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December 6, 2021
STABLE SUMS TO INFER HIGH RETURN LEVELS OF

MULTIVARIATE RAINFALL TIME SERIES

GLORIA BURITICÁ AND PHILIPPE NAVEAU

ABSTRACT. We introduce the stable sums method for inference of extreme re-
turn levels for multivariate stationary time series. This new method is based on
large deviation principles for regularly varying time series which allows for in-
corporation of time and space extreme dependencies in the analysis. It avoids
classical declustering steps as implementation coincides for both independent
and dependent observations from the stationary model. A comparison with the
main estimators from extreme value theory, where detecting clustering in time is
required, shows improvement of the coverage probabilities of confidence inter-
vals obtained from our method against its competitors. Numerical experiments
also point to a smaller mean squared error with the multivariate stable sums
method compared to an univariate approach. We apply our method for infer-
ence of high return levels of multivariate daily fall precipitation measurements
in France.

Keywords: Environmental time series; multivariate regular variation; stable distribution; station-
ary time series; cluster process; return levels; extremal index.

1. INTRODUCTION

Nowadays, extreme value theory [8] is frequently applied to meteorological time
series to capture extremal climatological features in temperatures, winds, precipi-
tation and other atmospheric variables [see, e.g. 30, 41, 42]. For example, due to
its high societal impacts in terms of flooding, heavy rainfall have been analyzed at
various spatial and temporal scales [see, e.g. 27]. In particular, storms/fronts dura-
tion and spatial coverage can produce potential temporal and spatial dependencies
among recordings from nearby weather stations [see, e.g. 26]. In this multivari-
ate context, the analysis of consecutive extremes, even in the stationary case, can
be theoretically complex [see, e.g. 7, 3]. Although marginal behaviors of heavy
rainfall is today well modeled, the temporal dynamic is rarely taken in account
in applied studies, especially for multivariate time series [see, e.g. 20, 40, 1, 9].
To produce accurate high return level estimates from multivariate time series of
extreme daily precipitation, we propose an approach to jointly incorporate the tem-
poral dependence and the multidimensional structure among heavy rainfall. This
joint modeling appears necessary to perform a full risk assessment, as ignored
correlations may lead to erroneous confidence intervals. The latter is particularly
important when the practitioner has to provide them about extreme occurences, i.e.
interpolating beyond the largest observed value.

To contrast different climate types, we choose three stations in three different re-
gions in France: oceanic in the northwest (Brest, Lanveoc and Quimper), Mediter-
ranean in the south (Hyeres, Bormes-les-Mimosas and Le Luc), and continental in
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northeast (Metz, Nancy and Roville). At all nine stations, recording high rainfall
levels at one day is often followed by measures from rainy days latterly since an
extreme weather condition can last numerous hours. This extremal dependence in
time is well illustrated by the temporal extremogram1 introduced in [12] as can be
seen in Figure 1. In our case study, the multivariate aspect comes from the spatial
dependence among daily rainfall measured at nearby weather stations in France
from 1976 to 2015. While it is reasonable to assume independence between re-
gions, the stations spatial proximity within a region imposes a tri-variate analysis
by region. Figure 2 illustrates how high rainfall values often occur simultaneously
at two close stations pointing to a strong spatial dependence of large values. Con-
cerning seasonality, we will focus on Fall (September, October and November) as
heavy rainfall have been the strongest in France during this season. Concerning
marginal behaviours, records within the same region reach similar precipitation
intensity levels. For example, the south of France registers higher precipitation
amounts than the other two regions.
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FIGURE 1. Empirical temporal extremogram of the 95-th order
statistic of Fall daily rainfall from 1976 to 2015. The first, mid-
dle and last correspond to three different climatological regions in
France, continental (northwest), oceanic (west) and mediterranean
(south), respectively. As a baseline, the dotted line indicates the
value the extremogram takes at independent time lags.

The practical goal of this study is to infer the 50 years return levels at each sta-
tion, while taking in account the tri-variate dependence and the temporal memories.
The theoretical added value is that we neither assume temporal independence, nor
need to decluster the time series to make them independent in the upper tail. To by-
pass these hurdles, we build on a stable sum method. This approach takes its roots
in large deviation principles and central limit theory for weakly dependent regu-
larly varying time series [19]. In terms of notations, (Xt)t∈Z will always represent
a regularly varying stationary time series with tail index α > 0, taking values in
Rd that we endow with a norm | · |, cf. [4]. In a nutshell, this means that, given
large values of the norm at time zero, this norm behaves as a Pareto-type (power)

1The temporal extremogram is defined over time lags by t 7→ limx→+∞ pr(Xt > x |X0 > x).
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FIGURE 2. Scatter plots of Fall daily rainfall between two
nearby weather stations from 1976 to 2015. The top, mid-
dle and bottom panels correspond to the three different clima-
tological regions in France as detailed in Figure 1. Simulta-
neous exceedances of the 95-th order statistic of the sample
(max{Xt(1), Xt(2), Xt(3)})t=1,...,n are in black.

law and, for all h ∈ N, it is roughly independent of (Xt/|X0|)t=−h,...,h, that con-
tains all the dependence structure, see Equation (5) for a precise definition. In
this setting, under the classical anti-clustering assumption [see e.g. 4], preventing
extreme records to affect indefinitely future extremes, the following large deviation
approximation holds: for any p ≥ α, j = 1, . . . , d,

pr(X0(j) > xn) ≈ m(j) (n c(p))−1 pr
(
S1,n(p) > xpn

)
, n→ +∞,(1)

where S1,n(p) =
∑n

t=1 |Xt|p and (xn) corresponds to a suitable sequence veri-
fying n pr(|X0| > xn) → 0 as n → +∞, m(j) takes values in [0, 1], for all
j = 1, . . . , d, and p 7→ c(p) is a decreasing function. We confer to [7] the proof of
(1) and its extensions2 for α/2 < p < α.

The practical key aspect of (1) is that, whenever the constants m(j) and c(p)
are adequately estimated, all marginal features of the multivariate vector X0 can

2For p ≤ α, additional weakly mixing conditions where required in [7] to show (1). Also, for
p ≤ α, c(p) ≥ 1, and the sequence (xn) must verify n/xmin{p,α−δ}

n → 0, for some δ > 0, as
n→ +∞.
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be easily deduced from the single univariate sum S1,n(p). In practice, this means
that any extreme quantile of a weather station, say j, in Figure 2, can be directly
deduced from the sum S1,n(p) computed over the group of three neighbouring sta-
tions, albeit the knowledge of the two constants m(j) and c(p) in (1). To interpret
these two quantities, we write them as follows

lim
n→+∞

pr(X0(j) > xn)

pr(|X0| > xn)
= m(j), lim

n→+∞

pr((S1,n(p) )1/p > xn)

n pr(|X0| > xn)
= c(p).

(2)

The ratio between the norm feature pr(|X0| > xn) and the marginal feature
pr(X0(j) > xn) does not depend on t (as t = 0), and consequently, the con-
stants m(j) trace back the d-dimensional structure of extremes, but not the tempo-
ral dynamic. In contrast, the constant c(p) captures the temporal clustering among
extremes throughout the `p–norm. In addition, the special case of p = ∞ has a
strong connection with the so-called declustering technique [see e.g. 23]. The con-
stant c(∞) equals the extremal index of the time series (|Xt|)t∈Z, which has been
interpreted as the reciprocate of the mean number of consecutive high levels to be
recorded in a short period; cf. [33, 34].

