
HAL Id: hal-03464816
https://hal.science/hal-03464816

Submitted on 24 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-Objective Production Scheduling of Perishable
Products in Agri-Food Industry
Fatma Tangour, Maroua Nouiri, Rosa Abbou

To cite this version:
Fatma Tangour, Maroua Nouiri, Rosa Abbou. Multi-Objective Production Scheduling of Perishable
Products in Agri-Food Industry. Applied Sciences, 2021, 11 (15), pp.6962. �10.3390/app11156962�.
�hal-03464816�

https://hal.science/hal-03464816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


applied  
sciences

Article

Multi-Objective Production Scheduling of Perishable Products
in Agri-Food Industry

Fatma Tangour 1,2,3,* , Maroua Nouiri 2,3,* and Rosa Abbou 2,3,*

����������
�������

Citation: Tangour, F.; Nouiri, M.;

Abbou, R. Multi-Objective Production

Scheduling of Perishable Products in

Agri-Food Industry. Appl. Sci. 2021,

11, 6962. https://doi.org/10.3390/

app11156962

Academic Editors: Paolo Renna and

Emanuele Carpanzano

Received: 28 May 2021

Accepted: 22 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LARA-Automatique, ENIT, BP 37, Le Belvedere, Tunis 1002, Tunisia
2 IUT of Nantes, University of Nantes, 2 Av du Pr Jean Rouxel, 44322 Nantes, France
3 Laboratoire des Sciences du Numérique de Nantes, Université de Nantes, 44322 Nantes, France
* Correspondence: fatma.tangour-toumi@univ-nantes.fr (F.T.); maroua.nouiri@ls2n.fr (M.N.);

rosa.abbou@ls2n.fr (R.A.)

Abstract: This paper deals with dynamic industry scheduling problem in agri-food production. The
decision-making study in this paper is articulated around the management of perishable products
under constrained resources. The scheduling of logistics operations is considered at the operational
level. Two metaheuristics are proposed to solve dynamic scheduling under perturbations. The uncer-
tainty sources considered in this study are the expiration date of product components and production
delays. The proposed Genetic Algorithm (GA) and the Ant Colony Optimization Algorithm (ACO)
take into consideration two objective functions: minimizing the makespan and reducing the number
of perishable products. The algorithms are tested on a flow-shop agri-food system.

Keywords: agri-food industry; dynamic scheduling; flow-shop system; perishable product constraints;
branch and bound method (B&B); genetic algorithm (GA); ant colony optimization (ACO)

1. Introduction

The agri-food industry is highly dependent on changing consumer habits around the
world and different international regulations. They must evolve themselves in terms of em-
ployment: workforce, qualification structure, skills, etc. Furthermore, globalization along
with rapid demographic changes and evolving regulatory and legislative interventions
dictate the increasing demand for high quality, value-added, and customized agri-food
products for multitudes of finished products. Production requires efficient planning [1]
to minimize costs in order to maximize profit generation while meeting the customer de-
mand. Thus, an agri-food industry should have an efficient method for balancing customer
demands and production decisions in order to optimize the inventory level [2,3].

