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A B S T R A C T

Projected changes in precipitation extremes and their uncertainties are evaluated using an ensemble of global
climate models from phase 6 of the Coupled Model Intercomparison Project (CMIP). They are scaled by
corresponding changes either in global mean surface temperature (𝛥GSAT) or in local surface temperature
(𝛥T) and are expressed in terms of 20-yr return values (RV20) of annual maximum one-day precipitation. Our
main objective is to quantify the model response uncertainty and to highlight the regions where changes may
not be consistent with the widely used assumption of a Clausius–Clapeyron (CC) rate of ≈7%/K. When using a
single realization for each model, as in the latest report from the Intergovernmental Panel on Climate Change
(IPCC), the assessed inter-model spread includes both model uncertainty and internal variability, which can
be however assessed separately using a large ensemble. Despite the overestimated inter-model spread, our
results show a robust enhancement of extreme precipitation with more than 90% of models simulating an
increase of RV20. Moreover, this increase is consistent with the CC rate of ≈7%/K over about 83% of the
global land domain when scaled by (𝛥GSAT). Our results also advocate for producing multiple single model
initial condition ensembles in the next CMIP projections, to better filter internal variability out in estimating
the response of extreme events.
1. Introduction

Global climate models provide an increasingly comprehensive rep-
resentation of the climate system and are used as a primary tool
for understanding and projecting changes in climate mean, variability
and extremes due to human activities. The Intergovernmental Panel
on Climate Change (IPCC) in its sixth assessment report (AR6) has
re-estimated an increase in the observed global mean surface tem-
perature of 1.09 ◦C in 2011–2020 relative to the beginning of the
industrial revolution (1850–1900), which can be fully attributed to a
human influence (IPCC AR6 SPM Masson-Delmotte et al. (2021)). This
anthropogenic global warming is reckoned to have long-term conse-
quences on all components of the climate system, including changes
in the daily precipitation distribution. Several generations of multi-
model simulations contributing to the Coupled Model Intercomparison
Project (CMIP), supported by observational evidence, show that both
the frequency and intensity of extreme daily precipitation events have
increased over recent decades (Allen and Ingram, 2002; Asadieh and
Krakauer, 2015; Scherrer et al., 2016; Karl and Easterling, 1999; Kharin
et al., 2013; Min et al., 2011; O’Gorman, 2015). This is also documented
in the IPCC special report on Managing the Risks of Extremes Events to
Advance Climate Change Adaptation (SREX, Seneviratne (2012)).

∗ Correspondence to: DESR/CNRM/GMGEC/CLIMSTAT, CNRM/Météo-France, 42, Avenue Gaspard Coriolis, Toulouse, 31100, France.
E-mail address: john.amal@meteo.fr (A. John).

In the absence of moisture limitation and of significant dynamical
response, the extreme precipitation intensity is expected to increase
exponentially with the atmospheric temperature at a rate determined
by the Clausius–Clapeyron (CC) relationship. A robust scaling of daily
precipitation extremes with global warming across scenarios was con-
firmed by Li et al. (2020) who found that changes in precipitation
extremes follow changes in global warming at roughly the CC rate of
≈ 7%/◦C in the latest-generation CMIP6 models. Several studies based
on climate model simulations show a future increase of precipitation
extremes with temperature at a rate comparable to or higher than the
CC rate (Li et al., 2020; Kharin et al., 2007; Pall et al., 2007; Allan and
Soden, 2008; Sugiyama et al., 2010; Kao and Ganguly, 2011; Muller
et al., 2011). However, wet extremes are not expected to intensify in
all regions (Trenberth, 2011; Pfahl et al., 2017).

All these studies either show the multi-model mean or median
and have not yet assessed the uncertainties in global CMIP6 projec-
tions. A suite of different model projections often exhibits a large
spread (Lehner et al., 2020) and can even disagree on a particular
region becoming wetter or drier (sign change in the future). Even where
there is an overall consensus among the models on the sign of changes
in the projected extremes due to a warmer climate, the magnitude
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of such changes can differ considerably. Though the climate models
have improved over recent decades (Wyser et al., 2020; Zelinka et al.,
2020), these improvements do not necessarily result in a reduced
spread among the projections (Douville et al., 2021). Thus, the main
focus of this paper is to quantify the model uncertainties in extreme
precipitation projections based on CMIP6 models. We also aim to
provide a blueprint on using these projections to identify regions where
the projected changes in daily precipitation extremes are consistent
with the CC rate and those where they are not.