A key point in our approach is to notice that the choice p in c(p) is up to the
practitioner. The conventional choice of taking p = ∞ brings the difficult prob-
lem of inferring the extremal index and finding the number of consecutive high
crossings over a short time period. If we recall that [7] showed c(α) = 1, then
choosing p = α completely bypasses the estimation of c(p). This modelling strat-
egy obviously implies that the index of regular variation, α, needs to be estimated,
a necessary step in any Pareto based quantile estimation.

The main challenge of our approach is to infer the distribution of S1,n(p) from
the sampled multivariate vector (X1, . . . , Xn). To reach this goal, we define the
following partial sums from disjoint time periods of length bn as

S1,bn(p)︸ ︷︷ ︸
:=

∑bn
t=1 |Xt|p

, S2,bn(p)︸ ︷︷ ︸
:=

∑2 bn
t=bn+1 |Xt|p

, · · · , Sbn/bnc,bn(p)︸ ︷︷ ︸
:=

∑bn/bnc
t=bn/bnc−bn+1

|Xt|p

,(3)

with the convention Sbn(p) := S1,bn(p). The new sequence from the variables
(St,bn(p))t=1,...,bn/bnc provides us a transformed dataset from which the inference
of x 7→ pr(S1,bn(p) > x) becomes possible. The natural question is then what is
the appropriate model for Sbn(p). As Sbn(p) is a sum of regularly varying incre-
ments, then, assuming n/bn → +∞ as n → +∞, the central limit theorem for
weakly dependent stationary time series holds. More precisely, there exists positive
and real sequences (cn(p)), (dn(p)) such that (Sbn(p)− dbn(p))/cbn(p) converges
to a stable distribution with stable parameter equal to α/p, as the sums length bn
goes to infinity. Two important elements can be highlighted from this convergence.
First, the family of α-stable distributions, see Section 2.1 for more detail, appears
as the natural parametric family to fit the sequence (St,bn(p))t=1,...,bn/bnc. Second,
the aforementioned choice of taking p = α is reinforced as the stable parameter
α/p equals to one for this choice. This produces a solid yardstick to select the right
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sum length bn. In other words, an appropriate selection of bn corresponds to the
case where the distribution of (St,bn(α))t=1,...,bn/bnc follows a stable distribution
with a stable unit parameter. The algorithm behind this strategy will be explained
in Section 2.3.

From a theoretical point of view, the large deviation principle in (1) is justified
for inference of extreme quantiles within the scope of the sequence of threshold
levels (xbn). The order of magnitude of the sequence (xbn) was studied for classi-
cal examples as linear processes in [35] and for solutions to recurrence equations
in [5, 31]. For further references on large deviation probabilities for weakly depen-
dent processes with no long-range dependence of extremes we refer to [11, 29, 28,
36]. Furthermore, central limit theory for stationary weakly dependent sequences
was studied first in [11] based on weak convergence of point processes. In [29, 28]
the central limit theorem was proven using classical telescopic sum arguments and
large deviation limits; see [2] for a modern treatment. However, the stable domain
of attraction with stable parameter equal to one has attracted little attention. Bor-
rowing classical telescopic sum arguments, Section 5.5 provides our proof of the
central limit theorem for the case with unit stable parameter, which interests us
as we take p = α. This proof will use the cluster process defined in [7] and has
simplified assumptions compared to results in [2] and in [3].

Concerning the implementation of our stable sums method, Section 2 starts by
detailing the basic ingredients of our algorithm and its main assumptions. The
important step of setting the inputs of our alogrithm is explained in Section 2.3. In
particular, the estimation of the stable parameter, α, is treated there. It is followed
by the description of our algorithm. Our simulation study is described in Section
3. Univariate and multivariate cases are investigated. Comparisons with other
approaches are implemented and commented. In Section 4, the rainfall dataset
introduced with Figures 1 and 2 is analyzed in depth. The theoretical aspects of
our method are detailed in Section 5.

2. STABLE SUMS METHOD

2.1. Preliminaries. Let X := (X(1), . . . , X(d)) be a random vector taking val-
ues in Rd. For T > 0, the T–return level associated to the j-th coordinate, de-
noted zT (j), is defined as zT (j) := inf{z(j) : pr(X(j) > z(j)) ≤ 1/T}.
The multivariate T–return level, denoted zT , is defined to be the Rd-valued vector
zT := (zT (1), . . . , zT (d)). We recall below the definition and basic properties of
stable distributions.

Definition 2.1. The random variable ξa := ξa(σ, β, µ) follows a stable distribution
with parameters (a, σ, β, µ) if and only if, for all u ∈ R,

E
[

exp{i u ξa}
]

=

{
exp{−σa|u|a(1− i β sign(u) tan πa

2 ) + i µ u} if a 6= 1,

exp{−σ|u|(1− i β sign(u) 2
π log |u|) + i µ u} if a = 1,

(4)

where a ∈ (0, 2] is the stable parameter, σ ∈ [0,+∞) is a scale parameter, β ∈
[−1, 1] is a skweness parameter, and µ ∈ R is a location parameter.
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Classical examples of stable distributions are the Gaussian distribution with
a = 2 and β = 0, the Cauchy distribution with a = 1 and β = 0; and the
Lévy distribution with a = 1/2 and β = 1. Stable distributions satisfy the re-
flection property: if ξa := ξa(1, β, 0) is a stable random variable with parameters
(a, 1, β, 0), then −ξa is a stable random variables with parameters (a, 1,−β, 0).
The stable distribution is symmetric when β = 0, and has support in R when
|β| 6= 1. If β = 1 there are three cases: if a < 1 then the support of its density
admits a finite lower bound. If a = 1 the density is supported in R but only the
right tail is regularly varying. Otherwise, the stable distribution admits two heavy
tails. A full summary on stable distributions can be found in [21, 38, 39].

2.2. Model assumptions. In the remaining of the article we work under the as-
sumptions fixed here. We consider (Xt)t∈Z to be a regularly varying time series
taking values in (Rd, | · |), with index of regular variation α > 0; cf. [4]. This
means there exists an Rd-valued time series (Θt)t∈Z verifying |Θ0| = 1 a.s. and

pr((Xt)|t|=0,...,h ∈ · | |X0| > x)
d−→ pr(Y (Θt)|t|=0,...,h ∈ · ), x→ +∞,(5)

where Y is (α)–Pareto distributed, i.e. pr(Y > y) = y−α, for all y > 1,
independent of (Θt)t∈Z. We fix | · | to be the supremum norm, i.e. |X0| :=
maxj=1,...,d |X0(j)|, but any choice of norm is possible under minor modifications.

We also suppose that the classical conditions linked to weakly dependent reg-
ularly varying time series (see Lemma 5.2 and Proposition 5.4 in Section 5 for
details) are satisfied. Then, approximation (1) holds and the renormalized pro-
cess of partial sums Sbn(p) converges to a stable distribution with stable parameter
a = α/p as n → +∞. Motivated by Proposition 5.4, we also set the skweness
parameter β = 1 to simplify computations.

2.3. Choice of the algorithm inputs. To construct the time series given by the
partial sums (St,bn(α))t=1,...,bn/bnc defined by (3), we need to determine the sum
length, bn, and α. In addition, the indexes of spatial clustering m(j) are required
to use (1).

