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Abstract

The in-Port vessel Scheduling and tug Assignment Problem (PSAP) aims at determining the schedule for a given set of

vessel movements, and their escorting tugs within a port. In this paper, we propose, compare and discuss models and

algorithms for determining solutions for the PSAP. Specifically, we introduce two mathematical programming models and

we derive from them four heuristics: two based on the time limited execution of a commercial solver, and two on a receding

horizon principle. Finally, we present the results of a computational study aiming at assessing the performance of the

considered algorithms on problem instances obtained from the Port of Venice, a medium size Italian port. The receding

horizon based heuristics show good performances. They provide good quality solutions for the majority of the instances

within a reasonable computational time.

Keywords: OR in maritime industry, Transportation, Vessel scheduling, Tug assignment.

1. Introduction

The in-Port vessel Scheduling and tug Assignment Problem (PSAP) aims at determining the schedule for a given set of

vessel movements and their escorting tugs within a port. Optimizing the schedule of vessel movements, specifically, vessel

arrivals, departures, and berth to berth connections, is critical for the efficient management of a port, as many stakeholders

have to coordinate their in-port activities accordingly. In this paper, we deal with the PSAP for ports consisting of canal

harbors, where vessels have to keep a safety distance and cannot cross or pass each other. In this kind of ports, vessels

are also subject to more stringent requirements than those of seaports as regard the usage of tugs, which have to help to

navigate through narrow water canals.
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The PSAP can be framed within the in-port or canal vessel scheduling and routing problem literature [8]. The

literature on in-port scheduling problems considers vessels (typically container-ships) that have to be assigned to berths.

Then quayside, yard and landside operations are scheduled accordingly. The berth allocation and quay crane scheduling

problems [4, 6, 12, 35, 24] fall within this kind of literature. In recent years, the literature has also considered other

topics, such as the problem of routing tankers that have to move between berths [34]. Other recent works focus on the

problem of scheduling the access of port resources such as channels and berths [10, 37, 38]. In [19, 13], the problem of

scheduling incoming and outgoing vessels through different waterways for accessing or leaving the port is dealt with. A

framework that combines decision theory and stochastic optimization techniques to address tide routing is considered

in [7]. Problems arising in managing traffic in navigation channels that join the terminal basin or different terminals are

dealt with in [17, 9]. Canal scheduling literature considers vessels navigating waterways and/or locks [33, 25, 16], such as

the Panama Canal [11, 14, 39], the Kiel Canal [23, 21], the Istanbul Strait [22, 31], the Yangtze River [20].

In this work, we apply the PSAP to canal harbors such as the Port of Venice in Italy. The Port of Venice is a medium

Italian port of the north Adriatic Sea. It is situated within the shallow water of the Venetian Lagoon. Here, vessels

can access or leave the port only navigating along narrow canals. For this problem, we propose a formal definition, two

mathematical models and four algorithms based on these models.

A first work in this context is [26], which introduces the problem of scheduling vessel movements within a canal harbor

(PSP), without taking tugs into consideration. The authors propose a mixed integer linear programming (MILP) model

inspired by RECIFE-MILP [27], an algorithm for the railway traffic management problem. This choice is motivated by

the observation that the navigation of vessels along narrow canals presents some similarities with the movement of trains

along single track railway lines. One of the models that we consider in this work extends the one in [26] in order to include

the assignment of tugs.

The problem of assigning tugs to a set of vessel movements shows similarities with another railway management

problem, the Locomotive Scheduling Problem (LSP) [32]. In the LSP, locomotives have to be assigned to trains with the

objective of minimizing the deviation of the trains’ actual schedule from the planned one. We refer the interested reader

to survey [28] on the different variants of LSP. However, PSAP and LSP present some main differences. Locomotives

can move from a train to another only along free track, where there are no other trains. Trains typically need a single

locomotive and can stop along their route. Differently, tugs may navigate also through canals that are occupied by vessels.

Vessels often need more than one tug and cannot stop along their route.

The PSAP assumes that the schedule of vessels and the assignment of tugs is decided with an integrated approach.

In recent years, integrated approaches have attracted increasing interest as the sequential ones have intuitive drawbacks,

as pointed out in [5] in the context of railway management. An example of an integrated approach in railways can be

found in [36], where train timetable and locomotive assignment is defined at once, possibly canceling trains that cannot

be served. A minimum cost multi-commodity network flow model is proposed to this aim.

In this paper, we first define and formalize the PSAP. Then, we introduce two mathematical programming models

for it: one based on time-indexed variables, the other on continuous time variables. We exploit each model to develop
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two heuristic algorithms. Specifically, in one algorithm we execute a commercial solver on the considered model within

a time limit; in the other one, we embed the considered model in a receding horizon framework. Finally, we assess the

applicability and the performance of our algorithms by means of an extensive experimental analysis conducted on real

and realistic randomly generated instances representing traffic at the Port of Venice, in Italy.

The remainder of this paper is organized as follows. In Section 2, we formally define the problem we deal with. In

Section 3, we present the models for the PSAP that we propose in this paper. In Section 4, we detail the solution algorithms

exploiting these models. In Section 5, we discuss our case study and the performance of the proposed algorithms. Finally,

we draw conclusions in Section 6 and we discuss the applicability of some strengthening cuts for the models in the

Appendix.

2. Problem statement

In this section, we provide the formal statement of the PSAP. We start by introducing the assumptions we make and

the necessary notation. We then define the problem.

We model a port as a network of waterways G = (V,E). The vertex set V includes the navigation points, i.e., the

points in the canals that have some interest for navigation:

• berths and inlets;

• connection points between two waterways or between a berth and a waterway;

• other relevant points such as turning basins, initial/final points of tug services, extremes of areas where some

harbormaster constraints hold, e.g., particular speed limits.

The edge set E of G includes edges e = (i, j), i, j ∈ V . Each edge corresponds to a canal segment joining two navigation

points i and j and including no other navigation point in between. The particular layout of the case study motivating

this research, i.e., the Port of Venice, (Figure 1, left) induces the so-defined graph to have a tree structure (see Figure 1,

right). Given this definition of the network, vessel movements refer to vessels entering and exiting the port as well as

sailing within the port from one berth to another. With a slight abuse of terminology, hereinafter we consider inlets as

berths.

The first set of assumptions we consider pertains to safety and operational constraints of vessel movements.

Assumptions 1 (Vessel movements). Each movement:

1.1 has both route and sailing time fixed a-priori. In particular, a vessel cannot stop along its route once it has started

moving;

1.2 has its starting time to be scheduled within a given time window, typically of few hours;

1.3 may have to respect a minimum and maximum separation time with respect to other movements, e.g., because

performed by the same vessel or because a transshipment of cargo must occur;
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Figure 1: Layout (left) and topological structure (right) of the Port of Venice

1.4 has to keep a minimum headway with any other movement whose route may interfere with its own. We say that two

routes interfere with each other if it exists a pair of points, one per route, at a distance smaller than or equal to the

safety distance between vessels (we refer to these pairs of points as interference areas);

1.5 may need to be escorted by a given number of compatible tugs along its entire route or a portion of it;

1.6 may have to respect physical constraints, e.g., two vessels in general should not be moored at the same berth or the

presence of a moored vessel in a narrow canal may prevent the movement of other vessels.

Assumption 1.1 implies that port operators finalize berth and route allocations before deciding movement schedules.

To do so, they take into account the width and draft of the canals. Indeed, the mooring berths for the movements are

usually chosen by shipping companies and terminal operators before the movement itself is submitted to the harbormaster,

port pilots, and tug companies. In ports similar to the one of Venice, the allocation of berths may also be influenced by

the relatively short length of terminals and by the size of canals. As previously mentioned, the Port of Venice has two

inlets and a tree-like structure (Figure 1 (right)), hence, once the berth allocation is determined no rerouting is possible.

We remark that Assumptions 1.2 and 1.3 ensure that enough time is given to perform in-port operations, such as

loading and unloading. Moreover, through the imposition of minimum separation times, it is also possible to guarantee

the coherence of berth availability. In the Port of Venice, shallow depths may impose the setting of appropriate time

windows for some movements, so that they do not occur during low tides. Furthermore, the limited room for manoeuvre

of some canals may require operators to fix some precedence among movements planned at the same or at close terminals.

For example, consider two of the vessels pictured in Figure 2: the red one is moored at berth 14 and must leave it going

north; the blue one must reach berth 14 from inlet 1. The red vessel is moored at the berth at the beginning of the time

horizon. Indeed, it must pass through navigation points 13, 11 and 10 before the blue vessel. Hence, a minimum separation

time has to be imposed between the movements of the red and blue vessels. Specifically, the minimum separation time

is such that the blue vessel does not reach point 10 before the red one has passed it. Hence, the blue vessel must start

sailing not earlier than the time at which the red one does, plus the latter’s sailing time from 14 to 10 or to a point far
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Figure 2: Toy example representing three movements in a simple port.

enough to ensure safety (Assumption 1.4), minus the former’s sailing time from 1 to 10. As sailing times are fixed as for

Assumption 1.1, no interference will occur if this separation is respected. Similarly, suppose that the narrow width of the

canal prevents vessel movements through point 13 when berth 14 is occupied. Let the green vessel in Figure 2 aim to

berth 8, arriving from the west. Then, a minimum separation time must be imposed: the green vessel can start sailing

only at a time that will allow it to arrive at 13, 11 and 10 after the red one has passed them. Minimum separation times

have to be imposed also between the blue and the green vessel to avoid interferences.