Changes in extreme precipitation against a backdrop of warming
climate arise both due to thermodynamic and dynamic effects (Pfahl
et al., 2017). A sub-CC relation or even negative dependence on global
mean temperature has been found for precipitation extremes over some
regions, especially over the climatologically dry oceanic regions in the
subtropics, presumably as a result of decreasing moisture availability
and enhanced large-scale subsidence (Berg et al., 2009; Hardwick Jones
et al., 2010; Utsumi et al., 2011; Pfahl et al., 2017). But the question of
an appropriate choice of temperature for scaling extreme precipitation
is still an open question and the available studies differ in scope (Zhang
et al., 2019; Schroeer and Kirchengast, 2018; Sun et al., 2021). There
is a large-scale warming contrast between the continental landmass
and the oceans with certain regions over the ocean experiencing a
negligible or limited change in the projected surface temperature. The
larger warming observed over land may result in a lower scaling with
local mean temperature, which may not be considered as a sub-CC
scaling rate (Wang et al., 2017). Any departure from the CC rate can be
an indication of a dynamical response which may be either amplified
or offset by a thermodynamic response regionally (Pfahl et al., 2017;
Sherwood et al., 2010; O’Gorman, 2015). Thus here we explore changes
in extreme precipitation simply scaled by either global mean or local
surface air temperature changes.

Several studies (Alexander et al., 2006; Tebaldi et al., 2006; Sill-
mann et al., 2013a,b) have used various indices as a proxy for different
features of precipitation extremes. Here we focus on extreme events
with typical return periods of 20 years (or 20-year return values,
RV20) as estimated from the annual maximum one-day precipitation
(RX1DAY). Projected long-period RX1DAY return value changes are
larger than changes in mean RX1DAY and increase with increasing
rarity (Mizuta and Endo, 2020; Wehner, 2020). Here we did not
explore longer (e.g., 50 or 100 years) return periods since the associated
uncertainties would be even stronger than for our RV20 estimations due
to the limited sampling.

The goal of this study is to assess the uncertainties of projected
changes in extreme precipitation based on the multi-model CMIP6
ensemble, to discuss the limitations of assessing the inter-model spread
using such ensembles of opportunity, and to highlight the regions
where projected changes may not be consistent with the widely used
assumption of a Clausius–Clapeyron rate of ≈7%/K (Kharin et al., 2013;
Westra et al., 2013; Seneviratne et al., 2021). For this purpose, we
use the SSP5-8.5 scenario from 35 CMIP6 models. The total spread
in this ensemble is therefore a combination of both model response
uncertainty and internal variability. Therefore, we also assess the po-
tential contribution of internal variability to the inter-model spread by
analyzing the projected changes of the RV20 in the CanESM5 model
with 25 realizations, with the same concentration scenario.

The rest of the paper is structured as follows. We start by introduc-
ing in Section 2 the models and methods used in this study. Turning
to the results in Section 3, we address the uncertainties in the model
projections along with a discussion on the role of internal variability
using the ensemble simulations from CanESM5. The role of local versus
global temperature scaling is also assessed. Section 4 summarizes the
main findings. Other supporting figures and tables are available in the
online supplementary material.
2

2. Data and methods

2.1. Data

Daily precipitation data from 35 global climate models from the
CMIP6 repositories (Eyring et al., 2016) are used in this study. We
combine the historical simulations (1850–2014) with one shared so-
cioeconomic pathways (SSPs) projections (O’Neill et al., 2016) running
from 2015 to 2100. The ‘‘end of the road’’ scenario SSP5-8.5 with
the highest emissions is used to get maximum climate change signals
and, therefore, better isolate the forced RX1DAY response from internal
variability without using large initial condition ensembles (which are
only available for a limited number of models). We use the one-model-
one-vote approach i.e., without giving any particular weights, although
there are inter-dependencies across models (eg Knutti and Masson
(2013) and Bador et al. (2018)). For each available CMIP6 model, only
one member of the historical and SSP5-8.5 simulations are used —
a treatment that is consistent with the recent IPCC AR6, and which
ensures that all models are treated equally. As the total uncertainty
in the projected changes is the sum of both model uncertainties and
internal climate variability, we here also analyze a single model initial
condition large ensemble, provided by the CanESM5 model (Swart
et al., 2019), with 25 individual members. Hence we can quantify an
upper bound for the total uncertainties.

2.2. Climate extreme indices and GEV analysis

We first interpolate the daily precipitation data for each model onto
a 1◦×1◦ grid using a first-order conservative remapping. This allows us
to compare multiple models with different resolutions ( typically 1–2◦).
For each model, grid point and year, we calculate the annual maximum
daily precipitation (RX1DAY), which is a widely used extreme index
defined by the expert group on Climate Change Detection and Indices
(ETCCDI) (Karl et al., 1999; Peterson et al., 2001).

We then analyze changes in the return values of RX1DAY, in
line with some previous studies of Kharin et al. (2013) and Wehner
et al. (2020). To estimate the 20-year return values, we modeled the
annual maxima of precipitation at each grid point using a nonstationary
Generalized Extreme Value (GEV) distribution using log(CO2) as the co-
variate for both the location and scale parameters (Coles et al., 2001).
The parameters are fitted using the Maximum Likelihood Estimate
technique (Easterling et al., 2016). log(CO)2 is used as a single co-
variate since it has long been recognized to dominate the world mean
temperature projections (Arrhenius, 1896) and allows us to use a
common co-variate for all models without introducing any internal
variability (Wehner et al., 2020).