We estimate the index of regular variation α using the unbiased Hill estimator
of [13], see their Equation (4.2) of α̂n that varies in function of the order statistics
k. Fixing the choice of k one obtains a point estimate3 α̂n = α̂n(k).

Concerning the inference of m(j), we recall that (2) and (5) imply that

m(j) = E[
∫ +∞

1 11(yΘ0(j) > 1)d(−y−α)] = E[(Θ0(j))α+],

where Θ0 is an Rd-valued random variable verifying |Θ0| = 1 a.s. For a review on
inference of the spectral measure Θ0, we refer to [7, 10, 14]. In this context, given
α̂n, all m(j) are simply estimated by the following empirical means

m̂n(j) := 1
k

∑n
t=1 {(Xt(j))

α̂n

+ / |Xt|α̂
n} 11(|Xt| ≥ |X(k)|),(6)

3To implement Equation (4.2) as a function of the number of higher order statistics k, we set
the second order parameter ρ̂ ≤ 0 to be the median value of ρ̂(kρ) for kρ verifying 2 ≤ kρ ≤ k,
following the main ideas in [25, 13]. Given the trajectory k 7→ α̂n(k), we suggest to choose a point
estimate from a steady portion of the plot of this trajectory.
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where j = 1, . . . , d, |X(k)| is the k–th largest order statistic from the norm sample
that we fix to be the 95–th empirical quantile for the remaining of this article.

To select the temporal window bn, we recall that the renormalized partial sums,
(St,bn(p))t=1,...,bn/bnc, should follow, for p = α, a stable distribution with stable
parameter a = 1. So, for a given bn, we run a ratio likelihood test for the null hy-
pothesis (H0) : a = 1 and we only keep pairs α̂n, bn such that the null hypothesis
is not rejected at the 0.05 level. This heuristic allows one to discard an unsuit-
able choice for the couple α̂n, bn. All these steps are summarized in the following
algorithm.

2.4. Algorithm.

Algorithm 1. Stable sums estimator of the multivariate T–return level
Input: (Xt)t=1,...,n, bn, α̂

n, m̂n; see Section 2.3,
Output: ẑnT ,

compute (St,bn(α̂n))t=1,...,bn/bnc as in (3) with p = α̂n,
fit stable parameters from maximum likelihood estimation: θ̂,
fit stable parameters fixing a = 1: θ̂a=1,
test the null hypothesis (H0) : a = 1 using ratio likelihood test,
if (H0) is not rejected:

θ̂ = θ̂a=1,(7)

if d > 1:
for j = 1, . . . , d :

calculate qT (j) as a stable quantile with parameters θ̂,
evaluated at (1− (T m̂n(j) )−1)bn , following equation (1),

if d = 1:
m̂n(1) = 1,
calculate qT (1) as a stable quantile with parameters θ̂,
evaluated at (1− 1/T )bn ,

return: ẑnT :=
(
(qT (1))1/α̂n , . . . , (qT (d))1/α̂n

)
,

else:
choose a different pair of parameters α̂n, bn.

The estimated multivariate T–return level is the output of Algorithm 1 applied
to (Xt)t=1,...,n. If d = 1 then m(1) = 1 and both estimates coincide. Confidence
intervals are obtained by sampling parametric bootstrap replicates from a stable
distribution with parameters θ̂, as in equation (7) from Algorithm 1. For each repli-
cate, we evaluate a stable quantile at (1 − (m̂n(j)T )−1)bn , for j = 1, . . . , d, and
return the 1/α̂n–power of the computed quantile. We then use the percentile boot-
strap method with a significance level at 0.05 to obtain the confidence intervals.
We refer to [15, 16, 17, 18] for large-sample theory of the maximum likelihood
estimator for stable distributed sequences. Indeed, bounds for the derivatives of
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the density function in terms of the parameters (x; a, σ, µ) have been computed
therein; see also [37] for an overview on maximum likelihood methods for stable
distributions.

3. SIMULATION STUDY

3.1. Models. We consider the following weakly dependent regularly varying time
series in our numerical experiment.

• Burr model: Let (Xt)t=1,...,n be independent random variables distributed
as F with

F (x; c, κ) = 1−
(
1 + xc

)−κ
, x > 0,(8)

where c, κ > 0 are shape parameters. Moreover, X1 is univariate regularly
varying with index of regular variation α = 1

cκ > 0.
• Fréchet model: Let (Xt)t=1,...,n be independent random variables dis-

tributed as F with

F (x;α) = e−x
−α
, x > 0,(9)

then X1 is univariate regularly varying with tail index α > 0.
• ARMAX model: Let (Xt)t=1,...,n be sampled from (Xt)t∈Z defined as the

stationary solution to the equation

Xt = max
{
λXt−1,

(
1− λα

)1/α
Zt
}
, t ∈ Z,(10)

where λ ∈ [0, 1), and (Zt)t∈Z are independent identically distributed Fréchet
innovations with tail index of regular variation α > 0. Then (Xt)t∈Z is reg-
ularly varying with same index of regular variation but with extremal index
equal to 1− λα.
• mARMAXτ model: Let (Xt)t=1,...,n be sampled from (Xt)t∈Z defined as

the stationary solution to the equation

Xt(j) := max
{
λ(j)Xt−1(j),

(
1− (λ(j))α

)1/α
Zt(j)

}
, t ∈ Z,(11)

for j = 1, . . . , d, where λ takes values in [0, 1)d and (Zt)t∈Z are inde-
pendent identically distributed vectors from a Gumbel copula with Fréchet
marginals and index of regular variation α > 0. Moreover, Z1 is dis-
tributed as G defined by

G(x;α, τ) = e−
(

(x(1))−(α/τ)+(x(2))−(α/τ)+···+(x(d))−(α/τ)
)τ
,(12)

for x ∈ Rd, and τ ∈ [0, 1] that we refer as the coefficient of spatial depen-
dence. The stationary solution (Xt)t∈Z is multivariate regularly varying
with index of regular variation α > 0; cf. [22] for more details.

Moreover, straightforward computations from (12) yield

m(j) = lim
x→+∞

pr(X0(j) > x)

pr(|X0| > x)
= lim

x→+∞

1− e−1/xα

1− e−d τ/xα
=

1

d τ
< 1,(13)

for all j = 1, . . . , d. Then, from (13) we recover the symmetric proper-
ties of the Gumbel copula as m(1) = · · · = m(d) = 1/dτ . We can also
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see from (13) that the coefficient of spatial dependence τ ∈ [0, 1] plays a
key role while measuring the spatial dependence of extremes. Indeed, sim-
ilar calculations allow one to compute the spatial dependence parameter
between any two marginals, say j, j′, as

lim
x→+∞

pr(X0(j) > x |X0(j′) > x) = 2− 2τ ,(14)

thus τ = 1 points to asymptotic independence of extremes, whereas τ = 0
indicates complete dependence of extremes.

3.2. Numerical experiment. We perform a Monte Carlo simulation study to ad-
dress two main points. Fist, we aim to compare the stable sums method with the
classical methods based on declustering such as the peaks over threshold method,
built on the generalized Pareto distribution, and the block maxima method, built on
the generalized extreme value distribution; details are deferred to Section 3.4. Sec-
ond, we aim to evaluate the relevance of the multivariate approach when compared
to the univariate approach in our study.