Assumption 1.4 ensures that each vessel maintains a safety distance from other vessels while sailing along canals. In

particular, it prevents vessels from crossing or overtaking each other. Assumption 1.1 allows the expression of the headway

between each pair of movements required by Assumption 1.4 in terms of a minimum separation between their starting

times [26].

The second set of assumptions pertains to tugs.

Assumptions 2 (Tug operations). Each tug:

2.1 can serve a movement at a time;

2.2 can cross or overtake a vessel sailing in the same canal;

2.3 can stop and wait in any point of the harbor when it is not serving a vessel;

2.4 sails at a reference constant speed through the canals;

2.5 is always available, i.e., no working shift for the tug crew nor maintenance stops are taken into account.

We denote by M the set of vessel movements that have to be scheduled within a time horizon T . The starting time

of movement m ∈M that has to be determined is denoted by tm. Moreover, for each movement m ∈M , we denote by:

• om its origin berth;

• am its arrival berth;

• rm = P [om, am] its route, i.e., the path in G connecting om and am;

• Tm = [em, lm] its starting time window, where em and lm are respectively the earliest and latest starting time;

• wm its desired starting time;
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• cm,t the cost to be paid when tm = t rather than wm;

• vm its vessel;

• si,m its sailing time from om to navigation point i ∈ rm.

• Sm = sam,m its total sailing time;

• Nm the number of tug services it requires;

• Um the set of its compatible tugs;

• ikm (fkm) the initial (final) navigation points in rm of the k-th tug service;

• pm (dm) the time needed by a tug to pick up/connect (drop/disconnect) it.

For all pairs of movements m,m′ ∈M we denote by:

• 1(m,m′) the indicator function which takes value 1 if a positive bound has to be imposed on the separation between

the starting times of m and m′, e.g., because they are operated by the same vessel, 0 otherwise;

• sm,m′ , s̄m,m′ the minimum, respectively maximum, separation time between the end of a movement m and the start

of the subsequent movement m′, when 1(m,m′) = 1;

• hm,m′ the minimum headway between the starting times of m and m′. This time guarantees that vm and vm′

maintain a minimal safety distance during their movements. It is defined when 1(m,m′) = 0. In particular, hm,m′

is assumed equal to infinity if m cannot be scheduled before m′. It is equal to 0 if m and m′ do not interfere with

each other, that is if the vessels performing m and m′ are always at a physical distance larger than the minimal

safety distance while sailing their respective routes, whatever their starting times. This holds if the routes of the two

movements have no interference areas or if the combination of their sailing time and allowed time windows implies

that m and m′ cannot be moving simultaneously.

Finally, we denote by U the set of available tugs. For all tugs u ∈ U , we denote by:

• M u ⊆M the subset of M containing the movements that it can operate;

• si,ju its sailing time between navigation points i and j when it is not serving a vessel.

We are now ready to formally state the PSAP.

Problem 1 (in-Port vessel Scheduling and tug Assignment Problem).

Consider a set of vessel movements M within port G and a set of tugs U . For each movement m ∈ M , determine

a starting time tm ∈ Tm and assign a set of tugs in Um that can carry on the Nm services required by m, such that

Assumptions 1 and 2 hold and the weighted sum of the deviations between the actual and desired starting times of the

movements is minimized.

Hereinafter, we denote a PSAP instance as π(M , U,G). In addition, we assume that both sets M and U are ordered

sets of indices. Hence, we identify movements and tugs with positive integer numbers. Then, expression m < m′ indicates

that the position of movement m in M precedes the position of m′.
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Figure 3: Graphical representation of a toy PSAP instance π(M , U,G) (left) and of its associated instance α(M̄ , Ū ,G) (right).

In the rest of this section, we use as reference example the toy instance π(M , U,G) depicted in Figure 3 (left). Here,

one movement m of vessel vm is to be scheduled. Vessel vm route rm = P [1, 8] is indicated as a dashed line in the figure.

The sailing time of vessel vm on each arc composing rm is one time unit, hence Sm = 7. The movement time window,

desired time and deviation cost are set respectively to Tm = [5, 15], wm = 10 and cm,t = |t − wm| for all t ∈ Tm. In

addition, m requires Nm = 2 tug services: tug service 1 to escort m from i1m = 3 to f1
m = 8, and tug service 2 from i2m = 4

to f2
m = 6. These partial routes are indicated as dotted lines.

Given a PSAP instance π(M , U,G), let us define its associated instance α(M̄ , Ū ,G), where each movement in M̄

stands for a movement of M or a part of it, and requires to be escorted by a single tug along its entire route. The idea is

to create dummy movements and tugs. Each movement is associated to a partial route of an original one, requiring one

tug. If no tug is requested for a partial route in the original instance, the resulting movement is considered as requesting

a dummy tug. By imposing constraints on the separation of starting times, we obtain that movements associated to

the same original one actually occur simultaneously. We will exploit the concept of associated instance to define the

mathematical programming models in Section 3.

In the following, we report the procedure followed to construct it, considering the example instance π(M , U,G) of

Figure 3 (left) and creating its associated α(M̄ , Ū ,G) represented in Figure 3 (right). As a start, for each m ∈ M , we

define the set of movements Mm, each one served by a single tug. Specifically, for each tug service k = 1, . . . , Nm, set

Mm includes a movement mk. It has: i) route going from navigation point ikm to navigation point fkm along the route

of m (rmk ⊆ rm); ii) sailing times coherent with those of m (si,mk = si,m − sikm,m, for all i ∈ rmk); iii) necessity of

a tug in Um (Nmk = 1), with same pick up/connect and drop/disconnect times as m (pmk = pm and dmk = dm). In

addition, if Nm = 0 or no service k = 1, ..., Nm goes from the origin berth om to the arrival berth am of movement

m, then Mm includes also an extra movement m0 that requires a service by a dummy tug um 6∈ U along the whole

route of m, with pm∗ = dm∗ = 0. This dummy tug is dedicated to m and does not serve any other movement of the

associated instance. Hereinafter, we indicate by m∗ the movement mk ∈ Mm with minimum index k whose route goes

from om to am. Each movement’s starting time window and desired starting time are computed considering the time

window and starting time of m, and shifting them by the sailing time sikm,m necessary for vessel vm to reach the origin

point of movement mk: Tmk = {em + sikm,m, . . . , lm + sikm,m} and wmk = wm + sikm,m. The cost to be paid when the

7



actual starting time differs from the desired one is set to 0 for all movements in Mm but m∗, which inherits the cost of

m. Furthermore, the vessel associated to m∗ is the same one associated to m (vm∗ = vm). Instead, dummy vessels are

associated to all mk ∈ Mm \ {m∗}: they are not subject to Assumption 1.6 which constrains possible movements and

simultaneous presence.

In the example of Figure 3, set Mm is composed of 3 movements, m0, m1 and m2. They are represented in blue, red

and green, respectively. Movement m0 is m∗ as it covers the entire route of m. The sailing time, time window and desired

time of m∗ are exactly those of m. In addition, m∗ requires Nm∗ = 1 service of a dummy tug (Um∗ = {um}) along its

entire route (i.e., from i1m∗ = 1 to f1
m∗ = 8). Movement m1 corresponds to tug service 1, so we set its route and sailing

time to rm1 = [3, 8] and Sm1 = 5. Its time window, Tm1 = [7, 17], and desired time, wm1 = 12, are those of m shifted by

the sailing time that vessel vm requires to reach navigation point 3, that is by s3,m = 2. Then, we impose that m1 requires

the service of a single tug (Nm1 = 1) along its entire route, that is from i1m1 = 3 to f1
m1 = 8. The tug is to be chosen from

those compatible with m (Um1 = Um). We observe that dummy tug um cannot be used to perform the service on m1.

The pick up and drop time of the tugs are those of m, i.e., pm1 = pm and dm1 = dm. Similarly, movement m2 corresponds

to tug service 2: rm2 = [4, 6], vm2 = 2, Tm2 = [8, 18], cm2 = 13, Nm2 = 1, i2m1 = 4, f1
m2 = 6, Um2 = Um, pm2 = pm and

dm2 = dm. As for the costs of starting time deviation, cm∗,t = cm,t for all t ∈ Tm∗ , cm1,t = 0 for all t ∈ Tm1 , cm2,t = 0 for

all t ∈ Tm2 .

Next, we impose that all movements in each set Mm are performed simultaneously to movement m∗ ∈M . To impose

constraints on the time separation between the arrival and starting times, we set 1(mk,m∗) = 1(m∗,mk) = 1 for each

mk ∈Mm \ {m∗}. On the one hand, the difference between the arrival of mk and the start of m∗ must be equal to the

negative of the time necessary for vm to reach the end of the route of mk (fkm): s̄mk,m∗ = smk,m∗ = −sfk
m,m

. On the

other hand, the difference between the end of m∗ and the start of mk must be equal to the difference between the time

vm needs to reach the beginning of rmk and the whole sailing time of Sm: s̄m∗,mk = sm∗,mk = sikm,m − Sm. Indeed, being

vmh a dummy vessel for all mh ∈ Mm \ {m∗}, no minimum headway time exists between pairs of movements in Mm:

hmk,mh = hmh,mk = 0 for all mh ∈Mm.

