures displays different areas of consistency with CC especially over the hi

thern latitudes. The map for the local temperature scaling shows a significant increase in t

-CC areas especially over the Arctic and most of the mid-latitude landmasses. This indica

t the expected increase in extreme precipitation over these regions does not follow the lo

ming at the CC rate. This result is consistent with the enhanced warming expected over the

ions, while the surrounding oceans (the main source of moisture) are warming less quickly.

Discussion and conclusion

Despite an overall agreement that extreme precipitation follow a ≈7%/K rate of increa

the global scale, projected changes in extreme precipitation are influenced by multiple facto

t can lead to large uncertainties at the regional scale. In this study, we quantify uncertainty

projected changes in extreme precipitation — while most studies look at the mean or medi

nge across an ensemble of models — using a single high-emission scenario. We provide a fi

essment of the 10-90% range in the extreme daily precipitation responses at the grid-point sc

a global picture of the regions where changes in extreme precipitation are consistent with t

rate. Our results suggest that uncertainty is usually quite large. Averaged globally, GSA

ling ranges extend from about 0 up to a super-CC rate, with a median close to the CC ra

certainty can be larger if changes in extreme precipitation are investigated for a given GW

is may be an artifact of internal variability due to the lack of sampling which has a strong

tive contribution at lower GWLs compared to our selected very-high emissions scenario.

Our assessed CMIP6 uncertainty arises both from model uncertainty and internal variabili

ur calculations are based on single runs from each CMIP6 model. Internal variability can be se

a basic sampling uncertainty, which could be overcome by averaging across multiple memb

each global climate model. Model uncertainty alone would lead to narrower ranges than tho

orted in this study. However, despite the widening induced by a non-negligible contribution

rnal variability, our results show that the intensification of extreme daily precipitation is robu

r most regions, with more than 90% of models simulating an increase of 20-yr RVs. We belie
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t this study helps strengthen our confidence in the intensification of extreme precipitation.

Most regions around the world exhibit a RV20 change consistent with the CC rate of ≈7%/

arkably, about 83% of the global land fraction is consistent with this rate of change when scal

∆GSAT. Exceptions to this include limited areas over subtropical oceans (showing a sign

tly sub-CC rate), and parts of the equatorial Pacific and Sahelian ITCZ (showing a significan

er-CC rate). These findings are consistent with well-known projected changes in large-sc

ospheric circulation, i.e., strengthened subsidence over the subtropics and enhanced convecti

r the core of the ITCZ (Douville et al., 2021). Not surprisingly, the rate of change in the Arc

articularly sensitive to the scaling applied, since this region is warming much faster than t

bal average. This example suggests that the spatial distribution of the warming (e.g., Arc

plification, land-sea contrast) can be also responsible for changes in the low-level atmosphe

ulation and, therefore, for the departure from the CC rate of intensification.

Due to the uncertainty, the rate of change in extreme precipitation depicted here only rep

ts a plausible scenario. This hints at the fact that we cannot produce a more accurate projecti

il we limit both model uncertainty and internal variability. Better filtering of internal variabil

ld require using multiple ensemble members for each CMIP model — which are not available

moment except for a few models. Therefore, we suggest to the modeling community to consid

ducing a minimum number (at least 9 according to O’Neill et al. (2016)) of realizations

h selected emissions scenario in the forthcoming CMIP7 exercise. Beyond internal variabili

ence suggests that modeling uncertainty also contributes to a large fraction of the report

ertainty. This source of uncertainty is related to our limited knowledge of the key physi

cesses controlling the response of extreme precipitation that is simulated by both global a

ional climate models. Thus the generation of large ensembles along with other improvemen

the development and wider use of convection-permitting models (Lucas-Picher et al., 202

ld increase the reliability of projected changes in extreme precipitation. Other methods such

development and application of observational constraints (Ribes et al., 2021) could be also ve

ful to constrain the response of both global and regional climate models.
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M çi,586

R on587

o te588

C589

S. I590

S. S n,591

a592

J. in593

t of594

G595
Jo
ur

na
l P

re
-p

ro
of

Peterson, C. Folland, G. Gruza, W. Hogg, A. Mokssit, and N. Plummer. Report on the activit

f the working group on climate change detection and related rapporteurs. Citeseer, 2001.

fahl, P. A. O’Gorman, and E. M. Fischer. Understanding the regional pattern of project

uture changes in extreme precipitation. Nature Climate Change, 7(6):423–427, 2017.

Ribes, S. Qasmi, and N. P. Gillett. Making climate projections conditional on historical obs

ations. Science Advances, 7(4):eabc0671, 2021.

. Scherrer, E. M. Fischer, R. Posselt, M. A. Liniger, M. Croci-Maspoli, and R. Knutti. Emergi

rends in heavy precipitation and hot temperature extremes in switzerland. Journal of Geophysi

esearch: Atmospheres, 121(6):2626–2637, 2016.

Schroeer and G. Kirchengast. Sensitivity of extreme precipitation to temperature: the variabil

f scaling factors from a regional to local perspective. Climate Dynamics, 50(11):3981–3994, 201

eneviratne, X. Zhang, M. Adnan, W. Badi, C. Dereczynski, A. Di Luca, S. Ghosh, I. Iskand

. Kossin, S. Lewis, F. Otto, I. Pinto, M. Satoh, S. M. Vicente-Serrano, M. Wehner, and B. Zho

eather and climate extreme events in a changing climate. In Masson-Delmotte, V., P. Zh
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