We estimate return levels zT for periods T = 20, 50, 100 years corresponding
to the 99.95-th, 99.98-th and 99.99-th quantiles. We simulate 1000 trajectories of
length n = 4000 from the models presented in Section 3.1 with parameters:

1. Burr(c, κ) model with (c, κ) = (2, 2) in (8).
2. Fréchet(α) model with α = 4 in (9).
3. ARMAX(λ) model with α = 4, for both λ = 0.7 and λ = 0.8 in (10).
4. mARMAXτ (λ) model taking values in [0,+∞)3 with α = 4 and λ =

(0.7, 0.7, 0.7) in (11), and for τ = 0.1, 0.2, . . . , 0.9, in (12).
The true value is α = 4 in all the models considered in our experiment and this
corresponds to a typical rainfall tail index.

3.3. Implementation of stable sums method. In our simulation study we fix the
index of regular variation to be α̂n = α̂n(k) (see Section 2.3 for details) with
k = n0.7 for the Burr model and k = n0.9 for the Fréchet, ARMAX and mARMAX
models. Now notice that plugging in the estimates α̂n, m̂n in Algorithm 1 we
can run the stable sums method as a function of the sum lengths bn. In this way,
we implement our method for the sum lengths bl = 2i, with i = 4, 5, 6, 7. We
sample R = 100 parametric bootstrap replicates to compute confidence intervals
for the estimated return levels. For the multivariate models, we compute both the
multivariate and univariate stable sums estimator.

3.4. Implementation of classical methods. For the univariate models, we also
run the classical peaks over threshold and block maxima methods [see e.g. 8]. We
address time-dependence using clusters of exceedances theory motivated by the
point process approach in [11]. We refer to [7, 32] for a modern literature on this
topic. A brief description of both implementation procedures is given below.

The peaks over threshold method consists in modelling the exceedances over a
large threshold with a generalized Pareto distribution; see chapters 4 and 5 in [8]
for an overview. In our case, we use the 95–th empirical quantile as a threshold
level. Moreover, to allow for confidence intervals with larger uncertainties coming
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from correlated exceedances, we consider a declustering procedure with justifica-
tion in [23]. It consists of identifying clusters of exceedances as short periods with
consecutive exceedances and then keeping only one from each cluster leading to a
reduced sample size to fit the Pareto model. We use the code in the R-package ex-
tRemes 2.0.12 and implement it as in the guide in [24] retaining the largest record
from each cluster.

The block maxima method models the largest records obtained from disjoint
vectors of consecutive observations, called blocks, with a generalized extreme
value distribution; see chapters 3 and 5 in [8] for an introduction. We implement it
over disjoint maxima blocks of length blBM = 20. However, in the time-dependent
case high values might appear as clusters with consecutive large records. Then, be-
cause we only keep the largest record from each block, we tend to discard large
values. To correct the bias from this procedure in time dependent data sets, we also
estimate the extremal index using the interval’s estimator in Ferro et al. [23], tuned
with the 95–th empirical quantile. The fit of a generalized extreme value distri-
bution, the extremal index estimation and the extrapolation is conducted using the
R-package extRemes 2.0.12; see also the guide [24] for details.

3.5. Simulation study in the univariate case. The estimation of the index of reg-
ular variation, as detailed in Section 3.3, yields unbiased estimates for the Burr(2,2),
Fréchet(4) and ARMAX models (plots can be available upon request).

We can see from Figure 3 that the median estimate of the 50 years return level
with the peaks over threshold method underestimates the real value when imple-
mented at the dependent models which underrates the risk. In comparison, the
block maxima method is unbiased for all four models. However, it has a larger
spread compared to the stable sums methods. Our method gives satisfactory re-
sults and, as expected, the choice of the sum length can be seen as a trade-off
between bias and variance. We conclude that Algorithm 1 works fine coupled with
a good estimate of the index of regular variation as the one detailed in Section 2.3
for both dependent and independent models.

To measure the accuracy of the confidence intervals of all methods, we compute
the number of times they capture the correct value. One must keep in mind that
for the stable sums method Algorithm 1 only returns an estimate if the test of the
stable parameter equal to one is accepted. We summarize the sample coverage
probabilities and provide the proportion of acceptance of the ratio test among the
1000 simulated trajectories from each model in Table 1. The coverage results are
not reliable when the proportion of test acceptance is small, however, it increases as
the sum length increases. As a result, we notice from Table 1 that we automatically
discard the very small sum lengths.

To sum up, we read from Table 1 that coverage probabilities are unsatisfactory
for the peaks over threshold method, specially for the models with time dependence
of extremes. The coverage for the block maxima method is not well calibrated and
gives poor results for the Burr model which is the only model with a marginal
distribution that does not belong to the family of generalized extreme value distri-
butions. In this manner, we aim to point at the deficiency of the classical methods
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FIGURE 3. Boxplots of estimates of ẑnT with different methods
such that stable 16 refers to the stable sums method implemented
for the sum length 24 = 16. Dotted lines indicate the true values.

on small sample sizes. Instead, the stable sums method outperforms the block max-
ima and peaks over threshold methods for sum lengths between 32 and 64, where
acceptance of the ratio likelihood test is significant.

3.6. Simulation study in the multivariate case. We inquiry now the performance
of the multivariate, as opposed the univariate, stable sums estimator as we aim to
capture the spatial features of extremes. We compute both estimates for the sam-
ples from the mARMAXτ model with λ = (0.7, 0.7, 0.7) as in (11); see Section 3.2
for details. We compare the performance of both estimators at each coordinate,
j = 1, 2, 3, in terms of the relative percentage change of the mean squared er-
ror. More precisely, for each coordinate, we compute the mean squared error of
the multivariate and univariate estimates denoted MSEMV and MSEUV , respec-
tively, and relate them through the equation

relative percentage change of MSE =
MSEUV −MSEMV

MSEUV
× 100.(15)

We also compute the relative percentage change of the squared variance, and of
the absolute bias, from equations similar to (15). Large positive values point to an
improvement of the multivariate estimator, while negative values detect a deterio-
ration of its performance.

We omit details on coverage probabilities as both estimator have similar cov-
erage as the ARMAX(0.7) univariate model (as expected due to the relation in
(11)). We detail only the analysis on the third coordinate for estimates zT (3) of
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years years
20 50 100 20 50 100

coverage coverage
Burr(2,2) Fréchet(4)

block maxima .91 .89 .87 .93 .93 .92
peaks o. threshold .87 .85 .83 .89 .87 .86

stable 16 (.06) .89 .85 .80 (.53) .94 .95 .95
stable 32 (.51) .93 .94 .95 (.83) .96 .96 .96
stable 64 (.85) .95 .95 .97 (.90) .96 .99 .99
stable 128 (.94) .87 .98 .98 (.91) .82 .99 .99

Armax(0.7) Armax(0.8)
block maxima .93 .93 .92 .92 .91 .91

peaks o. threshold .78 .79 .79 .66 .72 .74

stable 16 (.21) .92 .94 .93 (.12) .80 .82 .84
stable 32 (.66) .90 .90 .91 (.55) .87 .89 .90
stable 64 (.89) .93 .96 .96 (.85) .90 .93 .93
stable 128 (.94) .85 .97 .98 (.92) .83 .95 .96

TABLE 1. The sub-index in parenthesis indicates the proportion
of acceptance of the ratio test (H0) : a = 1. In bold we highlight
the optimal choice of sum length for the stable sums method. In
our study, a precise coverage should be at 0.95.

the T = 50 years return level, similar results hold over all coordinates and can
be available upon request. The relative percentage changes are plotted in figure 4
as a function of the spatial dependence coefficient τ . We notice that for the sum
lengths 32 and 64, the multivariate outperforms the univariate estimator. Indeed,
the choice of sum length 64 was optimal for the ARMAX(0.7) univariate model as
pointed out by Table 1.