Faced with those challenges, the evolution of this type of industries depends essen-
tially on multiple strategies. The most important one concerns the company’s choices
regarding organization of work, and coordination between functional and operational
positions. This strategy has often been considered very important and even decisive for the
majority of agri-food companies [4]. In this category of the industry, the quality changes
imposed by the perishability phenomenon is noticeable by the entity receiving the prod-
ucts during the planning horizon. That is why some companies have made an effort to
automate their manufacturing lines in order to better organize and control the flow of
products [5,6]. Unlike other industrial products, agri-food products have a finite lifespan,
with end-of-manufacturing dates. Each finished product is then associated with a con-
sumption limit date. It should be noted that the sale of these products often passes through
distribution areas that impose certain conditions on manufacturers, with the product being
considered unsellable from a certain period before its expiry date [7]. The production
planner must then take account those criteria, considering production delays and resource
capacities [8–10]. In this context, the design, development, and operation of an efficient agri-
food supply chain have begun to be met with increased interest in modern management
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science [11,12]. The volatility of weather conditions, the complex food safety regulatory
environment, the environmental concerns, and the plethora of stakeholders involved are
then considered [13]. In particular, the uncertainty of the customer demands about the
finished products with changing consumers’ lifestyle trends, the perishability of products,
the production and distribution delays, and the constraints on production and storage
capacities pose real, significant challenges towards the development of efficient and robust
agri-food supply chains [14–17]. In this work, an exact method is applied; this is the Branch
and Bound method and two approximate methods are also used—Algorithm Genetic [18]
and Ant Colony Optimization [19]—to optimize the scheduling and the number of expired
products. The rest of the paper is organized as follows: the state-of-the-art solutions to the
scheduling and optimization problem under disruptions is given in Section 2. Section 3
deals with the agri-food scheduling problem description. In Section 4, the proposed GA
and ACO to solve dynamic scheduling of perishable products in Agri-Food industry is
detailed. The experimental results are developed in Section 5. Finally, the conclusions and
some perspectives works are given in the last section.

2. Scheduling of Agri-Food Industry
2.1. Scheduling Problem Complexity

Scheduling logistic operations in a supply chain are, in general, optimization problems
since their objective is to minimize (or maximize) an objective function while respecting
certain criteria [20]. Some relatively large scheduling problems can have such a high level
of complexity such that their resolution becomes very difficult [21]. In fact, jobs depending
on the precedence constraints have to be satisfied [22]. In scheduling, the dominance
concept of a subset of solutions is important in order to limit the algorithmic complexity
associated with finding an optimal solution within a large set of solutions.

The complexity of the scheduling problems is defined according to the complexity
of the resolution methods and that of the algorithms used [21]. The goal of complexity
theory is to analyze the resolution costs, particularly in terms of computation time and
of combinatorial optimization problems. Several researchers have focused on computing
the time complexity of optimization scheduling algorithms [23–26]. This complexity
increases more and more with the size of the problem to be solved, which leads to a number
of exponential solutions difficult to calculate in a reduced time. Therefore, generally
approximate optimization algorithms from operational research are used and the search
space is reduced through the dominance rule [27].

2.2. Scheduling and Optimization Problems

The Multi-objective Optimization Problem (MOO), also called multi-criteria optimiza-
tion, multi-performance, or vector optimization problem, has been defined in [28] as the
problem of finding a vector of decision variables that satisfies the constraints and optimizes
a vector function in which the elements represent the objective functions.

To find an optimal solution to MOO problems, constituting a set of points, it is neces-
sary to define a relation order between these elements, called the dominance relationship,
to identify the best compromises. The rule of dominance is a constraint that can be added
to the initial problem without changing the value of the optimums. The most used is
the one defined in the “Pareto sense” ([27,29]). Optimization problems, specially in the
case of agri-food industry, are generally difficult to solve. Several methods are used to
find a satisfactory answer to these problems. Jouglet and Carlier (2011) have defined the
dominance rule as follows: “Dominance properties provide conditions under which certain
potential solutions can be ignored”.

A formal definition of the dominance rule concept and a mathematical formulation is
described as follow:

Given S is the solutions space, the dominance rule identifies a subset of S containing
at least one optimal solution of S.
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P(Ω)⇒ P(Ω) associates with a given subset S v Ω a subset δ (S) v S such that
F(S)⇒ O(S) ∩ δ (S).

The subset δ(S) is said to be a dominant subset of S, and its complementary with
respect to S, i.e., Sδ(S), is said to be dominated.

2.2.1. Exact Methods

The scheduling problems are solved using optimization methods considering the
problem data as constraints to be satisfied and by proposing an optimal and permissible
solution. The optimality of the decision variables is measured against the criteria and
objectives established by the higher hierarchical decision level. We distinguish between
the methods “Separation and Progressive Evaluation” or “Branch and Bound”, linear
programming, and dynamic programming. These exact methods, in an implicit way,
examine the totality research space and produce, in principle, an optimal solution [30].
When the computation time necessary to reach this solution is excessive, the approximate
methods can provide a quasi-optimal solution after a reasonable calculation time.