In this study, the GEV estimates are computed by introducing a
linear co-variate into the location and the scale parameters while the
shape parameter is fitted as constant in time (but not uniform across
models and grid cells). In a warming world, all GEV parameters may
vary between present-day and future climates, but a time-varying shape
parameter would not be meaningful because of high estimate uncer-
tainties due to the limited sampling. This assumption was advocated
in recent related studies (e.g., Cooley et al. (2007)) and widely used
since then (Kharin et al., 2013; Wehner et al., 2020). In contrast,
non-stationary location and scale parameters may further increase the
quality of the fitted RX1DAY distribution in some regions. The cumu-
lative distribution function for a non-stationary GEV distribution for a
random variable 𝑋 is:

𝐹 (𝑥) = exp

⎧

⎪

⎨

⎪

⎩

−
[

1 + 𝜉
(𝑥 − 𝜇(𝑡))

𝜎(𝑡)

]
−1
𝜉
⎫

⎪

⎬

⎪

⎭

(1)

where the co-variate appears linearly in the GEV location parameter
as 𝜇(𝑡) = 𝜇 + 𝜇 log(CO ) and in the scale parameter as 𝜎(𝑡) =
0 1 2
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𝜎0 + 𝜎1 log(CO2) while 𝜉 is constant in time. This non-stationary fit is
erformed for each grid point.

To reduce statistical uncertainty in fitting the GEV distributions,
he entire RX1DAY time series from 1850 to 2100 was used for all
odels. Having fitted GEV distribution, the precipitation extremes of

ur interest are defined as the 20-year return values. Return values are
alculated as the exceedance of the annual extreme with probability 𝑝
r as the quantiles of a GEV distribution. The changes in the intensity of
xtreme events can be accordingly estimated for different future periods
r periods of different warming levels. Changes in the future (2051–
100) are computed with respect to the historical period (1951–2014),
hile changes at different warming levels are expressed relative to their

ntensity during the pre-industrial period (1850–1900).

.3. Global warming levels

We frame the projections by considering the changes at a specified
lobal warming target of 1.5, 2 and 3 K above the pre-industrial
evel. Climate sensitivity, or the simulated global mean surface air
emperature response to more comprehensive radiative forcings, is
ifferent across different models (Vial et al., 2013; Lee et al., 2021).
s a consequence, the point in time when specified global warming

evels (GWLs) are achieved differs largely across models. Models with
igher climate sensitivity reach specified GWLs earlier than others.
owever, some models may not even reach the highest specified GWL
efore 2100. The first year when GWLs are reached for the 35 CMIP6
odels used in this study under the scenario SSP5-8.5 is shown in

he supplementary material (Table S.1). The extreme precipitation
tatistics are then calculated for each model individually over 21 years,
xtending from 10 years before and after the ‘‘central year’’. We have
sed a moving average of 21 years before computing the central year.

.4. Scaling of extreme precipitation with local and global temperature
hanges

We scale changes in extreme precipitation (𝛥RV20) with both global
mean surface air temperature change (𝛥GSAT) and local surface air
temperature change (𝛥T). 𝛥GSAT is calculated as the difference be-
tween the areal mean surface temperatures for the projected period
and reference period (cf. Table S1). Similarly, 𝛥T is estimated as the
local change in the climatological surface temperature or the rate of
change of mean surface temperature at each grid point for the same
periods as above. Instead of considering the linear rate of change (𝑅𝑙𝑖𝑛 =
𝛥𝑃𝑒𝑥𝑡∕𝛥𝑇𝑠𝑢𝑟𝑓 ) of the extreme precipitation, we assume a multiplicative
rate of change, i.e., 𝛥𝑃𝑒𝑥𝑡 + 1 = (1 + 𝑅𝑚𝑢𝑙)

𝛥𝑇𝑠𝑢𝑟𝑓 . The multiplicative rate
of change is thus calculated as:

𝑅𝑚𝑢𝑙 = (𝛥𝑃𝑒𝑥𝑡 + 1)
1

𝛥𝑇𝑠𝑢𝑟𝑓 − 1, (2)

where 𝛥𝑃𝑒𝑥𝑡 is the change in precipitation extremes (here, 𝛥RV20) and
𝑇𝑠𝑢𝑟𝑓 is the change in surface temperature (either 𝛥GSAT or 𝛥T). Both

the linear and the multiplicative rates become approximately equal
(𝑅𝑙𝑖𝑛 ≈ 𝑅𝑚𝑢𝑙) when 𝛥RV20 ≪ 1 mm/day. Another important point to
note here is that for scaling with local temperature changes we masked
the regions where the temperature changes are too small (i.e., 𝛥T ≪1

) to avoid the infinite scaling while using Eq. (2). The masking is done
nly for those models which show 𝛥T ≪1 K, while we keep the others so
hat the results are calculated for the models which project a minimum
urface warming.