Moreover, for values of τ close to 0.5, the multivariate estimator has an out-
standing improvement, mainly due to a diminution of bias. As τ approaches 1,
and the model approaches the regime of asymptotic independence, the multivariate
also outperforms the univariate estimator though the choice of sum length becomes
delicate. In contrast, the amelioration is less evident for values of τ close to 0.
Recall from equation (14) that τ = 0 points to asymptotic dependence and thus
m(j) = 1/dτ = 1 can be difficult to estimate. We conclude that in general the
multivariate estimator is preferable to the univariate approach. However, there is
a need for future work to identify, both theoretically and practically, which are the
features on the space dependence structure pointing to an overall improvement of
the multivariate inference procedures for extremes.
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FIGURE 4. Relative percentage change of the multivariate
against the univariate estimator (for the 50 years return level
zT (3) estimator) of the: squared variance, absolute bias and mean
squared error as in (15), from left to right.

4. CASE STUDY: HEAVY RAINFALL IN THE THREE FRENCH REGIONS

We recall the data set of daily rainfall amounts introduced in Section 1 and our
goal of computing the expected level of daily rain to be exceeded in the next 50
years at all the nine weather stations in France. We conduct our analysis separately
over the three different regions: northwest, south, and northeast of France. We
apply our method at each region using the Fall measurements from the three nearby
weather stations. Mainly, fall observations from the same region are modelled as a
3-dimensional sample (Xt)t=1,...,n from a stationary multivariate regularly varying
time series denoted Xt := (Xt(1), Xt(2), Xt(3)), t ∈ Z. We include both wet
and dry days in our daily observations. In this setting, our goal of estimating the
expected daily precipitation record to be exceeded in the next 50 years at each
station in the Fall traduces to estimating the 99.98-th quantile of X0(j), for j =
1, 2, 3.

4.1. Implementation. To study the samples (Xt)t=1,...,n obtained from each re-
gion, we implement the stable sums method as a function of the number of or-
der statistics k in the following way. For k = 150, 250, 350, 450, 550, first we
compute estimates α̂n(k) as described in Section 2.3. Then, for each estimate we
search the sum length larger than 32 for which the p−value of the ratio likelihood
test from Algorithm 1 is minimized. We look only among the sum lengths from
the first 20 acceptances of the test. For comparison, we also implement classical
methods as a function of the number of order statistics k as follows: we com-
pute the peaks over threshold method for threshold levels th(k) = X(k) such that
X(1) ≥ X(2) ≥ · · · ≥ X(n), and we compute the block maxima method for blocks
of length blBM (k) := n/k.

4.2. Analysis of the radial component. At each region, we start by studying the
supremum norm observations, i.e. (|Xt|)t=1,...,n. We apply all three methods to
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estimate confidence intervals for the 50 years return level of Fall observations of the
supremum norm. The obtained estimates are presented in Figure 5 where the rows
correspond to different regions and the columns correspond to different methods.
We notice that, as suggested by the simulation study in Section 3, the confidence
intervals obtained with the peaks over threshold method might be too narrow and
underestimate the expected return level. We also remark that the block maxima
method varies strongly for different block length choices in Figure 5, thus a careful
choice is required. Finally, we conclude that the stable sums method, illustrated in
the third column of Figure 5, gives robust estimates as a function of k.
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FIGURE 5. Estimates of the 50 years return level of Fall observa-
tions of the supremum norm with confidence intervals. We write
estimates as a function of k with the parametrization described in
Section 4.1.

To complete the analysis on the supremum norms we look at qqplots of the ob-
served records (Si,bl(α̂

n(k))1/α̂n(k))i=1,...,bn/blc against the theoretical stable quan-
tiles to the power 1/α̂n(k), for k = 150, 250, 350, 450, where sum lengths are
chosen as detailed in Section 4.1. Figures 6, 7, 8 contain the qqplots for the north-
west, south and northeast, respectively, and allow us to assess goodness of fit for
the different choices of k. We conclude from Figure 6 that for the northwest loca-
tions, the choice k = 350, bl = 165 captures nicely the intermediate and extreme
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quantiles. For the southern region, we see in Figure 7 that the choice k = 250 and
bl = 105 gives an accurate fit. Lastly, for the northeast region, Figure 8 suggests
the choices k = 350 and bl = 70, or k = 450 and bl = 53, for a correct alignment
of intermediate and high quantiles.
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FIGURE 6. qqplots for different k values of the 1/α̂n(k)–stable
quantiles against the 1/α̂n(k)–(St,b(α̂

n(k)))t=1,...,bn/bc records
with 95% confidence intervals for the northwest.

To summarize, the stable sums method is robust for different choices of k and
qqplots allow one to assess goodness-of-fit properties.

4.3. Analysis of the multivariate components. Finally, we come back to the
question of computing the expected daily rainfall record to be exceeded in the next
50 years in the Fall at each station. In this case, we also estimate the indexes of spa-
tial clustering. Relying on (6) we obtain estimates: m̂n = (0.4966, 0.2709, 0.5744)
corresponding to the weather stations at Brest, Lanveoc and Quimper in the north-
west region; m̂n = (0.6064, 0.4706, 0.2866) for Bormes, Le Luc and Hyeres in
the south; and m̂n = (0.3910, 0.4448, 0.5649) for Nancy, Metz, Roville in the
northwest.

Roughly speaking, we can interpret (1) to say: high daily rainfall levels at each
weather station can be modelled as high quantiles from a stable distribution. In
particular, by letting the largest order statistics from each station play the role of
the sequence of high threshold levels in (1), we deduce an empirical version of this
relation which can be rewritten as

pr((Sbn(α̂n))1/α̂n ≤ X(k)(j)) ≈ 1− k

m̂n(j)n/bn
,(16)
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FIGURE 7. qqplots for different k values as in Figure 6 but for
the southern region.
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where X(1)(j) ≥ X(2)(j) ≥ · · · ≥ X(bn/bnc)(j), for j = 1, . . . , d. However, the
approximation in (16) is only justified for the largest observations recorded. More-
over, the left-hand side in (16) can be approximated from the stable distribution
fitted in (7) in Algorithm 1.