2.2.2. Approximate Methods

These methods are considered for scheduling problems in which we do not find
an optimal solution in a reasonable time. We distinguish between (i) methods based on
heuristics and sets of knowledge resulting from the experiment, presenting EDD (Earliest
Due Date), FIR (First In Random Out), SPT (Shorter Processing Time), etc. as a set of
simple rules, and (ii) methods based on metaheuristics, such as neighborhood search
methods, taboo search, genetic algorithms, colony algorithms, simulated annealing, etc.
More precisely, we have the following:

2.2.3. Heuristic Methods

Heuristics are empirical methods that generally give good results without being
demonstrable. They are based on simplified rules to optimize one or more criteria. The gen-
eral principle of this category of methods is to integrate decision strategies to build a near
optimal solution while trying to obtain a reasonable computation time [29].

2.2.4. Metaheuristic Methods

Metaheuristics are general research methods dedicated to difficult optimization prob-
lems. They are, in general, presented in the concepts form. We can cite taboo search,
Genetic Algorithms, Ant Colony algorithms, etc. These methods, which are generally faster
than the exact methods, give good results and have a relatively low cost. It is observed from
the literature that metaheuristics hybridized with a local search procedure often give the
best searching results ([19,31]). Another advantage is the ability to control the calculation
time. Indeed, the quality of the solution found tends to improve gradually over time and
the user is free to stop the execution at the moment chosen.

In this article, we focus on two methods that are the exact methods Brunch and
Bound and the approximate methods Genetic Algorithms and Ant Colony Optimization
algorithms. In the following section, the agri-food scheduling problem is described.

3. Agri-Food Scheduling Problem Description
3.1. Case Study

In agri-food system, the workshop is generally a flow-shop. We have m machines,
noted M1, M2, . . ., Mm, and n jobs, noted J1, J2, . . ., Jn. Every job must be executed, in most,
only once: on M1, then M2, etc.

Thus, the studied problem is formally defined as a flow-shop scheduling problem.
We define the agri-food flow-shop scheduling problem formally with the following defi-
nitions. Hereafter, the parameters, decision variables, objective function, and constraints
are described.
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3.2. Parameters of the Model

• n: number of jobs, noted Ji, i = {1, . . . , n}.
• m: number of machines, noted Mj, j = 1, . . . , m.
• rij: earliest starting time of the job Ji on the machine Mj.
• θij: processing time of the job Ji on the machine Mj.
• vij: validity limit date of the component used to execute the job Ji on the machine Mj.

To produce the job Ji, various components are necessary needed. Due to the validity
dates of those components, each job has its validity limit date to be executed on the
machine Mj.

3.3. Decision Variables

• tij: effective start time of the job Ji on the machine Mj.
• αij: completion time of the job Ji on the machine Mj.
• ddi: due date.

3.4. Objective Function

The objective of this study is to find the best solution with the best optimizing criterion.
This problem corresponds to a flow-shop scheduling problem, and the algorithm must find
an order of execution of the various jobs in a way that it minimizes Cmax and reduces the
perishability product function. The value of this criterion depends on the makespan value
that equals the completion time of the last job executed.

Our objective is to minimize the makespan (Cmax) of these products while respecting
these specific constraints bound to this type of industry. The Cmax is calculated as follows:

Cmax = Max(αij), i = {1, . . . , n}, j = {1, . . . , m}. (1)

The perishability product function, represented by the number of expired products, is
calculated as follows:

Ppmin =

{
∑ (αij − vij)/(αij − vij), if αij ≥ vij
0 , outherwise.

(2)

If Ppmin ≤ 0, then we do not have any perishable products. Otherwise, there is at least
one perishable product.