In the example of Figure 3 (right), movements m1 and m2 have to be performed simultaneously to m∗. Let us consider

m1. We set 1(m1,m∗) = 1(m∗,m1) = 1 and the separation times s̄m1,m∗ = sm1,m∗ = −7 and s̄m∗,m1 = sm∗,m1 = −5.

Specifically, recalling that the navigation time on each arc is 1 time unit, to have m1 simultaneous to m∗, m1 needs

to arrive at its destination 7 time units after m∗ starts. Moreover, the latter needs to arrive 5 time units after the

former starts (Sm = 7 and s3,m = 2). If, for example, tm∗ = 10, the separation times s̄m∗,m1 = sm∗,m1 = −5 impose

that tm1 = 12. Similarly, to have m2 simultaneous to m∗, we set 1(m2,m∗) = 1(m∗,m2) = 1 and separation times

s̄m2,m∗ = sm2,m∗ = −5 and s̄m∗,m2 = sm∗,m2 = −4. Finally, we impose no minimum headway time between m∗, m1 and

m2, that is hm∗,m1 = hm1,m∗ = hm∗,m2 = hm2,m∗ = hm1,m2 = hm2,m1 = 0.

As for the relations between the movements in Mm and in Mm′ , where m′ ∈M \{m}, we mirror the original relations

between m and m′ on m∗ and m′∗. This holds for minimum headway times (hm∗,m′∗ = hm,m′ and hm′∗,m∗ = hm′,m) and for

minimum and maximum separation (1(m∗,m′∗) = 1(m,m′), and s̄m∗,m′∗ = s̄m,m′ and sm′∗,m∗ = sm′,m if 1(m,m′) = 1).
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In conclusion, instance α(M̄ , Ū ,G) associated to π(M , U,G) is such that M̄ =
⋃
m∈M Mm and Ū =

⋃
m∈M (Um ∪

{um}).

Let us remark that, to solve the PSAP on α(M̄ , Ū ,G), it is sufficient to characterize constraints, headways, and

separation times between m∗ and m′∗. Indeed, the respect of constraints, headways, and separation times between each

pair of movements in the Cartesian product of the sets Mm and Mm′ is guaranteed by the fact that all the movements in

Mm, respectively in Mm′ , are performed simultaneously with m∗, respectively m′∗.

Let two PSAP instances be equivalent if each feasible solution of one instance, in terms of movement schedule and tug

assignment, allows to derive a feasible solution of the other instance with equal cost in at most O(|M ||U |) operations.

The following Lemma 1 guarantees that a PSAP instance π(M , U,G) is equivalent to its associated one α(M̄ , Ū ,G).

Lemma 1. A PSAP instance π(M , U,G) and its associated one α(M̄ , Ū ,G) are equivalent. The optimal solution of

π(M , U,G) can be derived in polynomial time from the optimal solution of α(M̄ , Ū ,G).

Proof. We first prove that, given a feasible solution for α(M̄ , Ū ,G), we can derive a feasible solution for π(M , U,G)

with identical costs, i.e., identical weighted sum of the deviations between the actual and desired starting times of the

movements. To this aim, consider a feasible solution σα of α and the solution σπ of π obtained by scheduling each

movement m ∈ M as the corresponding movement m∗ ∈ Mm ⊆ M̄ , and by assigning to m the tugs assigned to all

movements in Mm with the exception of the dummy tugs. The number of passages to obtain σπ from σα is trivially

polynomial.

Next, we prove that solution σπ is feasible for π. Indeed, by construction, movements m and all their associated

movements in Mm, such as m∗, are subject to the same constraints derived from Assumptions 1. Then, σπ is feasible

with respect to this set of constraints as movement m and m∗ are simultaneous. Consider now the solution σα of α. All

the movements in each subset Mm occur simultaneously and the scheduling of the tugs satisfies the constraints derived

from Assumptions 2. As movements m ∈ M in σπ are simultaneous to the corresponding m∗ in σα, we can affirm that

σπ is also feasible with respect to these constraints. Indeed, in σπ, the tugs assigned to m ∈ M serve it in exactly the

same time interval and along exactly the same route as they served the movements mk ∈Mm in σα.

Finally, we observe that solutions σα and σπ have the same costs. Indeed, movements m∗ and the associated movements

m occur simultaneously, have the same starting time deviation cost and have the same desired starting time; the remaining

movements mk of α have null costs by construction.

A symmetrical argument allows deriving a feasible solution for α given a feasible solution for π.

All π feasible solutions can be derived from all α ones using the same procedure. Hence, the optimal solution of the

former can be derived in polynomial time from the optimal solution of the latter.

�

Hereinafter, we assume that each movement requires to be escorted by exactly one tug along its whole route in all

PSAP instances. When this is not the case in the instances to be tackled, we will simply consider their associated ones.
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3. PSAP models

In this section, we introduce and discuss two mathematical programming models of PSAP denoted respectively by P1

and P2: P1 is a time-indexed model, whereas P2 is a continuous time one. Model P2 can be considered as the extension

of the RECIP-MILP model presented in [26]. In the appendix, we propose possible strengthening cuts for the two models.

3.1. Model P1

Model P1 assumes a discretized time horizon T , i.e., T is a set of successive periods, where each period t starts at time

t and ends at time t + ∆t. We assume that each movement may start only at the beginning of a period. In the practice

of the Port of Venice, T covers 24 hours and can be discretized with a step ∆t of five minutes. Indeed, the duration of

movements and the inevitable uncertainties afflicting navigation may make a finer time resolution hardly significant, at

least in the movements’ planning phase considered in the PSAP.

Hereinafter, whenever dealing with Model P1, all time intervals [t, t̄] have to be understood as sets of discrete time

instants {t, t+ ∆t, t+ 2∆t, . . . , t̄}, the time step always being ∆t.

Model P1 includes the following binary variables.

We introduce decision variables that define the movements m ∈M starting time tm ∈ Tm:

xm,t =

1 if tm = t

0 otherwise

∀m ∈M , t ∈ Tm.

Then, we include decision variables that define the assignment of tugs u ∈ Um to movements m ∈M :

zm,u =

1 if m is escorted by u

0 otherwise

∀m ∈M , u ∈ Um.

Finally, we introduce service variables that register which pairs of movements m,m′ ∈M share the same tugs:

ym,m′ =

1 if m and m′ are escorted by the same tug

0 otherwise

∀m,m′ ∈M : Um ∩ Um′ 6= ∅.

Model P1 reads as follows.

The objective function minimizes the total weighted deviation which affects the movement schedules:

min
∑
m∈M

∑
t∈Tm

cm,txm,t. (1)

The following constraints must be satisfied.

Movement operation constraints:∑
t∈Tm

xm,t = 1 ∀m ∈M , (2)

∑
u∈Um

zm,u = 1 ∀m ∈M . (3)
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Constraints (2) impose that the starting time tm of each movement m assumes a single value t that falls within time window

Tm. Differently, Constraints (3) require that each movement m is escorted by exactly one compatible tug belonging to

Um.

Separation time constraints:∑
t′∈Qm,m′ (t)∩Tm′

xm′,t′ ≥ xm,t ∀m,m′ ∈M : 1(m,m′) = 1, t ∈ Tm, (4)

where Qm,m′(t) = [t+ Sm + sm,m′ , t+ Sm + s̄m,m′ ].

Constraints (4) require that if two movements m and m′ are operated by the same vessel, then the starting time of m′

has to follow the completion time of m of at least sm,m′ and at most s̄m,m′ .

Headway constraints:∑
t′∈Hm,m′ (t)

xm′,t′ ≥ xm,t ∀m,m′ ∈M : m < m′, 1(m,m′) = 0, t ∈ Tm, (5)

where Hm,m′(t) = [em′ , t− hm′,m] ∪ [t+ hm,m′ , lm′ ].

Constraints (5) require that the starting time of two movements m and m′ operated by different vessels have to be

separated by a minimal headway hm,m′ , if m is scheduled before m′, or by hm′,m, otherwise.

Movement compatibility constraints:

xm,t ≤
∑

t∈[t+hm,m,lm]

xm,t +
∑

t
′∈[em′ ,t−hm′,m]

xm′,t′ ∀(m,m,m′, t) ∈ I1, (6)

xm′,t′ ≤
∑

t∈[t′+hm′,m,lm]

xm,t +
∑

t
′∈[em′ ,t

′−hm′,m′ ]

xm′,t′ ∀(m′,m,m′, t′) ∈ I2 (7)

xm,t ≤
∑

t∈[t+hm,m,lm]

xm,t +
∑

t
′∈[em′ ,t−hm′,m]

xm′,t′ ∀(m,m,m′, t) ∈ I3 (8)

where sets I1, I2, I3 are defined as follows: I1 = {(m,m,m′, t) ∈M 3×Tm : vm = vm′ , am = am = om′ ,∃m′ ∈M s.t. vm =

vm′ , am = om′}, I2 = {(m′,m,m′, t′) ∈ M 3 × Tm′ : vm = vm′ , om′ = om′ = am,∃m ∈ M s.t. vm = vm′ , am = om′} and

I3 = {(m,m,m′, t) ∈M 3 × Tm : vm = vm′ , am = om′ and vm in am prevents the passage of vm}.