.5. Hypothesis testing

We also aim to identify the regions where the change in extreme
recipitation may occur at a super-CC rate or sub-CC rate. In the latest
PCC report, Seneviratne et al. (2021) conclude with high confidence
3

hat precipitation extremes are controlled by both thermodynamic and
dynamic processes, and that warming-induced thermodynamic change
results in an increase in extreme precipitation at a rate that closely
follows the CC relationship at the global scale. Any departure from the
CC rate could therefore indicate an additional large-scale dynamical
response. Attribution studies such as Pall et al. (2017) show the local
dynamical responses lead to non-CC rates. Small scale dynamical re-
sponses such as enhanced convection, orographic lifting in atmospheric
rivers, or wind intensification in tropical cyclones, can also induce a
non-CC rate of change at the local scale. However, our analysis is only
based on coarse resolution global CMIP6 models with parameterized
convection so that the dynamical response here does not account for
explicit mesoscale changes in the storm dynamics that could also mod-
ulate the extreme precipitation response (e.g. Chan et al., 2020). Thus,
the large scale dynamics are the only non-thermodynamic mechanisms
that can be simulated by these models.

The blueprint we provide in Section 4 will serve as a framework to
an extended analysis on this matter. This can provide us with much
confidence in the areas that are dominated by warming and those
regions where changes in the circulation patterns may also matter.
For this, we use a simple hypothesis test, where we identify the regions
where, e.g., there is no change, using the 80% confidence intervals
we obtained from the multi-model framework. If the targeted 𝑅𝑚𝑢𝑙
rate of change of RV20 with temperature) does not fall within the
onfidence interval calculated from the 35 models, we conclude that
ur hypothesis is rejected. When it comes in the range of the confidence
nterval, we accept the null hypothesis, and the regions are identified
ccordingly. To identify the regions with no change, we consider the
ull-hypothesis 𝑅𝑚𝑢𝑙 = 0%/C, while 𝑅𝑚𝑢𝑙 = 7%/K is used as our second

hypothesis to find regions of sub-, super-, or consistent with the CC rate.

3. Results

3.1. Intensification of extreme precipitation

Fig. 1 shows the analysis for the median, 10th, and 90th percentiles
along with the uncertainty range, which is, the difference between the
90th and 10th percentiles, of the extreme precipitation changes scaled
by both the global mean (𝛥GSAT, left panel) and local mean (𝛥T, right
panel) surface air temperature changes. The extreme precipitation rate
as a function of both 𝛥GSAT and 𝛥T shows a clear increase in its
intensity with respect to the historical period (1951–2014). The global
average of the multi-model median changes is 5.0%/K (Fig. 1c) for
the scaling with 𝛥GSAT, while it is 5.3%/K (Fig. 1d) for that of 𝛥T.
These close values are slightly smaller than the CC rate of ≈7%/K
, which suggests some negative dynamical influence at the regional
scale in increasingly subsiding regions, but also some water limitation
in such dry regions. From the maps in Fig. 1c, d, the overall large-
scale patterns of change remain similar for both temperature scalings,
although changes are a bit more pronounced for the scaling with
local temperatures. The largest percentage of increase occurs over the
tropical areas followed by the high latitudes for the global temperature
scaling. For the local scaling, the largest percentage of changes occurs
over the tropics followed by the mid-latitude oceans. The stronger
warming over the continental landmass can be a major reason for these
differences (Wang et al., 2017). Certain regions over the ocean like
the north Atlantic and the southern oceans in Fig. 1c are characterized
by moderate to high scaled changes in precipitation extremes, which
can be linked to the limited changes in the projected local surface
temperatures.

Changes in extreme precipitation with 𝛥GSAT and 𝛥T scalings vary
substantially across the globe. Over most of the mid-latitude land areas,
changes do not strongly depend on the scaling method and exhibit
a sub-CC rate of 0–4%/K. Over the subtropics, the assessed rate of
change deviates further from the CC rate. In particular, there are high
rates (super CC) over the Sahara and the intertropical convergence zone
(ITCZ), while the climatological dry areas like the basins of the South
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Pacific, the north and the south Atlantic, and the south Indian Ocean
are marked by reduced, or even negative, rates of change in the ex-
tremes. Again, this deviation from the CC rate (≈7%/K) indicates some
other factors apart from the thermodynamic features might be at play.
Notably, a remarkable property is the increased multi-model spread
over these regions (ref., supplementary material), in line with the less
robust dynamical response across global climate models (Pfahl et al.,
2017). Large departures, whether it is positive or negative, from the
CC rate are associated with a larger inter-model spread, suggesting that
these regions may be influenced by less robust changes in atmospheric
circulation, possibly related to model-dependent patterns of sea surface
temperature anomalies or land–sea temperature contrasts (Douville and
John, 2021). Another noticeable feature is the impact of the scaling
method over the northern high-latitudes. This is partly linked to the
Arctic amplification, where the Arctic region gets warm more than
twice as fast as the global average (Cohen et al., 2014).

3.2. Range of projected responses in extreme precipitation

Fig. 1a, b, e and f illustrate the 10th and 90th percentiles of
extreme precipitation rates for scalings with with global and local
warming. The lower and the upper tails of distribution help us to
study the worst possible case scenarios and more importantly quantify
the uncertainties. The lower tails of extreme precipitation rates are
characterized by large-scale features like the negative scaling over
the subtropical oceans in the western continental boundaries for both
global and local temperature scaling. It is important to note that these
regions are predominantly dry areas due to the descending branches
of the Hadley cells. The rest of the globe is marked by very small
changes either positive or negative that are very close to zero. However,
the 90th percentile maps or the upper tail of the distribution show a
strong positive increase in precipitation extremes almost everywhere
around the globe. These are consistent with super-CC rates (stippling)
for the scaling with global warming and, to a large extent, with local
warming. Typical to the local warming scaling, the northern mid- and
high-latitude land areas are not stippled. This means that the rate
of change in extreme precipitation with local warming is sub-CC over
these regions even for the 90% quantiles. Moreover, this is consistent
across the three maps in the right panel of Fig. 1b, d, f. This results
directly from a larger and consistent local warming over these areas,
especially in the Arctic.