3.5. Constraints Formulation

tij ≥ rij (3)

rij ≤ vij otherwise it is expired (4)

For a flow-shop system, the completion time of the job Ji must be lower than the
validity limit date of the following job Ji+1 on the same machine of the same product
such that

αij ≤ v(i+1)j (5)

αij ≥ Max(α(i−1)j, rij) + θij (6)

ddi ≥ Max(αij), j = {1, . . . , m} (7)

3.6. Constraints Description

Constraint (3) is used to calculate the effective starting time on the machine Mj. It
ensures that the staring time should be equal or greater than the earliest starting time.
Constraint (4) enables us to respect the perishable date of products. Constraint (5) calculates
the completion time of job Ji. The precedence constraint is formulated in Equation (6). It
is used to ensure precedence between jobs. In fact, the completion time of job Ji on the
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machine Mj should be greater or equal than the maximum between the completion time of
the precedent job J(i−1) and the release time of the job Ji and its processing time. Constraint
(7) ensures that the completion time of each job respects its due date.

4. Proposed Approach

In this section, the GA and the ACO algorithms are described. The Figure 1 clearly
describes the input and the output of both algorithms. The Branch and Bound algorithm
was developed to obtain the lower bound value of the Cmax.

Figure 1. The input and the output of the propoed algorithms.

4.1. Branch and Bound Algorithm

The goal is to determine an optimal execution of n jobs on three machines to obtain
the minimal makespan Cmax and the minimun perishable products. The principle is to
evaluate two functions [32]:

- Cmax.
- perishability: the sum of out-of-date products.

In the following, we develop each evaluation function mentioned below.

4.1.1. Evaluation of Cmax

In order to determine a lower bound for a given solution, we need to calculate the
makespan before proceeding to the resolution itself. Often, a job Ji cannot begin before
their earliest start time rij and must be executed before the limited validity date vij.

Consider Γ = J1, J2, . . . , Ji, . . . , Jkas the set of first supposed jobs to be executed in this
order with k ≤ n and U as the set with the rest of the jobs at any time.

We have the following:

For i = 1:

α11 = t11 + θ11;
α12 = max(α11, r12) + θ12;
α13 = max(α12, r13) + θ13.

For 1 < i ≤ k:

αi1 = max(α(i−1)1, ri1) + θi1;
αi2 = max(α(i−1)2, αi1, ri2) + θi2;
αi3 = max(α(i−1)3, αi2, ri3) + θi3.

We now consider the last job Jn. The best case is that this job does not depend on the
machine M2 and the machine M3. The makespan Cmax is then expressed by the follow-
ing equation:

Cmax = αk1 + ∑
i∈U

θi1 + θn2 + θn3 (8)
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This leads to the following equations, considering the shortest processing time:

C1 ≥ αk1 + ∑
i∈U

θi1 + min
j∈U

(θj2 + θj3), (9)

Cmax ≥ αk2 + ∑
i∈U

θi2 + min
j∈U

(θj3), (10)

and finally
Cmax ≥ αk3 + ∑

i∈U
θi3. (11)

Based on the results expressed by Equations (2)–(4), the lower bound of Cmax can be
expressed by the following inequality, with j ∈ U:

Cmax ≥ max{C1; C2; C3} (12)

with:
C1 = αk1 + ∑

i∈U
θi1 + min

j∈U
(θj2 + θj3) (13)

C2 = αk2 + ∑
i∈U

θi2 + min
j∈U

(θj3) (14)

C3 = αk3 + ∑
i∈U

θi3 (15)

4.1.2. Evaluation Perishability Product Function

The perishability product function is calculated as follows:

Ppmin =

{
∑ (αij − vij)/(αij − vij), if αij ≥ vij
0 , otherwise.

(16)

4.2. The Proposed GA

Genetic Algorithms are iterative algorithms in which the goal is to optimize a prede-
fined function, called “fitness”. To achieve this goal, the algorithm works on a set of points,
called the population of individuals. Each individual or chromosome represents a possible
solution to the given problem. It consists of elements called genes, which can take several
values, called alleles [18].