Specifically, sets I1 and I2 involve the movements of vessel pairs (vm, vm) which arrive and depart from the same berth

during the considered time horizon: movements m and m′ correspond to the arrival and departure of vm(= vm′) at berth

am(= om′); m and m′ correspond to the arrival and departure of vm(= vm′) at the same berth, i.e. at am = om′ = am =

om′ . Then, Constraints (6) and (7) state that either vessel vm uses the berth before vm, or vice-versa. Specifically, for

each time t ∈ Tm, Constraints (6) impose that movement m can start at t if one of the following events occurs: m starts

at a time that brings it to the interference area after m (between t+ hm,m and the end of its starting time window lm);

m′ starts early enough to use the interference area before m (between the beginning of its starting time window em′ and

t − hm′,m). Recall that Constraints (4) ensure that m precedes m′; thus, the relations set in Constraints (6) are enough

to have both movements of vessel vm preceding or following m. Constraints (7) impose similar conditions for the starting
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Figure 4: Toy example showing possible needs for compatibility constraints.

time of movement m′ with respect to those of m and m′: either both m and m′ precede m′ in the interference area, or

they both follow it. Remark that a pair of these constraints may allow both movements of vessel vm to occur within

the ones of vm. However, by imposing Constraints (6) and (7) both for vm w.r.t vm and for vm w.r.t vm, we forbid any

overlap. Consider, for example, the red and the blue vessels in Figure 4 (left). Constraints (6) and (7) ensure that either

both movements of the blue vessel (m and m′) precede both movements of the red one (m and m′) in the interference

area of their routes, or the opposite holds.

Finally, set I3 involves the movements of vessel pairs (vm, vm) such that vm cannot perform its movement m between

the arrival and departure movements of vm (m and m′). We use this set to manage movements in narrow canals, where

the presence of a vessel at a berth prevents the transit of other vessels. Constraints (8) impose that vessel vm can start

its movement m either early enough to transit in the narrow canal before the arrival of vm(= vm′) (movement m) or after

vm(= vm′) has left the canal (movement m). Consider, for example, the red and the green vessels of Figure 4 (right):

Constraints (8) impose that either both red movements m and m′ precede the green m, or they both follow it.

Analogous constraints can be defined for other similar incompatibility situations.

Tug usage constraints:

ym,m′ ≥ zm,u + zm′,u − 1 ∀u ∈ U, m,m′ ∈M u : m < m′, (9)∑
t′∈Km,m′ (t)

xm′,t′ ≥ xm,t + ym,m′ − 1 ∀m,m′ ∈M : m < m′, Um ∩ Um′ 6= ∅, t ∈ Tm, (10)

where Km,m′(t) = [em′ , t− tum′,m] ∪ [t+ tum,m′ , lm′ ], t
u
m′,m = sfk

m′ ,m
′ − sik

m′ ,m
′ + dm′ + s

am′ ,om
u + pm and tum,m′ = sfk

m,m
−

sikm,m + dm + s
jm,om′
u + pm′ .

Constraints (9) force variable ym,m′ to assume value 1 if the two movements m and m′ share the same tug.

Constraints (10) impose that if two movements m and m′ are served by the same tug, and hence ym,m′ = 1, then their

starting times have to be separated so that the tug can complete its service with one movement before starting its service

with the other movement. Indeed, the term tum′,m (and similarly tum,m′) includes: i) the service time, sfk
m′ ,m

′ − sik
m′ ,m

′ ,

and drop off time, dm′ , of the tug on the first movement, ii) the sailing time of the tug from the first to the second service,

s
am′ ,om
u , and iii) the second movement pick up time, pm. We observe that if movement m is scheduled at t and there are
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no time instants t′ ∈ Tm′ before t− tum′,m or after t+ tum,m′ , then the constraints impose that m′ and m are escorted by

different tugs.

To conclude this section, we remark that Constraints (4), (5) and (10) may be alternatively reformulated as follows:

xm,t + xm′,t′ ≤ 1 ∀m,m′ ∈M : 1(m,m′) = 1, t ∈ Tm, t′ ∈ Tm′ \Qm,m′(t),

xm,t + xm′,t′ ≤ 1 ∀m,m′ ∈M : 1(m,m′) = 1, t ∈ Tm, t′ ∈ Tm′ \Hm,m′(t),

xm,t + xm′,t′ ≤ 2− ym,m′ ∀m,m′ ∈M : m < m′, Um ∩ Um′ 6= ∅, t ∈ Tm, t′ ∈ Tm′ \Km,m′(t).

In a preliminary experimental analysis, we tested two different reformulations of Model P1 (2)-(10), when solved through

a commercial solver. The former considers all the reformulated constraints. The remarkably high number of constraints

in the reformulation caused poor performance when compared with P1. The latter considers only the reformulation of

Constraints (4) and (5), keeping the original Constraints (10). No significant difference has been observed when comparing

it with P1. In the rest of the paper, we will refer to Model P1 to indicate the model including Constraints (2)-(10).

3.2. Model P2

Model P2 rephrases the constraints on the movement times of Model P1 in terms of non-negative continuous variables

representing the movement starting times, and binary variables establishing the precedences among pairs of movements.

It includes the following non-negative continuous variables for all m ∈M : tm is the actual starting time; and D+
m and

D−m are the positive and negative deviations of the actual starting time tm from the desired one wm.

In addition, P2 includes three sets of binary variables introduced for Model P1: zm,u for all m ∈M , and u ∈ U and

ym,m′ for all m,m′ ∈ M . Finally, for each pair of movements m,m′ ∈ M with interfering routes, the model includes

schedule binary variables pm,m′ that register which one reaches the interference area first

pm,m′ =

1 if m reaches before m′ the interference area of their routes

0 otherwise

∀m,m′ ∈M : 1(m,m′) = 0.

Model P2 reads as follows.

The objective function minimizes the total weighted deviation of the movement schedules:

min
∑
m∈M

(c+mD
+
m + c−mD

−
m) (11)

where c−m and c+m are the costs associated to a unit of time of earliness and lateness of movement m, respectively.

The following constraints must be satisfied.

Movement operation constraints:

em ≤ tm ≤ lm ∀m ∈M , (12)∑
u∈Um

zm,u = 1 ∀m ∈M , (13)
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D−m ≥ wm − tm ∀m ∈M , (14a)

D+
m ≥ tm − wm ∀m ∈M . (14b)

Constraints (12) impose that each movement m is scheduled within time window Tm. Constraints (13) require that each

movement m is assigned to a tug in Um. Constraints (14a) and (14b) define respectively the earliness and lateness of

movement m actual starting time tm with respect to desired starting time wm.

Separation time constraints:

tm + Sm + sm,m′ ≤ tm′ ≤tm + Sm + s̄m,m′ ∀m,m′ ∈M : 1(m,m′) = 1. (15)

Constraints (15) require that two movements m and m′ operated by a vessel are scheduled so that the starting time of m′

follows the completion time of m of at least sm,m′ and at most s̄m,m′ .

Headway constraints:

tm′ ≥ tm + hm,m′ −Mm,m′(1− pm,m′) ∀m,m′ ∈M : m < m′,1(m,m′) = 0, (16a)

tm ≥ tm′ + hm′,m −Mm,m′pm,m′ ∀m,m′ ∈M : m < m′,1(m,m′) = 0. (16b)

Constraints (16) impose that two movements m and m′ operated by different vessels are separated by a minimal headway.

The “big-Ms” in these constraints are necessary to impose the disjunctive condition that either tm′ ≥ tm + hm,m′ or

tm ≥ tm′ + hm′,m must hold, depending on the value of pm,m′ . The value of Mm,m′ should be set as tight as possible to

improve the performances of solvers. Specifically, in (16a), Mm,m′ is set equal to lm + hm,m′ − em′ , as tm and tm′ are

bounded by Constraints (12). Symmetrical argument applies to justify Mm,m′ = lm′ + hm′,m − em in (16b).

Movement compatibility constraints:

pm,m̄ = pm,m̄′ = pm′,m̄ = pm′,m̄′ ∀(m,m′, m̄, m̄′) ∈ J1 (17)

pm,m̄ = pm,m̄′ ∀(m, m̄, m̄′) ∈ J2, (18)

where J1 = {(m,m′, m̄, m̄′) ∈ M 4 : vm = vm′ , vm̄ = vm̄′ , am = om′ = am̄ = om̄′} and J2 = {(m, m̄, m̄′) ∈ M 3 : vm̄ =

vm̄′ , am̄ = om̄′ , the presence of vm̄ in am̄

interferes with the transit of vm}.

Constraints (17) and (18) are equivalent to Constraints (6) to 8): the former state that, for all pairs of vessels arriving

at and departing from the same berth during the considered time horizon, either the first arrives and departs (movements

m and m′) before the second (movements m̄ and m̄′), or the opposite holds. The latter ensures the compatibility of vessel

transits in narrow canals when a berth needs to be occupied by another vessel for some time during the considered time

horizon. As for Model P1, analogous constraints can be defined for other similar incompatibility situations.