In this way, we inspect equation (16) by plotting the sample largest order sta-
tistics (X(t)(j))t=1,...,bm̂n(j)n/bnc, against the 1/α̂n–stable quantiles from the dis-
tribution fitted at (7) in Algorithm 1 for the multivariate stable sums method. For
comparison with the univariate approach, we also plot the largest order statistics
against the 1/α̂n–stable quantiles from the univariate implementation as the fol-
lowing relation is also justified from (1)

pr((
∑bn

t=1(Xt(j))
α̂n(k))1/α̂n ≤ X(k)(j)) ≈ 1− k

n/bn
.(17)

The plots are displayed in Figure 9 with points in black and grey for the multi-
variate and univariate approach, respectively. We use the estimates m̂n, presented
at the beginning of this section, and the tuning parameters α̂n, bl from Section 4.2,
pointing to a nice fit of the radial component. In particular, we set k = 350,
bl = 165 for the northwest region, k = 250, bl = 105 for the south and k = 350,
bl = 70 for the northeast. We interpret the largest records close to the diagonal as
a nice fit. We remark from Figure 9 that overall the plots from the multivariate ap-
proach in black describe more accurately the most extreme observations compared
to the univariate approach in grey. In particular, we can see a big improvement
in the northeast region. For this region we also use the visual tool of Figure 9 to
discard the choice of parameters k = 450 and bl = 53 as we found the fit from
Figure 9 to be more accurate.

Moreover, the intermediate quantiles shouldn’t necessarily align, and in prac-
tice, there is not a clear procedure for knowing how many of the top quantiles
should line up with the diagonal. Furthermore, we notice the observations are lim-
ited when the estimates of the spatial index: m(j), are close to zero and then the
graphical analysis is less reliable than for values of it close to one; see e.g. the sta-
tions of Lanveoc and Hyeres. We conclude that the multivariate method captures
accurately the highest rainfall records, and supported by the numerical results from
Section 3.6, it is justified for addressing the spatial dependencies of extremes.

5. ASYMPTOTIC THEORY

5.1. Anti-clustering condition. In the remaining sections we provide a theoret-
ical background to justify the stable sums method. Let (Xt)t∈Z be a regularly
varying time series taking values in (Rd, | · |). We work under the anti-clustering
condition below tailored to avoid long-range dependence of extremes. Similar con-
ditions have also be considered in [4, 6].
Anti-clustering condition: There exists a non-negative sequence (xn) such that for
all ε > 0,

(18) lim
l→+∞

lim sup
n→+∞

pr
(

max
t=1,...,n

|Xt| > εxn
∣∣ |X0| > εxn

)
= 0,
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FIGURE 9. Plot of observations against the 1/α̂n stable quantiles
for the multivariate estimator in black; see (16), and for the uni-
variate estimator in grey; see (17), with confidence intervals. The
dotted line is the identity map x 7→ x.

and n pr(|X0| > xn)→ 0 as n→ +∞.
Recall the limit time series (Θt)t∈Z from the definition of regular variation in (5).

We refer to it as the spectral tail process; cf. [4], and remember it is informative of
the space and time dependence of extremes for fixed windows of time. Assuming
(18) entails ‖Θt‖αα :=

∑
t∈Z |Θt|α < +∞ a.s. In this case, the overall asymptotic

dependencies of the extremes of the time series are captured by the cluster process
(Θt/‖Θ‖α)t∈Z introduced in [7]. We review below this result recalling Proposition
3.2 in [7].

Lemma 5.1. Let (Xt)t∈Z be a time series in (Rd, | · |) verifying regular variation
as in (5), with index of regular variation α > 0 and spectral tail process (Θt)t∈Z.
Then, the anti-clustering condition in (18) implies ‖Θt‖αα < +∞ a.s. and the
cluster process (Qt)t∈Z is well defined by the a.s. relation: for all t ∈ Z, Qt :=
Θt/‖Θt‖α.

Condition (18) is also typical to justify the declustering procedures; [see e.g.
23]. For example, it grants the existence of a extremal index θ ∈ [0, 1], associated
to the univariate stationary time series (Xt)t∈Z, such that for any sequence (an(κ))
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verifying n pr(|X0| > an(κ))→ κ

lim
n→+∞

pr
(

max
t=1,...,n

|Xt| ≤ an(κ)
)

= e−κ θ.(19)

Moreover, under (18), θ ∈ (0, 1] and the relation θ = c(∞) = E[maxt∈Z |Qt|α]
holds; see [6].

5.2. Vanishing small values condition. In our case we aim to study the partial
sums of p-powers. We require an additional assumption to deal with the sums of
small or non extremal values. Assumptions of this type are typical while studying
partial sums and similar versions of (20) below where also considered in [2, 11, 36,
7].

Vanishing small values condition: There exists a sequence (xn) verifying (18),
n/xα−κn → 0, as n→∞ for some κ > 0, and for all δ > 0

(20) lim
ε↓0

lim sup
n→+∞

pr
(∑n

t=1 |Xt|α11{|Xt|≤ε xn} > δ xαn
)

n pr(|X0| > xn)
= 0.

Since n/xα−κn → 0 for some κ > 0 in (20), then nE[|X0/xn|α11{|X0|≤xn}]→ 0,

which implies Sn(α)/xαn
P−→ 0 as n→ +∞. Hence,

pr
(∑n

t=1 |Xt|α11{|Xt|≤ε xn} > δ xαn
)

n pr(|X0| > xn)

≤ δ−1 var
(∑n

t=1 |Xt/xn|α11{|Xt|≤ε xn}
)

n pr(|X0| > xn)

≤ δ−1 E
[
|X/xn|2α11{|X0|≤ε xn}

]
pr(|X0| > xn)

(
1 +

∑n
t=1ρt

)
,

where ρt ∈ [0, 1] is a correlation coefficient defined as

ρt := corr
(
|X0|α−κ, |Xt|α−κ

)
,

for some κ > 0. If
∑∞

t=1 ρt < +∞, then an application of Karamata’s theorem
yields an asymptotic upper bound given by δ−1 εα(1+

∑+∞
t=1 ρt) and (20) holds by

letting ε ↓ 0.

5.3. Large deviation principle. In this section we verify the constant c(p) defined
in (1) satisfies c(p) = 1 for p = α, the index of regular variation, under the
aforementioned conditions. We review Lemma 4.1 in [7] to justify the right-hand
side of (2) for the case p = α. The proof is postponed to Section 5.5.

Lemma 5.2. Let (Xt)t∈Z be an Rd–valued regularly varying time series with index
of regular variation α > 0. Assume it verifies conditions (18) and (20) for a
sequence (xn). Then

(21) lim
n→+∞

pr
(
Sn(α) > xαn

)
n pr(|X0| > xn)

= 1, n→ +∞.
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Therefore, we interpret the choice p = α in (1) as a new declustering procedure
that we deduce from the invariance property in (21). Indeed, the unit limit holds
regardless of the underlying time dependence dynamic of extremes for numerous
examples verifying (18) and (20) [see e.g. 4, 5, 36].

5.4. Mixing condition. In this section we verify the central limit theorem for par-
tial sums of p-powers.We detail the case p = α as for p ∈ (0, 1) ∪ (1, 2) we refer
to Proposition 5.4. in [7]. We assume also the mixing condition below holds for
the time series of α-powers. We have written it using the characteristic functions
of the partial sums and thus it resembles condition (2.8) in [2].

Mixing condition: Let (Zt)t∈Z be an Rd–valued regularly varying time series with
index of regular variation equal to one. Assume for all ε > 0, u ∈ Rd, there exists
an integer sequence k := kn →∞, verifying n/kn →∞ and∣∣E[ exp

{
i u
∑n

t=1Zt/cn
}]
− E

[
exp

{
i u
∑k

t=1Zt/cn
}]bn/kc∣∣→ 0 ,(22)

n→ +∞.

where (cn) satisfies n pr(|Z0| > cn)→ 1 as n→ +∞.