Another noticeable result is the zero or low-density stippling over
the tropical Atlantic ocean, Southern Europe, Chilean Coast, Continen-
tal North America and South Africa in all maps of both global and
local temperature scalings (Fig. 1). This implies a sub-CC rate over
these areas irrespective of the scaling choice. We speculate that the
circulation changes, such as a broadening of the subtropical subsidence
region, might be responsible for this (Pfahl et al., 2017). Indeed this
kind of extension can effectively replace a low-level moisture conver-
gence zone with a regime with low-level divergence where there is a
weaker connection between the projected changes in precipitable water
versus temperature.

The bottom panels (g, h) in Fig. 1 show the difference between the
10th and 90th percentile values as simulated by a single realization
from 35 CMIP6 models. Large differences between the upper and
lower quantiles indicate a substantial spread in the projected extreme
precipitation changes. These maps quantify the uncertainties in extreme
precipitation response and the pattern is very similar to those of the
inter-model standard deviation maps as stated earlier in Section 3.1
(also ref., supplementary material). As clearly depicted in these figures,
the spread is larger over tropical areas than the rest of the globe.
Particularly, over the tropics, the values are notably large in the regions
which are climatologically dry or wet, e.g., the subsidence zones of the
Hadley cells, the ITCZ, and the Saharan desert. We also see that the
overall pattern of the inter-model spread is similar for both temperature
4

scalings. Table 1 reflects the range of model uncertainty in projected
Table 1
Areal mean values (in %/K) of 10%-, 90%- quantiles and median of the extreme
precipitation changes scaled by both 𝛥GSAT and 𝛥T over the total global area, global
land, and global oceans. The table includes the respective values for both the CMIP6
multi-model changes and CanESM5 multi-ensemble changes.

10 Med 90 Width (90-10)

Total
GSAT CMIP6 0.7 5.0 9.5 8.8

CanESM5 3.3 4.8 6.2 2.9

T CMIP6 0.2 5.3 10.7 10.5
CanESM5 3.2 5.0 6.8 3.6

Land
GSAT CMIP6 1.5 5.8 11.1 9.5

CanESM5 4.3 5.9 7.4 3.1

T CMIP6 1.0 4.6 9.3 8.3
CanESM5 3.4 4.7 6.0 2.5

Ocean
GSAT CMIP6 0.3 4.6 8.8 8.5

CanESM5 2.9 4.3 5.7 2.8

T CMIP6 −0.1 5.6 11.4 11.5
CanESM5 3.1 5.1 7.1 4.0

changes in extreme precipitation with respect to both local as well as
global warming. It summaries the areal averages of the median, 10%-
, 90%- quantiles and their difference for the total (global) area, the
global land, and global ocean areas separately. It is clear from this Table
that the width of confidence range averaged globally is large, about
10.5%, which is more than the average CC rate.

Several sources of uncertainty can contribute to this spread. The
main source is likely due to different representations of the relevant
physical processes and to related biases in the models’ climatology
of present-day precipitation. Moreover, the non-homogeneous tem-
perature gradient from the equator to the poles and the land/sea
temperature differences is also a source of larger uncertainty in the lo-
cal temperature scaling maps. Another potential source of uncertainty
is the internal climate variability which also gets translated differently
into the total uncertainty with the use of different temperatures for
scaling. We discuss potential contribution of internal variability in the
next section.

3.3. Role of internal variability

The spread among the single realizations of CMIP6 projections has
been mainly interpreted so far as model uncertainty. Yet, it can also
arise from internal variability given the limited sampling. In the case
of historical extreme precipitation changes at a multi-decadal time
scale, internal variability was shown to be a significant driver due
to the cancellation between different external forcings (Nath et al.,
2018). To get more insight into this, we analyzed the rate of change
in precipitation extremes in the 25-member ensemble of the CanESM5
model, and assess the spread across members (Fig. 2). We consider
the large ensemble from CanESM5 as a representative estimate of the
internal variability range. It should be noted that CanESM5 is one of
the low-resolution CMIP6 models, with moderate skill in simulating
global extreme precipitation (Wehner et al., 2020). It is also one of
the CMIP6 models with the highest climate sensitivity, but this effect
is accounted for by the scaling. The globally averaged median values
are thus very close between the CMIP6 ensemble and the CanESM5
ensemble for both scaling with 𝛥GSAT and 𝛥T (Table 1).