Tug usage constraints:

ym,m′ ≥ zm,u + zm′,u − 1 ∀u ∈ U, m,m′ ∈Mu : m < m′, (19)

14



tm′ ≥ tm + tum,m′ −Mm,m′(2− pm,m′ − ym,m′) ∀m,m′ ∈M : m < m′, Um ∩ Um′ 6= ∅, (20a)

tm ≥ tm′ + tum′,m −Mm,m′(1 + pm,m′ − ym,m′) ∀m,m′ ∈M : m < m′, Um ∩ Um′ 6= ∅, (20b)

where tum′,m and tum,m′ are defined as for Constraints (10) of Model P1.

Constraints (19) set variables ym,m′ equal to 1 if movements m and m′ are served by the same tug. Constraints (20)

impose that, if two movements m and m′ are served by the same tug, then their starting times have to be separated so

that the tug can complete its service with the former before starting its service with the latter. Here again, “big-Ms” are

necessary to impose the disjunctive condition that a tug either serves m before m′ or vice-versa. Value Mm,m′ is set equal

to lm + tum,m′ − em′ in (20a) and to lm′ + tum′,m − em in (20b).

3.3. Comparison

We next propose a comparison between Models P1 and P2.

First, we note that the objective function of Model P1 is more general than the one of P2: it also allows the modeling

of costs that are not directly proportional to the deviations of the actual starting times from the desired ones. On the

other hand, the discretization step affects the solution of Model P1 with respect to Model P2.

Model P1 involvesO (|M | (|T |+ |U |+ |M |)) binary variables andO
(
|M |2 (|T |+ |U |)

)
constraints. Differently, Model P2

involves O (|M | (|U |+ |M |)) binary variables, 3|M | non negative continuous variables and O
(
|M |2|U |

)
constraints. Ob-

viously, since Model P1 makes use of time-indexed variables, the number of its variables and constraints depends on the

size of the starting time windows Tm’s and on the choice of the discretization step ∆t.

In Model P2, it is possible to relax Constraints (12) on the starting time windows, by simply removing them. Differently,

in P1, the relaxation of this constraints implies the definition of variables xm,t over a set Tm covering the whole time

horizon T , for all m ∈M . The drawback of Model P2 is that it involves four sets of “big-M” constraints.

To conclude the section, let us mention that we tested several symmetry-breaking constraints to strengthen both

models Some are based on literature papers [30], [15] and [3]. For some others, we derived some cuts to strengthen Model

P2 inspired by the facet inducing inequalities proposed in [29, Section 2] for the single machine scheduling problem. The

introduction of these cuts yields no discernible benefit in terms of solution quality or computational time. In the Appendix,

we report the details regarding the tested cuts.

4. Solution algorithms

In this paper, we propose four algorithms to tackle the PSAP. The first pair of them consist in solving the models

proposed in Section 3 using a commercial solver within a predefined time limit. They are denoted Ω1 and Ω2: the

former solves Model P1, the latter Model P2. The second pair of algorithms still exploit the models but are characterized

by an overlaying receding horizon heuristic, which we introduce in this section. As in Section 2, we denote by σπ a

feasible solution for a PSAP instance π(M , U,G). Specifically, σπ is a set of starting times of movements m ∈M and of

assignments of tugs u ∈ U to these movements. We write σπ = ∅ when a feasible solution is not available.
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Algorithm 1: Heuristic structure

Data: An instance π(M , U,G) of PSAP, a Model Pi, a time limit τ

Result: A feasible solution S(π)

1 begin

// constructive phase

2 σπ := (M)ILP solver(π,Pi, τ);

3 if σπ is optimal then return σπ ;

4 else if σπ = ∅ then σπ := Solution generating procedure(π) ;

// local search phase

5 if σπ 6= ∅ then σπ := Local search procedure(σπ , π) ;

6 return σπ ;

The receding horizon heuristic includes a constructive phase and a local search phase, as described in Algorithm 1.

Initially, the heuristic solves its corresponding model running a commercial (M)ILP solver (see Algorithm 1 line 2) with

a time limit τ . Then, three situations may occur. If the solver returns an optimal solution (line 3), the heuristic stops. If

the solver returns no feasible solution, the heuristic calls Solution generating procedure (line 4) that tries to build

one. If it does not manage to do so, the heuristic stops. Otherwise, it moves to the local search phase. Finally, if the solver

returns a feasible solution, which is not proven optimal, the heuristic goes directly to the local search phase. Here, it

calls the procedure Local search procedure (line 5) to perform a local search to determine at least a locally optimal

solution.

The pseudocodes of Solution generating procedure and Local search procedure are presented respectively

in Algorithms 2 and 3.

Solution generating procedure is based on a receding horizon approach and relies on the fact that both Models

P1 and P2 become more computationally tractable once the precedence relations among movements are fixed. In addition

to the considered instance and model, it takes as input an integer value l and a computational time τ ′. This procedure

exploits two subsets of movements F and M ′ and a set prec of predetermined precedence relations between pairs of

movements in F ∪M ′, where at least one of the two belongs to F . Initially, the elements of set M are ordered by

increasing desired starting times, through function Sort() (see Algorithm 2 line 2). The procedure defines M ′ as the set

of the first l movements through a call to function First() (line 3), and F and prec as empty sets (lines 4 and 5). Then,

at each iteration, the procedure considers instance π′(F ∪M ′, U,G) (line 7). Now, a call to the (M)ILP solver attempts

to obtain solution σπ′ for instance π′ within time limit τ ′, when precedence relations in set prec are imposed (line 8). If a

feasible solution cannot be found, the procedure returns an empty set (line 9). Otherwise, function Earliest() identifies

movement m̄ ∈M ′ that has minimum starting time in σπ′ (line 11). If several movements have equal minimum starting

time, m̄ is a randomly selected one. Function Set precedences adds to set prec all the precedence relations between

m̄ and all other movements of F ∪M ′ according to σπ′ schedule (line 12). Finally, m̄ is included in F (line 13). Before

starting the next iteration, M ′ is redefined as the set of the first l movements of M \ F built through a call to function
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Algorithm 2: Solution generating procedure

Data: An instance π(M , U,G) of PSAP, a Model Pi, an integer l ≤ |M |, a time limit τ ′

Result: A (possibly empty) solution σπ

1 begin

// inizialization

2 M = Sort(M , wm) ; // movements are ordered by increasing desired starting time

3 M ′ := First(M , l) ; // current subset of movements to be scheduled

4 F := ∅ ; // subset of movements whose relative precedences have already been fixed

5 prec = ∅ ; // set of predetermined precedence relations

// iteration

6 while F 6= M do

7 build instance π′(F ∪M ′, U,G) ;

8 σπ′ := (M)ILP solver(π′,Pi, τ ′, prec);

9 if σπ′ = ∅ then return σπ′ ;

10 else

11 m̄ := Earliest(M ′, σπ′ ) ; // m̄: movement in M ′ with the earliest starting time in σπ′

12 Set precedences(m̄, F ∪M ′ \ {m̄}, σπ′ ) ; // add in prec precedences of σπ′ between m̄ and m ∈ F ∪M ′

13 F := F ∪ {m̄};

14 M ′ := (M ′ \ {m̄})∪First(M \ F, 1);

15 return σπ′ ;

First() (line 14).

Local search procedure is also based on a receding horizon approach and mimics the ideas presented for Solu-

tion generating procedure to reoptimize solution σπ received in input together with an integer value k and a time

limit τ ′′. Indeed, two subsets of movements F and M ′ and a set of predetermined precedences prec are considered. First,

the procedure sorts the elements of set M by increasing starting times of σπ (see Algorithm 3 line 2) and initializes F and

prec as empty sets (lines 3 and 5). Here, set M ′ contains the first k elements of M \F (see lines 4 and 14). Then, at each

iteration, the (M)ILP solver is run, within time limit τ ′′, to obtain a solution σ̂π that possibly improves σπ (line 7). The

solver considers the precedence relations of set prec as fixed and takes solution σπ as a warm start. Now, a movement m̄ is

selected from M ′ with the same criterion as in Solution generating procedure and its precedence relations with all

the other movements in M are included in set prec (lines 9 and 10). Finally, m̄ is inserted in F (line 11). The procedure

stops if a solution σ̂π is proven to be optimal or if F coincides with M (lines 8 and 13).

We remark that the way of imposing the precedence relations of set prec in the (M)ILP solver in both Solu-

tion generating procedure and Local search procedure depends on the model considered. Indeed, when it

is Model P1, the precedence relation between two movements m,m′ are imposed by setting hm,m′ = +∞ if m′ must be

scheduled before m or hm′,m = +∞ otherwise. Whereas, when the considered one is Model P2, the same precedence

relations are imposed by setting the value of variable pm,m′ either equal to 0 or to 1.