Recall the mixing coefficients (αt) defined, for all h ∈ N, as

αh := sup
A∈σ
(

(Xt)t≤0

)
,B∈σ

(
(Xt)t≥h

) |pr(A ∩B)− pr(A)pr(B)|,

Then, the mixing condition in (22) holds for mixing process verifying αt → 0, t→
+∞, using Lemma 3.8. in [2] by assuming the decay of the α-mixing coefficients
happens sufficiently fast.

5.5. Central limit theorem. We state in Theorem 5.3 a central limit theorem for
regularly varying time series with index of regular variation one. In the remaining
sections we assume the conditions (22), (18), (20) hold simultaneously; see Re-
mark 5.5. In our proof we relax the assumption (4.10) in [3] and assumption (CT)
in Theorem 3.1. [2] for the recentering term. The proof is deferred to Section 5.5.

Theorem 5.3. Let (Zt)t∈Z be an Rd–valued regularly varying time series with
index of regular variation equal to one. Let (cn), (dn) be sequences verifying
n pr(|Z| > cn) ∼ 1 as n → +∞ and dn := E[Zt11(|Zt| ≤ cn)] and assume (22),
(18), (20) hold simultaneously. Then, for all u ∈ Rd,

lim
n→+∞

logE
[

exp
{
iu
∑n

t=1(Zt − dn)/cn
}]

=
∫∞

0 E
[

exp
{
iu
∑

t∈ZyQ
Z
t

}
− 1− i sin

(
t
∑

t∈ZyQ
Z
t

)]
d(−y−1) + iµ(u) ,

(23)

where the last term in (23) is a location parameter given by

µ(u) :=
∫∞

1 E
[

sin
(
u
∑

t∈ZyQ
Z
t

)
− sin

(
u
∑

t∈ZyQ
Z
t − u

∑
t∈ZyQ

Z
t 1

)]
d(−y−1),
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and (QZt )t∈Z refers to the cluster process of (Zt)t∈Z as defined in Lemma 5.1 ver-
ifying ‖QZt ‖1 = 1 a.s. In particular,

∑n
t=1(Zt − dn)/cn converges in distribution

to a stable distribution ξ1 with stable parameter one.

Finally, from Theorem 5.3, the Proposition 5.4 below follows straightforward.
The proof is presented below.

Proposition 5.4. Let (Xt) be an Rd–valued regularly varying time series with
index of regular variation equal to α > 0. Let (cn(α)), (dn(α)), be sequences
verifying n pr(|X|α > cn) ∼ 1 as n→∞, and dn(α) := E[|Xt|α11(|Xt|α ≤ cn)].
If (|Xt|α)t∈Z verifies conditions (22), (18), (20) simultaneously then (Sn(α) −
dn(α))/cn(α) converges in distribution to a stable random variable ξ1 with stable
parameter a = 1 and skweness parameter β = 1, as n→ +∞.

Proof. Let’s denote by (Qt)t∈Z the cluster process of (Xt)t∈Z verifying ‖Qt‖α = 1
a.s. We define the regularly varying time series (Zt)t∈Z by Zt := |Xt|α which has
spectral tail process (QZt )t∈Z equal to QZt := |Qt|α, for all t ∈ Z, a.s., and verifies∑

t=1Q
Z
t = 1 a.s.

Theorem 5.3 entails
∑n

t=1(|Xt|α− dn(α))/cn(α) converges in distribution to a
random variable ξ1 admitting a log-characteristic function verifying for all u ∈ R,

logE[exp{i u ξ1}] =
∫∞

0 E
[

exp
{
i uy

}
− 1− i sin(uy)

]
d(−y−1) + iµ(u) .

Then, following the lines of the argument in section XVII.2 of [21], we deduce the
skweness parameter of the stable limit ξ1 verifies β = 1. �

Remark 5.5. In Theorem 5.3 we assume conditions (22), (18) and (20) hold si-
multaneously. By this we mean there exists an integer sequence k := kn → ∞
such that (22) holds and conditions (18) and (20) then hold for the sequence (xn)
defined as xkn := cn, and (cn) satisfies n pr(|Z0| > cn) → 1 as n → ∞. Natu-
rally, conditions (18) and (20) are meant to study the large deviations of the vector
(Xt)t=1,...,n as (xn) needs to satisfy n pr(|X0| > xn)→ 0 as n→∞. Indeed, we
verify

kn pr(|X0| > xkn) = kn/n (n pr(|X0| > cn)) ∼ kn/n→ 0

as n→∞.

Proposition 5.4 together with Lemma 5.2 justifies the model assumptions in Sec-
tion 2.2. Therefore, conditions (22), (18) and (20) are sufficient to justify the Al-
gorithm 1 built on the partial sums of α−powers. These conditions have been
demonstrated previously on numerous examples under weakly mixing assump-
tions; cf. [2, 36] and references therein. We conclude Section 5 demonstrates a
solid theoretical background to sustain the stable sums method we proposed.
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APPENDIX

Proof Lemma 5.2. The proof of Lemma 5.2 we present next is based on telescopic
sum arguments introduced in [28, 29] and popularized in [2].

Proof. For all ε > 0, δ > 0,

pr(Sn(α) > xαn) = pr
(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} < δ xαn

)
+ pr

(
Sn(α) > xαn,

∑n
t=1|Xt|α11{|Xt|≤ε xn} > δ xαn

)
.

Referring to the vanishing-small-values condition in (20), the probability term
above satisfies

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > xαn
)
≤ pr(Sn(α) > xαn) ≤

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

+ o(n pr(|X| > xn)).

Hence, to show (21) it suffices to prove that for all δ > 0 the following relation
holds

lim
δ→0

lim
ε→0

lim
n→+∞

pr
(∑n

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

n pr(|X| > xn)
= 1.(24)

Using the so-called telescopic sum argument, we see that the term in (24) satisfies

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

=
∑n−1

j=1

{
pr
(∑j+1

t=1 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− pr
(∑j+1

t=2 |Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ pr(|X1|α > (1− δ)xαn).

Then, by the anti-clustering condition in (18) we have that for all K > 0, the
asymptotic approximation below

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

=
∑n−1

j=K

{
pr
(∑K

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)

− pr
(∑K

t=2|Xt|α11{|Xt|>εxn} > (1− δ)xαn , |X1| > εxn
)}

+ pr(|X1|α > (1− δ)xαn) + o(n pr(|X| > xn)).
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Putting everything together and using the limit in distribution from equation (5) we
obtain the following asymptotic equivalence

lim
n→+∞

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

n pr(|X| > xn)

= lim
ε↓0

lim
K→+∞

{
ε−α
∫∞

1 pr
(∑K

t=0|εyΘt|α11{y|Θt|>1} > (1− δ)
)

− pr
(∑K

t=1|εyΘt|α11{y|Θt|>1} > (1− δ)
)
d(−y−α)

}
.

This relation holds since the points of dicontinuity at the limit are contained in
∪Kt=1{Y |Θt| = 1}, which has limit mass equal to zero.