Fig. 2 shows the same diagnostics as in Fig. 1, but we see an obvious
visible difference between them along with a few matching large scale
patterns. For instance, the rates of change for both 𝛥GSAT and 𝛥T
match over the climatologically dry regions like the north and south
tropical Atlantic oceans as well as over primarily wet regions like the
inter-tropical convergence zone. Furthermore, the regions like North
American inland, Europe and Eurasia, Chilean Coasts, and South Africa
are marked by a sub-CC rate of change with both temperature scales,

likewise in Fig. 1. Another noticeable result here is the changes in the
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Fig. 1. Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by both global mean surface temperature change (𝛥GSAT in K, left panel) and local mean
surface temperature change (𝛥T in K, right panel). The changes are calculated for the future period of 2051–2100 relative to the historical period of 1951–2014 using the SSP5-8.8
scenario. (a),(b) show the 10% quantile maps, (c),(d) show the median maps and (e),(f) show the 90% quantile maps, calculated from the CMIP6 multimodel ensemble. The bottom
panel shows the width of the confidence range of extreme precipitation, computed as the difference between the 90% and 10% quantile maps. Stippling highlights the grid cells
where the rate of change is more than 7%/K for respective scalings with 𝛥GSAT (left panel) and 𝛥T (right panel). GMD denotes the global mean differences. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)



Weather and Climate Extremes 36 (2022) 100435

6

A. John et al.

Fig. 2. Same as Fig. 1, but for the ensemble of 25 individual members of CanESM5 model. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 3. Ratio of the width of confidence range of extreme precipitation in large
ensemble CanESM5 to the CMIP6 multi-model ensemble. The result shown here is for
scaling with global mean surface temperature change (𝛥GSAT).

areas that are stippled. CanESM5 shows areas of super-CC (>7%/K)
even for the 10th percentile maps which are not observed in the
CMIP6 ensemble. While for 90th percentile maps we see a decrease
in the regions that are super-CC rated. The range of uncertainties
(2.9%/K for 𝛥GSAT and 3.6%/K for 𝛥T) across the CanESM5 ensemble
members is evidently less than that across the CMIP6 models. The
total uncertainties depicted in Fig. 2 (bottom panel) is just the result
of internal variability. Table 1 again summarizes the mean value of
median, 10%-, 90%- quantiles and their difference for the total (global)
area, the global land, and global ocean areas separately.

The evidenced range of uncertainty for the large ensemble of
CanESM5 suggests that internal variability can contribute significantly
to the total uncertainty of extreme precipitation rates, when estimated
from one single simulation, even in a very high emission scenario. Fig. 3
depicts the ratio of the width of the confidence range (the difference
between 90% and 10% quantiles) of the CanESM5 large ensemble to
that of the CMIP6 cross model ensemble. We clearly see that for mean
extreme precipitation rates scaled by global mean surface temperature,
internal variability alone can induce a range of response about half as
large as the CMIP6 multi-model spread (global average of ≈40%). For
the high- and mid-latitude regions, internal variability is even larger
and explains a range of response ≈75% (darker shades of blue) as
large as the total uncertainty. These regions exhibit a low to moderate
increase in the percentage response of the extreme precipitation (as
shown in Figs. 1, 2) which explains the strong influence that internal
variability may have on the extreme precipitation signals. However,
throughout the equatorial belt and the adjacent tropical areas, we see a
rather less but non-negligible contribution from internal variability. In-
terestingly, most of these regions fall along with the average position of
the ITCZ, which is characterized by high values of extreme precipitation
changes. Here, model uncertainty is very likely the major contributor
to the assessed inter-model spread, whereas internal variability only
contributes to about 0%–20% but is still potentially significant.

Overall, these results suggest that internal variability contributes
substantially to the assessed uncertainty (i.e., the width of the 80%
confidence range) reported in Fig. 1. As a consequence, modeling
uncertainty alone is probably less than shown in Fig. 1. Filtering out
internal variability could be done by using multiple members for each
CMIP6 model involved — but such data are not available for all models
so far.

3.4. Sensitivity of precipitation extremes at different global warming levels

Fig. 4 provides analyzes of the 10%- and 90%- quantiles of global
climate sensitivity of RV20 in the CMIP6 ensembles at GWLs of 1.5
7

Table 2
Areal mean values (in %/K) of 10%- and 90%- quantiles of the extreme precipitation
changes scaled by 𝛥GSAT over the total global area, global land, and global oceans for
three target global warming levels of 1.5, 2, and 3 ◦K.