Hereinafter, Algorithm 1 is denoted by E1 (E2) if it uses Model P1 (P2) in the (M)ILP solver procedure.
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Algorithm 3: Local search procedure

Data: An instance π(M , U,G) of PSAP, a Model Pi, an integer k ≤ |M |, a feasible solution σπ , a time limit τ ′′

Result: A feasible solution σπ

1 begin

// inizialization

2 M := Sort(M , tm) ; // movements are ordered by increasing starting time according to σπ

3 F := ∅ ; // subset of movements whose relative precedences have already been fixed

4 M ′ := First(M , k) ; // subset of movements whose relative precedences can be reoptimized

5 prec = {precedence relations of σπ that involve at least one movement in M \M ′} ;

// iteration

6 while F 6= M do

7 σ̂π := (M)ILP solver(π,Pi, τ ′′, prec, σπ);

8 if σ̂π is optimal then return σ̂π ;

9 m̄ := Earliest(M ′, σ̂π) ; // m̄: movement in M ′ with the earliest starting time in σ̂π

10 Set precedences(m̄,M \ {m̄}, σ̂π) ; // add in prec precedences of σ̂π between m̄ and m ∈M

11 F := F ∪ {m̄};

12 σπ := σ̂π ;

13 if F = M then return σπ ;

14 else M ′ := (M ′ \ {m̄})∪First(M \ F, 1) ;

5. Computational experiments

In this section, we present the results obtained by applying the proposed algorithms on two clusters of instances for

the Port of Venice, our case study. We start with the presentation of the case study, and we continue with the results.

All the tests we present in this section are run on a laptop PC Dell XPS 15 9560, with an Intel Core i7-7700HQ at

2.80GHz and 16.0GB of installed RAM and with the solver XPRESS v8.5.6 64 bit. The following parameter setting is

used for Algorithms E1 and E2. The time limits for the (M)ILP solver in the constructive phase of the heuristic, in Solu-

tion generating procedure and in Local search procedure are set, respectively, to τ = 5 minutes (Algorithm 1

line 2), τ ′ = 30 seconds (Algorithm 2 line 8) and τ ′′ = 30 seconds (Algorithm 3 line 7). In addition, the cardinality of

set M ′ in Solution generating procedure (Algorithm 2 line 3) and in Local search procedure (Algorithm 3

line 4) is set to five (i.e., l = k = 5).

5.1. Case study description

The Port of Venice is a medium-size Italian port (about 3 300 calls in 2019, for a total 78 000 000 gross tonnage, 593 000

containers–in TEU, and 1 600 000 passengers) situated in the Venetian Lagoon. As discussed in Section 2 and shown in

Figure 1, its layout induces the graph structure depicted in the same figure. Two inlets, respectively named San Nicolò

(north) and Malamocco (south), guarantee the access to the lagoon. Canals connect them with the passenger terminals in

Marittima (old town center) and with the commercial terminals in Marghera (mainland), respectively. The harbormaster

regulation imposes that all non-passenger vessels enter the port from the Malamocco inlet, whereas passenger vessels
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Figure 5: AIS kinetic diagram of the movements of vessels along the Port of Venice main canal (top) and of two tugs escorting a cruise vessel

(bottom)

enter from the San Nicolò inlet if they are directed to the Marittima terminals and from the Malamocco inlet otherwise.

Currently, the canal joining the Marittima and the Marghera terminals is too shallow for medium size passenger vessels.

The tree-like topology of the port (Figure 1 (right)) counts 281 vertices: 163 active berths, 2 inlets, 97 connection and 19

other relevant points. A more detailed description of the port structure can be found in the harbormaster ordinances [2, 1].

In addition, we provide the vertex and the edge lists of G as supplementary material. A set U of 13 tugs is always available.

The first cluster of instances includes nine real instances, henceforth denoted πi := πi(Mi, U,G), i = 1, . . . , 9. They

correspond to the movements requested in the most congested days in the period 2011–2019. These data were deduced

either from the Port Authority records or from the analysis of the data transmitted by the Automatic Identification

Systems (AIS) of the vessels and tugs involved in the considered movements. As an example, Figure 5 (top) represents a

kinetic diagram obtained by elaborating the AIS data of some vessels sailing along the main canal of the Port of Venice.

Specifically, it shows the movements of three cruise vessels (blue lines), five freight vessels (black lines) and one tanker

(magenta lines). The horizontal axis represents time, while the vertical one is space, going from Malamocco inlet (top) to

Marghera terminals (bottom). By considering the cruise vessels, we deduce that two of them enter the lagoon and reach

their berths in the morning and all of them leave the port in the evening. Moreover, from Figure 5 (bottom) we infer how

two tugs (red lines) escort the second cruise vessel entering the port.

The second cluster of instances includes 100 random instances generated on the basis of the data of 608 real movements,

by randomly changing the desired starting times. Movements may also differ for initial and final berth: we have sometimes

changed the destination of a movement to a close berth on the same terminal when not doing so would have resulted in a

trivially infeasible instance. For example, we did so when two vessels would have required to be moored to the same berth
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at the end of the time horizon T . Each instance includes a random number of movements, between 35 and 60, chosen

among the 608 at disposal. During the instance generation, we run XPRESS on each instance with a time limit of ten

minutes. If an instance is proven infeasible in this time, it is discarded and a new one is generated. Random instances

appear in general more complicated than real ones. They are available in the supplementary material.

In the Port of Venice, movements are generally served by one or two tugs (on average 1.32 tugs), rarely by zero or

more than two. All tugs available in the Port can serve any movement. In the following, we consider the associated

instances related to the original ones, in the sense described in Section 2: each movement requires to be served by exactly

one tug. Hereinafter, the cardinality of the set of movements |M | is equal to the number of equivalent movements served

by a single tug. This value varies between 54 and 70 for the real instances, and between 55 and 117 for the random ones.

Movements have sailing times that vary within a range between 5 and 160 minutes, with an average of 102 minutes. We

assume a starting time window Tm of four hours for all movements m of the real instances, and of six hours for those of the

randomly generated ones. The deviation cost is equal to five and ten for freight and passenger vessels, respectively. This

is the cost for deviating a movement actual starting time from its desired one of a time unit equal to the discretization

step. We assume the weighted deviation cost to increases linearly as a function of the deviation itself. For example, if m

is a movement of a passenger vessel cm,t = 10|t− wm| in Model P1 and c+m = c−m = 10 in Model P2.

In case of Model P1, which uses time-indexed variables, we need to round all times to a multiple of the discretization step

∆t. To be able to compare algorithm performance, we use the same instances for all algorithms. In particular, relevant

times are fixed as follows. For each movement m we round the desired starting time wm to the closest ∆t multiple.

Differently, we round the movement sailing time Sm to the smallest ∆t multiple greater than Sm. The same is done for

the tugs sailing times, for the pick up/drop time required to connect/disconnect tugs to vessels and for the separation and

headway times between movements. In the analysis, we consider three different discretization steps ∆t = 5, 10, 15 minutes.

Their choice is motivated by the context: indeed the uncertanties which afflict navigation make a finer time resolution

meaningless. Given how the time related data are rounded, five minutes is the most pertinent value because it allows the

best exploitation of the capacity of the Port in terms of number of vessel movements scheduled per day. The other steps

are mostly used to understand whether the performance of the proposed algorithms is sensitive to this step. Indeed, as

instance data vary, solution values related to different discretization steps cannot always be compared with each other.

For example, an original desired starting time at 7:08 will be set to 7:10 with ∆t = 5, and to 7:15 with ∆t = 15. Suppose

the optimization schedules the corresponding movement at 7:15. With ∆t = 5, this will cost 50 in both models. With

∆t = 15, it will cost 0.

5.2. Experimental results

We first compare the performance of Algorithms Ω1 and Ω2 on the real instances. For each instance, Table 1 reports

the number of movements and the value of the solution returned by each algorithm for each discretization step, together

with the percentage optimality gap when a time limit of five minutes is considered. We use symbol “−” if an algorithm

detects that an instance is infeasible.
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Table 1: Solutions of the real instances obtained by the Ω1 and Ω2 algorithms within a five minutes time limit with ∆t = 5, 10, 15.

∆t 5 10 15

Algorithm Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

Inst |M | val gap% val gap% val gap% val gap% val gap% val gap%

π1 69 2505 67 1155 24 730 1 810 41 500 2 520 32

π2 70 1640 63 1165 47 1020 57 785 55 400 13 520 41

π3 69 175 0 175 0 145 0 145 0 145 0 145 0

π4 58 1790 13 1790 13 − − − − − − − −

π5 59 2735 55 2035 54 1120 31 1295 59 830 13 815 46

π6 61 100 0 100 0 85 0 85 0 145 0 145 0

π7 57 490 6 520 12 350 6 350 6 260 8 260 8

π8 65 55 0 55 0 70 14 70 14 45 0 45 11

π9 54 1180 0 1180 0 705 0 705 0 525 0 525 0

Both algorithms provide at least a feasible solution for all instances except for π4 which is proven to be infeasible with

the discretization step equal to 10 and 15 minutes. However, Ω1 and Ω2 manage to find a feasible solution for π4 if ∆t = 5,

which is in line with the fact that larger discretization steps reduce the capacity of the port. The two algorithms solve

four instances to optimality with ∆t = 5. This number decreases to three with ∆t = 10, 15. Both algorithms always solve

to optimality the same instances, apart from π8 with ∆t = 15: Ω1 proves the optimality of the solution whereas Ω2 finds

the optimal value but cannot close the gap in the time limit. The percentage gap of the two algorithms for the instances

not solved to optimality is always larger than 5%, but for instance π1 when solved by Ω1 with ∆t = 10, 15.