Finally, by monotone convergence we can take the limit as K → +∞ within
the integral. Furthermore, using the change of coordinates u = ε y we have that
the term above is asymptotically equivalent to

lim
n→+∞

pr
(∑n

t=1|Xt|α11{|Xt|>εxn} > (1− δ)xαn
)

n pr(|X| > xn)

= lim
ε↓0

{∫∞
ε pr

(∑∞
t=0|yΘt|α11{y|Θt|>ε} > (1− δ)

)
− pr

(∑∞
t=1|yΘt|α11{y|Θt|>ε} > (1− δ)

)
d(−y−α)

}
.

We conclude by monotone convergence that we can take the limit as ε goes to zero
at each term.As a result we obtain asymptotic equivalence with the term below

∼
∫∞

0 pr
(∑∞

t=0|yΘt|α > (1− δ)
)
− pr

(∑∞
t=1|yΘt|α > (1− δ)

)
d(−y−α)

= (1− δ)−1E
[∑∞

t=0|Θt|α −
∑∞

t=1|Θt|α
]

= (1− δ)−1.

In the last step we use that |Θ0| = 1. Finally, we conclude taking the limit as δ
goes to zero that the relation 24 holds and this concludes the proof. �

Proof Theorem 5.3.

Proof. Let (Zt)t∈Z be an Rd–valued regularly varying time series with index equal
to one. We introduce the truncation notation where, for ε > 0, we denote Sn :=∑n

t=1 Zt and

Sn/cnε :=
∑n

t=1Zt/cn11{|Zt|>ε cn}, Sn/cn
ε

:=
∑n

t=1Zt/cn11{|Zt|≤ε cn}.

We also consider a truncation of the centering sequence (dn)n∈N defined by

dn/cnε := E[Z/cn11{ε cn<|Z|≤cn}], n ∈ N.

To simplify we denote the cluster process (QZt )t∈Z := (Qt). From the mixing
condition in (22) we deduce there exists a sequence k := kn → +∞ such that, for
all u ∈ Rd,

E
[

exp
{
i u (Sn/cn − ndn/cn)

}]
∼ E

[
exp

{
i u (Sk/cn − k dn/cn)

}]bn/kc
.
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as n→ +∞. Then, taking the logarithm at both sides yields

logE
[

exp
{
i u (Sn/cn − ndn/cn)

}]
∼ n

k
logE

[
exp

{
i u (Sk/cn − k dn/cn)

}]
∼

E
[

exp
{
i u (Sk/cn − k dn/cn)

}]
− 1

k pr(|Z| > cn)

∼
E
[

exp
{
i u (Sk/cnε − k dn/cnε)

}]
− 1

k pr(|Z| > cn)
.

such that the second step is granted since k dn/cn → 0 as n → +∞ and also

Sk/cn
P−→ 0 as n → +∞ and the last step follows by the vanishing-small-values

condition in (20) and boundedness of the exponential function. Then, it follows
from a Taylor expansion that∣∣(E[ exp

{
i u (Sk/cnε − k dn/cnε)

}]
− 1
)

−
(
E
[

exp
{
i u Sk/cnε

}]
− 1− iE[sin(uSk/cnε

1
)]
)∣∣∣

= O
(
k dn/cnεE[|Sk/cnε|11(|Sk/cnε| ≤ 1)]

)
.

Moreover, |k dn/cnεE[|Sk/cnε|11(|Sk/cnε| ≤ 1)]|/k pr(|X| > an) → 0 as
n→ +∞. Thus, we obtain the asymptotic equivalence

logE
[

exp
{
i u (Sn(α)/cnε − ndn/cnε)

}]
∼

E
[

exp
{
i u Sk/cnε

}
− 1− i sin(uSk/cnε

1
)
]

k pr(|Z| > cn)
.

as n→ +∞. Furthermore,

E
[

exp
{
i u Sk/cnε

}
− 1− i sin(uSk/cnε

1
)
]

= E
[(

exp
{
i u Sk/cnε

}
− 1)

)
11{Sk>ε cn}

]
− E

[
i sin(uSk/cnε

1
)11{Sk>ε cn}

]
.

For all x ∈ R, we denote x11|x|>ε by xε, and similarly we denote x11|x|≤1 by x1.
Then, conditioning to the event {Sk > ε cn}, we use the limit relation in (21)
and Proposition 4.2. in [7] and take the limit as n goes to infinity in the above
expression. Hence,

E
[

exp
{
i uSk/cnε

}
− 1− i sin(uSk/cnε

1
)
]

kpr(|X| > an)

∼
∫∞

0 E
[

exp
{
it
∑

t∈ZyQtε

}
− 1− i sin

(
u
∑

t∈Z(yQtε
1)]

d(−y−1),

where (Qt)t∈Z is the cluster process of the stationary process (Zt). In particular, it
takes values in RZ and verifies

∑
t∈Z |Qt| = 1 with probability one.
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Let δ > 0 and let’s divide the integral above on the events {y > δ} and {y ≤ δ}.
Over the event {y ≤ δ} we have that given we choose δ < 1,∫∞

0 E
[

exp
{
iu
∑

t∈ZyQtε

}
− 1− i sin

(
u
∑

t∈ZyQtε
1)]

11(y ≤ δ) d(−y−1)

=
∫∞

0 E
[

exp
{
iu
∑

t∈ZyQtε

}
− 1− i sin

(
u
∑

t∈ZyQtε

)]
11(y ≤ δ) d(−y−1).

Then, using the inequality | exp{iz} − 1 − i sin(z)| ≤ |z|2 for all z ∈ R, the
integral above is bounded in absolute value by∫∞

0 E
[∣∣u∑t∈Z|yQt|

∣∣2]11(y ≤ δ)d(−y−1) ≤ δE
[∣∣u∑t∈Z|Qt|

∣∣2] = δu2 < +∞.
Then, we conclude that

logE
[

exp
{
i u (Sk/cn − ndn/cn)

}]
∼ lim

δ→0

∫∞
δ E

[
exp

{
i u
∑

t∈ZyQt
}
− 1− i sin

(
u
∑

t∈ZyQt
1)]

d(−y−1).

Moreover, we can rewrite the term above as the sum of two integrals as shown
below

lim
δ→0

∫∞
δ E

[
exp

{
i u
∑

t∈ZyQt
}
− 1− i sin

(
u
∑

t∈ZyQt
)]
d(−y−1)

+ i
∫∞

1 E
[

sin
(
u
∑

t∈ZyQt
)
− sin

(
u
∑

t∈ZyQt − u
∑

t∈ZyQt1

)]
d(−y−1)

= I + II

such that the for the last term we can use the trigonometric relation

sin(p)− sin(p− q) = 2 sin(p/2) cos(p− (q/2))

for p, q ∈ R, to obtain that the second term II is bounded in absolute value by∫ +∞
1 y−2 = 1. This term can be interpreted as a location parameter.

Finally, by monotone convergence, using the bound previously derived, we can
take the limit as δ goes to 0 and we conclude that

logE
[

exp
{
i u (Sk/cn − ndn/cn)

}]
∼
∫∞

0 E
[

exp
{
i u
∑

t∈ZyQt
}
− 1− i sin

(
u
∑

t∈ZyQt
)]
d(−y−1)

+ i
∫∞

1 E
[

sin
(
u
∑

t∈ZyQt
)
− sin

(
u
∑

t∈ZyQt − u
∑

t∈ZyQt1

)]
d(−y−1).

as n → +∞. We have shown that the limit relation from equation (23) holds and
this concludes the proof. �
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