10 Med 90 Width (90-10)

Total
1.5 K 1.2 6.5 14.9 13.7
2 K 1.1 6.2 13.6 12.5
3 K 1.0 5.9 12.0 11.0

Land
1.5 K 2.0 7.5 19.3 17.4
2 K 1.9 7.2 17.3 15.4
3 K 1.8 6.8 14.8 13.0

Ocean
1.5 K 0.8 6.0 12.9 12.1
2 K 0.8 5.8 12.0 11.2
3 K 0.6 5.4 10.8 10.2

K, 2 K, and 3 K respectively. The median changes (figure not shown)
relative to the preindustrial period for all GWLs are close to the CC
rate of ≈7%/K. Not surprisingly, globally these scaled rates of change
in precipitation do not appear to depend on the selected GWL. There is
only a slight difference of 0.7%/K in the average multi-model median
as the GWL is increased from 1.5 K to 3 K possibly due to a non-linear
response in some models (e.g., Pendergrass et al. (2019) based on a
CMIP5 model), or just a sampling uncertainty. A notable observation
as summarized in Table 2 is that the inter-model uncertainty range
tends to decrease as the GWL increases. The lower-tail of the extreme
precipitation rates shown by 10th percentile maps for the three GWLs
(Fig. 4 left panel) reveals a very small decrease in the average negative
precipitation rate values from 1.2%/K (+1.5 K) to 1.1%/K (+2 K)
and to 1.0%/K (+3 K). Also, as seen from the right panel of Fig. 4,
the upper-tail of the distribution or the 90th percentile maps show
that the upper bound of extreme precipitation rates move closer to the
median value from 14.9%/K (+1.5 K) to 13.6%/K (2 K) and 12.1%/K
(3 K). This reduced uncertainty for higher GWLs is consistent with the
expected contribution of internal variability. At lower GWLs, the forced
response remains limited, and the additional noise resulting from inter-
nal variability is proportionally larger. This finding provides support for
investigating changes in extreme precipitation at high GWLs. Moreover,
we notice that the uncertainty at +3 K GWL remains larger than that
reported in Fig. 1. Again, this is consistent with a smaller contribution
of internal variability in Fig. 1 compared to a +3 K GWL — consistent
with the fact that SSP5-8.5 leads to global warming higher than +3 K in
most CMIP6 models, and that estimating changes over a longer period
(50-yr in Fig. 1, vs 20-yr for GWLs) leads to better filtering of internal
variability.

3.5. Regions of hypothesis tests

Using a simple hypothesis test as described in Section 2.5, we clas-
sified the global areas into three categories. Here we have considered
two general hypotheses — (𝐻0) extreme precipitation does not change
with global warming, and (𝐻1,𝐻2) the change in extreme precipitation
follows the CC rate of ≈7%/K for 𝛥GSAT and 𝛥T scaling, respectively.
Fig. 5 shows the regions categorized accordingly to our hypotheses.
Red and blue colors are regions where the hypothesis is rejected while
yellow represents regions where the hypothesis is accepted. It is
important to notice that accepting a hypothesis does not mean that
this hypothesis is true. It rather means that the hypothesis is plausible,
i.e., there is not enough evidence to reject it.

Fig. 5 a shows the regions all over the globe where the rate of
precipitation change to 𝛥GSAT is consistent with ≈0%/K (i.e., no
significant change, yellow color). We see that the regions for which
𝐻0 cannot be rejected are limited and these are especially over the
global oceans. It is to be noted that over these regions the median
values of the projected precipitation changes are consistently low and
close to zero. The same results are found for the local temperature
scaling (with a correlation ≈99%). Over these regions, the cohort of
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Fig. 4. Projected relative changes (%/K) in 20-yr return values of RX1DAY scaled by global mean surface temperature change (𝛥GSAT in ◦K) at global warming levels of 1.5, 2 and
3 ◦K above the preindustrial (1850–1900) average values. The left panel shows the 10% quantile maps and the right panel shows 90% quantile maps for the CMIP6 multimodel
changes. Stippling marks the grid cells where the rate of change is more than 7%/K. GMD denotes the global mean differences.
CMIP6 models does not provide robust evidence that global warming
will intensify extreme precipitation. While the small patches of red
colored regions over subtropical ocean west to the continents indicate
that the hypothesis is rejected but the changes are negative. Another
notable feature over the yellow and red colored regions is the similarity
of negative scaling the Fig. 5a to the patterns of negative dynamic
contribution as observed in figure 3 of Pfahl et al. (2017) for the CMIP5
models. This implies a consistency between the CMIP5 and CMIP6
projections of extreme precipitation, possibly for a common reason, per-
haps, a less robust dynamical response. The negative dynamic factors
may perchance responsible for keeping the extreme precipitation not
to increase at large as it does with moisture increase in the rest of the
globe. Remarkably, there is no land region where extreme precipitation
is robustly expected to decrease in response to global warming.

Fig. 5b, c shows the regions where the hypotheses 𝐻1, 𝐻2 are
accepted or rejected. Both 𝐻1 and 𝐻2 are used for identifying the
regions where the extreme precipitation changes are consistent with
8