Despite the different models, for some instances the solver returns the same optimality gap: π4 with ∆t = 5, π7 and

π8 with ∆t = 10 and π7 with ∆t = 15. The XPRESS log files report a different evolution of the lower bounds throughout

the runs. However, the returned solutions are the same and they are found deep in the branch-and-bound search tree.

The same holds for the lower bounds. We believe that these lower bounds are obtained considering the same movement

precedences and tug assignments in the linear relaxations of the two models. Indeed, these linear relaxations provide the

same values for the starting times tm (defined in Model P1 as tm =
∑
t∈Tm

txm,t) when either the movement precedences

and tug assignments are fixed, or the corresponding disjunctive constraints are not active.

In order to further assess the performances of Algorithms Ω1 and Ω2 we replicate the tests on the real instances imposing

a time limit of one hour. Under this setting, no dominance relation can be inferred for the two algorithms and no trend

can be identified for the impact of the discretization step on their performance. With respect to the results obtained

within a five minutes time limit, we observe a good improvement of the percentage optimality gap. This improvement is

equal to 32%, on average. However, the two algorithms are not able to prove the optimality of any additional solution.

Table 2 reports the results of E1 and E2 on the real instances. Columns val indicate the final solution value returned by

the two algorithms, while impr% is the percentage improvement brought by the constructive phase with respect to the local

search one. Finally, columns time report the overall solution times. In all these experiments, a feasible solution is found
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Table 2: Solutions of the real instances obtained by the E1 and E2 algorithms with ∆t = 5, 10, 15.

∆t 5 10

Algorithm E1 E2 E1 E2

Inst val impr% time [s] val impr% time [s] val impr% time [s] val impr% time [s]

π1 1660 54 1075 1135 2 456 730 0 384 735 10 397

π2 945 74 1287 785 48 1568 570 79 731 575 37 1249

π3 175 0 14 175 0 13 145 0 14 145 0 25

π4 1790 0 600 1790 0 356 − − − − − −

π5 1980 38 1218 1935 5.17 584 1010 11 491 1080 20 497

π6 100 0 8 100 0 2 85 0 2 85 0 3

π7 490 0 617 520 0 431 350 0 547 350 0 1154

π8 55 0 9 55 0 3 70 0 393 70 0 1358

π9 1180 0 271 1180 0 21 705 0 24 705 0 30

∆t 15

Algorithm E1 E2

Inst val impr% time [s] val impr% time [s]

π1 500 0 507 515 1 443

π2 400 0 980 485 7 431

π3 145 0 7 145 0 31

π4 − − − − − −

π5 830 0 342 800 2 362

π6 145 0 3 145 0 4

π7 260 0 376 260 0 443

π8 45 0 3 45 0 772

π9 525 0 10 525 0 8

in the constructive phase by solving Model P1 or P2 with XPRESS. Hence, the impr% columns show the improvement of

the heuristic with respect to corresponding Ω algorithm presented in Table 1.

First of all, let us remark that when the solution time is smaller than 300 seconds, the optimal solution is returned

by the (M)ILP solver and no local search needs to be started: the E and Ω algorithms are completely equivalent. For

the remaining instances, the local search phase manages to improve the solution returned after five minutes in 14 out of

29 experiments, regardless of the discretization step. The average percentage improvements observed with Algorithms E1
and E2 w.r.t. Ω1 and Ω2 are equal to 18% and 7%, respectively. As expected, the best improvements are attained where

the optimality gaps returned by Algorithms Ω1 and Ω2 (Table 1) are large: e.g., instances π1 and π2 with E1 and ∆t = 5,

and instance π2 with E2 and ∆t = 5.

On average, Algorithm E2 is faster than E1 with ∆t = 5, the contrary happens with ∆t = 10 and 15. The average

solution times of E1 and E2 respectively are 567 and 382 seconds with ∆t = 5, 323 and 592 seconds with ∆t = 10 and
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278 and 312 seconds with ∆t = 15. The instance-wise comparison of the computational time respects the trend observed

on average, although some exceptions occur: E1 is faster than E2 on instance π2 with ∆t = 5 and E2 is faster than E1 on

instances π1, π2 and π9 with ∆t = 15.

From the results on the real instances presented in Tables 1 and 2 a correlation may be inferred between the discretiza-

tion step and the performance of the algorithms that solve Model P1 against the ones that solve Model P2. Indeed, in

general, it appears that Ω1 and E1 perform better than Ω2 and E2 when the discretization step is set to 10 and 15 minutes.

The contrary happens if this step is set to five minutes.

We end the discussion over the real instances by remarking that our algorithms quickly produce reasonable solutions

which can be used by the harbormaster of the Port of Venice as a support tool to determine the schedule of the vessel

movements to be implemented. Indeed, building the movement schedules and tug assignments from scratch requires the

skills of experienced port operators and, typically, long times: the solutions provided by our algorithms can be used as

a starting point by the operators, who then may perform some refinements to consider additional criteria. In addition,

algorithms can be used to quickly assess different scenarios in presence, e.g., of adverse weather and sea conditions that

force to reconsider previous schedule decisions. As an example, in Figure 6 we compare the actual schedules of vessel

movements (top diagram) with those obtained by Algorithm Ω2 (bottom diagram) in an representative day. Specifically,

the kinetic diagrams show the vessel movements (or the portion of them) occurring along the main canals of the Port

of Venice. They are those connecting the two inlets of the Lagoon and passing through the commercial and passenger

terminals. The upper part of the diagrams show the movements toward and from the commercial terminals and the lower

part those toward and from the passenger terminals. As for Figure 5, the actual movements’ schedules (top diagram)

are determined through the AIS data transmitted by the vessels, which are publicly available. The solutions displayed in

the two kinetic diagrams are very similar: vessels are arranged in convoys and the precedence relations among them are

in general the same in the two diagrams, but for few exceptions (e.g., the magenta lines). The small differences in the

movement schedules of the two solutions are due to the rounding of the movements’ desired starting time applied when

the optimization approach is considered. Finally, the Gantt diagram shown in Figure 7 reports the vessel movements of

the same representative day considered in Figure 6, when scheduled by Algorithm Ω2: here also the inner canals of the

Port are taken into account. Each movement is represented by a horizontal segment. If a movement requires tug services,

lower and upper ticks on its segment represent their start and end time. Due to the pick up/drop time, tugs must be in

the area close to the beginning/completion of their service 15 minutes before/after their start and end time. The diagram

shows also the services provided by two tugs, named, respectively, E and I. The time at which the tugs start their first

service is indicated above the upper limit of the graph. Tug E starts its service on vessel S around 05:00 am, then it joins

tug I at 07:15 am to escort vessel M from one inlet to the passenger terminals. Finally, it escorts again the latter vessel

when it leaves the port, at 05:15 pm. Differently, tug I has no service prior to the one on vessel M and, after that, it

escorts three cargo vessels in the afternoon.

Table 3 summarizes the results obtained by solving the 100 random instances by means of E1 and E2, and implicitly
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Figure 6: AIS kinetic diagram (top) and kinetic diagram arising from the optimization algorithm (bottom) of vessel movements along the port

of Venice main canals in an average day.

Figure 7: Gantt diagram of vessel movements along the port of Venice canals in an average day. It also shows the services provided by two

tugs.
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Table 3: Computational results obtained by solving the random instances by means of algorithms E1 and E2 with ∆t = 5, 10, 15 min.

∆t 5 10 15

Algorithm E1 E2 E1 E2 E1 E2

# solved inst. 63 94 72 90 79 90

# not solved inst. 37 6 28 10 21 10

# inst. solved to optimality in constr. phase with (M)ILP 7 17 18 14 22 13

avg. optimality time 194 66 79 103 52 75

# inst. solved to feasibility in constr. phase with (M)ILP 44 77 48 73 54 75

# inst. solved to feasibility in constr. phase with SGP 12 0 6 3 3 2

avg. improvement through local search 30% 37% 28% 36% 19% 34%

avg. constr. phase time 490 258 326 319 279 297

avg. local search phase time 1267 1089 1030 1029 910 949

avg. solution time 1619 1157 1088 1194 940 1114

# inst. won (value) 11 71 41 32 52 20

# inst. won (time) 1 93 36 54 58 32

Ω1 and Ω2, with the three considered discretization steps. The rows of the table report respectively: the number of solved

and not solved instances (for which no feasible solution is found); the number of instances for which the constructive

phase builds an optimal solution by means of the (M)ILP solver ((M)ILP); the average solution time of these instances;

the number of instances for which the constructive phase builds a feasible solution by means of the (M)ILP solver and by

means of Solution generating procedure (SGP); the average percentage improvement achieved by the local search

phase; the average computational time of the constructive and of the local search phase, and their sum; the number of

instances for which the algorithm beats the competitor in terms of objective function value or computational time (the

tie cases are not considered). As discussed for Table 2, the results obtained by the (M)ILP solver correspond to the ones

that Algorithms Ω1 and Ω2 obtain in five minutes.