The principle of Genetic Algorithms is based on an analogy between an individual
in a population and the solution of a problem among a set of potential solutions: an
individual (a solution) is characterized by a genetic structure (coding of the solutions of
the problem). According to Darwin’s laws of survival, only the strongest individuals (the
best solutions) survive and are able to give offspring. The operators of reproduction and
mutation (recombination and mutation of the coding of the solutions) make it possible
to move in the space of the solutions of the problem. From an initial population and
after a certain number of generations, we obtain a population of strong individuals: good
solutions of the considered problem.

In the following, we proposed a Genetic Algorithm optimizing Cmax and Ppmin of
the agri-food workshop respecting special constraints of this type of industry within the
following steps:

4.2.1. Coding of Individuals

The type of flow-shop considered in this work is F3/ri/Cmax: scheduling of non-
preemtive jobs candidates for scheduling. The objective is to optimize the latest date
of scheduling, the makespan, and the number of perishable products by respecting the
constraints. The coding of the individual genes is based on two chromosomes i and j:
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i: job number.
j: machine number.
An individual is coded by the first chromosome. i.e., the number i.
Example [458973216] is an individual.

4.2.2. Generation of the Initial Population

Two hundred individuals are generated for our scheduling problem. These individuals
generated randomly by respecting the constraints of starting time and validity date. This
function is created to the test of the feasibility of the individual generated.

4.2.3. Calculation of Cmax

The goal is to calculate Cmax of each individual generated.

4.2.4. Selection

Selection is a process where individuals are copied according to the value of their
objective function. In this part, we have two steps:

- Duplication of individuals by Cmax.
- Selection of the first 100 individuals, i.e., there is a minimum Cmax.

4.2.5. Reproduction

Reproduction is a process where new individuals are formed by crossing two parents.
It is based on this principle: we choose two random positions between [1, l − 1], where
“l” is the length of the individual. The reproduction is performed by exchanging the bits
between the two positions. Many cases can be obtained by applying this operator. These
cases must be adapted to the coding solutions, and we choose the transmission of the
right solutions from parents to children. The probability of reproduction is 0.8; then, the
crossing produces 80 individuals. The reproduction is performed using the following
method: Consider two solutions X and Y selected among the solutions of good quality.
A reproduction operator produces one or two new solutions X′and Y′ by combining X and
Y. If X and Y are two vectors, a classical reproduction operator is used to randomly select
two positions in the vectors and to exchange the sequences contained between these two
positions in both vectors.

For the scheduling problem with the encoding job list, this is not suitable.
Let us consider the example of Figure 2:

Figure 2. Example of reproduction.

When X = 12345678 and Y = 25681473, reproduction between the positions “af-
ter 2” and “after 5” would yield X′ = 12|681|678 and Y′ = 25|345|473, which are
not permutations.

A specially designed reproduction operator for lists of data implements the following
idea. The two parent solutions are “prepared” before the exchange of sequences located
between two randomly selected positions.

In this example, the exchange zone of X is prepared to receive the sequence of jobs 6,
8, and 1 y.
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In fact, we replace each job 6, 8, and 1 in the vector X by a void symbolized by 1∗ or
∗2|345| ∗ 7∗, and beginning on the right of the exchange zone, one replace the remaining
jobs of the permutation in the order of the permutation by forgetting x∗, which gives
45|∗ ∗ ∗|723.

The ∗ can be found therefore in the exchange zone, while the order of traversal of the
other jobs has not changed. The same procedure for y = 2 ∗ |681| ∗ 7∗ becomes 81|∗ ∗ ∗|726.

This is linked by the exchange of sequences, giving two children permutations X′ and
Y′: X′ = 45|681|723 and Y′ = 81|345|726. A number of pairs of children are thus generated
and replaces part of the parents selected from the least efficient ones. Thus, a mutation
operation creates a child for this population to ensure diversity of the individuals [18]. Not
to mention that an individual generated by this crossover operator should remain within
the specified start date and date of perishability.