the CC rate of ≈7%/K with respect to 𝛥GSAT and 𝛥T respectively.
These maps can be used as a blueprint to identify the regions which are
consistent with the CC rate and those which are not. The first outcome
is that a vast majority of places on Earth, about 83% of the global land
area, are expected to undergo a change in extreme precipitation that
is consistent with the CC rate, particularly with the 𝛥GSAT scaling.
This does not mean that these regions will experience a change of
exactly +7%/K. It means that, over these regions, the expected change
in prceipitation extremes is not robustly sub-CC or super-CC, i.e., not
inconsistent with CC. The majority of regions that follow a sub-CC rate
of change for both temperature scalings are over the oceans, especially
at the western continental boundaries, which are climatologically dry
regions. A few continental regions like the North American continent,
South and Central Eastern Europe, Chilean Coast, South Africa and
South Australia are also marked by the sub-CC rate for both scaling
temperatures. There are also patches of consistent super-CC rates over
the equatorial Pacific and the Sahel region. Scaling with two different
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Fig. 5. Global maps of confidence areas (80% confidence interval) for the CMIP6
using 35 individual models with a single realization. The maps show where the rate of
extreme precipitation changes is consistent with constant rates of ≈0%/K or ≈7%/K.
Red color denotes the regions where the changes are always less than the constant,
yellow denotes areas where the constant falls within the confidence interval and blue
denotes areas where the rates are always greater than the constant. Map (a) shows
the areas where the rate of changes in extreme precipitation remains unchanged or
consistent to 0%/K when scaled with 𝛥GSAT. Maps (b), (c) show the global areas
where the rate of changes are consistent with the CC rate of ≈7%/K with respect to
𝛥GSAT and 𝛥T. The values on top of colorbar show the percentage of each colored
area over the global land surface, while the values at the bottom indicate the same
over the total global surface. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

temperatures displays different areas of consistency with CC especially
over the high Northern latitudes. The map for the local temperature
9

scaling shows a significant increase in the sub-CC areas especially over
the Arctic and most of the mid-latitude landmasses. This indicates that
the expected increase in extreme precipitation over these regions does
not follow the local warming at the CC rate. This result is consistent
with the enhanced warming expected over these regions, while the
surrounding oceans (the main source of moisture) are warming less
quickly.

4. Discussion and conclusion

Despite an overall agreement that extreme precipitation follow
a ≈7%/K rate of increase at the global scale, projected changes in
extreme precipitation are influenced by multiple factors that can lead
to large uncertainties at the regional scale. In this study, we quantify
uncertainty in the projected changes in extreme precipitation — while
most studies look at the mean or median change across an ensemble
of models — using a single high-emission scenario. We provide a first
assessment of the 10%–90% range in the extreme daily precipitation
responses at the grid-point scale and a global picture of the regions
where changes in extreme precipitation are consistent with the CC rate.
Our results suggest that uncertainty is usually quite large. Averaged
globally, GSAT scaling ranges extend from about 0 up to a super-CC
rate, with a median close to the CC rate. Uncertainty can be larger if
changes in extreme precipitation are investigated for a given GWL. This
may be an artifact of internal variability due to the lack of sampling
which has a stronger relative contribution at lower GWLs compared to
our selected very-high emissions scenario.

Our assessed CMIP6 uncertainty arises both from model uncertainty
and internal variability, as our calculations are based on single runs
from each CMIP6 model. Internal variability can be seen as a basic
sampling uncertainty, which could be overcome by averaging across
multiple members for each global climate model. Model uncertainty
alone would lead to narrower ranges than those reported in this study.
However, despite the widening induced by a non-negligible contribu-
tion of internal variability, our results show that the intensification of
extreme daily precipitation is robust over most regions, with more than
90% of models simulating an increase of 20-yr RVs. We believe that this
study helps strengthen our confidence in the intensification of extreme
precipitation.

Most regions around the world exhibit a RV20 change consistent
with the CC rate of ≈7%/K. Remarkably, about 83% of the global
land fraction is consistent with this rate of change when scaled
by 𝛥GSAT. Exceptions to this include limited areas over subtropical
oceans (showing a significantly sub-CC rate), and parts of the equatorial
Pacific and Sahelian ITCZ (showing a significantly super-CC rate).
These findings are consistent with well-known projected changes in
large-scale atmospheric circulation, i.e., strengthened subsidence over
the subtropics and enhanced convection over the core of the ITCZ
(Douville et al., 2021). Not surprisingly, the rate of change in the
Arctic is particularly sensitive to the scaling applied, since this region
is warming much faster than the global average. This example suggests
that the spatial distribution of the warming (e.g., Arctic amplification,
land–sea contrast) can be also responsible for changes in the low-level
atmospheric circulation and, therefore, for the departure from the CC
rate of intensification.

Due to the uncertainty, the rate of change in extreme precipitation
depicted here only represents a plausible scenario. This hints at the fact
that we cannot produce a more accurate projection until we limit both
model uncertainty and internal variability. Better filtering of internal
variability would require using multiple ensemble members for each
CMIP model — which are not available at the moment except for
a few models. Therefore, we suggest to the modeling community to
consider producing a minimum number (at least 9 according to O’Neill
et al. (2016)) of realizations for each selected emissions scenario in
the forthcoming CMIP7 exercise. Beyond internal variability, evidence
suggests that modeling uncertainty also contributes to a large fraction
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of the reported uncertainty. This source of uncertainty is related to
our limited knowledge of the key physical processes controlling the
response of extreme precipitation that is simulated by both global
and regional climate models. Thus the generation of large ensembles
along with other improvements like the development and wider use of
convection-permitting models (Lucas-Picher et al., 2021) could increase
the reliability of projected changes in extreme precipitation. Other
methods such as the development and application of observational
constraints (Ribes et al., 2021) could be also very useful to constrain
the response of both global and regional climate models.
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