From Table 3, we observe that although Algorithm E1 struggles to solve as many instances as E2, they both provide a

solution for the majority of the instances (at least 63 out of 100) regardless of the discretization step. Moreover, in the

constructive phase, Algorithms Ω1 and Ω2 prove the optimality for at least 11% of the corresponding solved instances

(Ω1 with ∆t = 5), with a peak of 28% (Ω1 with ∆t = 15). Now, considering the instances for which the optimality of a

solution is not proven within five minutes, E1 E2 provide a remarkable improvement over Ω1 and Ω2. In the same table

we report the average percentage improvement brought by the local search phase: it spans from 19% to 30% for E1 and

from 34% to 36% for E2.

To guarantee a fair comparison, we also run Algorithms Ω1 and Ω2 setting as time limit on each instance the com-

putational time used by E1 and E2. The discretization step does not appear to have a particular impact on the obtained
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results. Thus, we report here only the results obtained with ∆t = 5. Here, Ω1 beats E1 in 43 out of the 100 instances: it

finds a solution to 18 instances for which the latter fails to do so, and it returns solution values 30% better, in average.

The opposite happens for 24 instances: E1 finds solutions to 3 instances where Ω1 does not, and the average improvement

is 18%. The comparison between Ω2 and E2 goes in a different direction. In 11 out of the 100 instances, Ω2 beats E2: it

finds 4 additional solutions and it improves the solution values of 15%, in average. Instead, E2 wins in 71 instances by

improving their solution value of an average of 29%.

We end our analysis by discussing the dominance relation between the algorithms that solve the two different models.

The trend emerged in the analysis of the results of the real instances is confirmed by the results of Table 3: the smaller

the discretization step, the better the algorithms that solve Model P2 perform over the ones that solve P1. Indeed, if

the discretization step is set to ∆t = 5, Algorithm E2 (Ω2) outperforms E1 (Ω1) according to all performance indicators

considered: in general it obtains better solutions and it does it faster. If ∆t = 10, 15, the average computational times

of Algorithms E2 (Ω2) and E1 (Ω1) are comparable. However, in the instance-wise comparison (last row of the table) E2
prevails when ∆t = 10, while the opposite happens when ∆t = 15. Regarding solution quality, when the discretization

step is larger than five minutes the algorithms solving P1 outperform the other ones: Ω1 provides more optimal solutions

than Ω2 and E1 beats E2 in the instance-wise comparison (second last row of the table).

The explanation of the trend is related to the high sensitivity of the time-indexed model to the discretization step: the

smaller this step, the bigger the size of Model P1 in terms of number of variables and constraints. Specifically, although

the order of magnitude of the number of variables and constraints is not largely different between the two models, as

discussed in Section 3.3, we observe that P1 ends up having about six times more constraints than P2 in our instance.

After XPRESS pre-solve, this ratio decreases to about three. The same pre-solve manages to reduce the numbers of

variables more for P2 than for P1, the final ratio being about 2.

6. Conclusions

In this paper, we defined and formulated the in-Port vessel Scheduling and tug Assignment Problem, and we proposed

four algorithms for tackling it. In this problem, vessel movements and tugs must be scheduled to optimize the access to a

port infrastructure. In particular, we focused on the case of canal harbors. We formally showed that instances in which

vessels require the use of multiple tugs can be mapped into equivalent instances in which a one-to-one relation holds.

The four proposed algorithms are based on the solution of mathematical programming models. Specifically, we proposed

a time-indexed model, and a continuous time one. In two algorithms, we tackled these models considering a receding

horizon framework within a local search approach, where a subset of variables are set as in the solution at the center of

the neighborhood explored. Furthermore, we presented additional cuts to strengthen the models. We ran experiments on

real and realistic randomly generated instances representing traffic at the Port of Venice, in Italy.

The results of the experimental analysis show that all our algorithms can find good, often optimal, solutions to all real

instances considered in an acceptable computational time. On the more difficult realistic randomly generated instances, the

choice of the discretization step has a notable impact on the dominance of the algorithms solving the continuous time model
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over those solving the time-indexed one. If ∆t = 5 the algorithms based on the continuous time model outperform the

others, but the contrary happens if ∆t = 15. Moreover, the receding horizon algorithms bring a remarkable improvement

over the other ones. On the contrary, no benefit emerges when adding cuts to the models. As a discretization step larger

than five minutes does not allow to exploit capacity in a satisfactory way, we conclude that the continuous time model

is more appropriate to tackle this problem in a port at least as large and busy as the Venice one. In smaller ports,

the difference probably becomes smaller, but we consider that the application of this model remains an appropriate and

conservative choice.

Further research will be committed to the integration of the algorithms proposed in an actual decision support tool.

Indeed, in principle, our algorithms may not be able to find a feasible solution to an instance in the available computational

time, either because it does not exist or because it is simply very difficult to spot. Several possibilities can be explored

to support port authorities in their scheduling decisions when this happens. For example, the size of the starting time

windows allowed for each movement, or for some of them, may be progressively enlarged. Another option may consists in

allowing movements to be served by additional virtual tugs at higher costs, or allowing cancellation of movements. The

selection of the best approach to deal with particularly complex cases will have to be deeply investigated, to properly

balance complexity and benefit of the various alternatives.

Future work will be devoted to the exploration of further modeling possibilities for the PSAP. An interesting research

direction is inspired by [36], who proposes a minimum cost multi-commodity network flow model for the locomotive

scheduling problem. As we discussed in the paper, the two problems are strictly related. In principle, a model for the

PSAP inspired by the one for locomotive scheduling may be derived. However, its size in terms of number of variables

and constraints makes the solution of the PSAP instances considered in this paper hardly possible using a commercial

MILP solver. An ad-hoc solution algorithm will thus have to be designed.
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Appendix: Cuts

In this section we report the details regarding the cuts that we consider to strengthen our two models.

Let us observe that, independently from how it is modeled, the PSAP has a characteristic that makes it particularly

difficult to solve. Specifically, it presents multiple optimal solutions when set U contains subsets of equivalent tugs that

can swap their service assignments, as it usually occurs in the practice. Moreover, when the continuous time model is

used, it includes disjunctive constrains. Indeed, the PSAP can be solved in polynomial time when these characteristics do

not hold, that is, if the sequencing of movements is a-priori fixed and each movement can be served by a single tug, i.e.,

|Um| = 1 for all m ∈M . Under these circumstances, Model P2 becomes a linear programming model as the values of the

binary variables pm,m′ and zu,m, and hence of variables ym,m′ , are fixed.

The following sets of symmetry-breaking constraints reduce the number of symmetric solutions if the available tugs

are compatible with all vessels, that is Um = U , for all m ∈M :∑
r∈U :r≤m

zm,r = 1 ∀m ∈M : m ≤ |U |, (21a)

zm,r ≤
∑

m′∈M :r−1≤m′≤m−1

zm′,r−1 ∀r ∈ U \ {1},m ∈M : r ≤ m. (21b)
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Cuts (21) allow tug r to serve movement m only if tug r − 1 has served at least a previous movement m′, with

r − 1 ≤ m′ ≤ m − 1. In particular, Cuts (21a) impose that movement m ∈ M is served by one of the first m tugs,

until m ≤ |U |. Cuts (21b) state that a tug can be used to serve a movement m only if the one with previous index is

used to serve a movement with index smaller than m. Cuts (21) can be alternatively written as lexicographic ordering

constraints [30]: ∑
m′∈M :m′≤m

2(m−m′)zm′,r ≤
∑

m′∈M :m′≤m

2(m−m′)zm′,r−1 ∀r ∈ U \ {1}, m ∈M .

Coefficients 2(m−m′) make these cuts numerically unstable when m is large [18]. Due to the size of our instances we

cannot include them in our computational study, although they show good results in [15] and [3] (m up to 6 and 15

respectively).

An alternative set of cuts can be formulated as:∑
m∈M

βmzm,r ≤
∑
m∈M

βmzm,r−1 ∀r ∈ U \ {1}, (22)

where βm > 0 for all m ∈M . Cuts (22), inspired by those presented in [15] and [3], break the symmetry by ordering the

tugs. They impose that the weighted sum of the movements served by tug r must be less than the weighted sum of the

movements served by tug r − 1. In particular, if βm = 1 for all m ∈M , Cuts (22) simply impose that a tug with lower

index should not serve fewer movements.

The interested reader is referred to the seminal paper [30] and to [15] and [3] for similar cuts applied to scheduling

problems.

We also consider the following cuts to strengthen Model P2, to better deal with disjunctive Constraints (16). They

are inspired by some facet inducing inequalities proposed in [29, Section 2] for the single machine scheduling problem and

read as follows: ∑
m∈M ′

Sm(tm + Sm) ≥ f(M ′) ∀M ′ ⊆M , |M ′| = 2, (23)

where f(M ′) = 1
2

((∑
m∈M ′ Sm

)2
+
∑
m∈M ′ S2

m

)
.

Unfortunately, the non-trivial facet inducing inequalities proposed in [29, Section 3] for models with time indexed

variables cannot be generalized for Model P1. Then, we did not test additional cuts to strengthen Model P1.

To assess the performance of the proposed algorithms when the cuts are considered, we run a set of experiments using

a discretization step ∆t = 5 minutes. We test all the four algorithms proposed in the paper, but the cuts do not provide

any benefit for either Ω1 or E1. For algorithms Ω2 or E2, worsenings appear here more relevant than improvements.
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