4.2.6. Mutation

Different values of mutation probability have been tested in order to select the best
one providing better results. The best mutation probability in our case is 0.2, so the
mutation produces 20 individuals. The individual generated by mutation must respect the
constraints of time and start date of perishability.

4.2.7. Iteration

From the initial population comprising 200 individuals, we proceed with the creation
of new populations using operations selection, crossover, and mutation, and we obtain a
new population for each generation.

4.3. The Proposed ACO

Ant Colony Optimization algorithms (ACO) are part of the class of metaheuristics.
The main objective of this approach is to find the shortest path between a nest and a source
food. It was in 1992 that Marco Dorigo from University of Brussels [33] formulated this
method. The advantage of this method lies in the strategies of research that achieves a
compromise between exploitation and exploration [34].

The ACO algorithms are based on an analogy with natural phenomena and rely on
the collective behavior of ants to organize the search for food [35]. Ants explore their
environment by leaving behind volatile traces, called pheromone traces. They serve these
traces to guide themselves and naturally tend to follow them.

Once the food is found, they use the traces they just deposited to determine the way
back to the nest. During the journey, they leave traces of them in proportion to the interest
of the food source. Ants that chose the shortest route perform more round trips, the amount
of pheromones deposited are of higher importance, and this route will eventually be taken
by all ants. The path is therefore strongly impregnated with pheromones and constitutes
a track of choice for the ant colony [36]. The more the food source has been judged to
be interesting, the more ants tend to follow this path. Therefore, little by little, the traces
towards the sources of food are more and more marked. Colorni et al. [37] adapted
this principle to the field of combinatorial optimization. To do this, they associated the
neighborhood of the nest with the space of solutions. Each solution is similar to a food
source in which the quality is provided by the evaluation function. Each ant is assimilated
to a repetitive process of building solutions. The construction is biased by a global data
set showing pheromone traces. This set provides a memory of the quality of the solutions
and is regularly updated by the construction process and by a mechanism simulating the
evaporation of the pheromone.
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4.3.1. Coding of Scheduling Solution

The problem formulation is inspired from the Vehicule Routing Problem (VRP) [38].
Each selected job for scheduling is represented by a node in a graph G = (N, L), where N
represents the number of nodes (N = n) and L represents the number of arcs that link the
jobs. When an ant moves from a node i to a node j, it leaves a trace of pheromones on the
arc aij.

For the scheduling problem, the information contained in the pheromone trace is
based on the data (the validity date of components forming the job among others) and the
constraints of the problem. This trace saves the information on the arc used (aij). In fact,
the most used arc has a higher probability to be selected again.

4.3.2. Pseudo Code of the Proposed ACO

The pseudo code of the proposed algorithm (see the Algorithm 1 )for optimizing the
objective function that represents the sum of the expired products is presented below.

Algorithm 1 pseudo code of the ACO algorithm

1: procedure INTIALIZATION
2: Initialize the pheromone matrix τk

ij(0)← τ0

3: Initialize taboo list
4: Realisation of a cycle:
5: while (Nc < Ncm) do
6: for each job in 1 . . . n

Type, Type2)
7: for each ant in 1 . . . m
8: Choose a job Ji, randomly
9: Update all available jobs

10: Insert the Sk solution in the taboo list
11: Select the following job according to Pk

ij

12: Update the pheromone matrix ∆τi jk according to the Sk solution
13: Global update of the pheromone trace for each job in 1 . . . n

Evaluate the Sk solution according to the objective function
Update the matrix τk

ij
14: End For
15: End For
16: End While
17: Nc← Nc + 1

Upon initialization of the algorithm, the intensity of the pheromone trace for all the
pairs of jobs (i,j ) are set to a small positive value τ0. The parameter α, β, γ are used to
determine the relative importance of the intensity of the trace and goals in the construction
of a solution.

In addition, a taboo list is maintained to ensure that a job that has already been
assigned to the sequence being built is not selected as in the old days. Each ant k therefore
has its own taboo list, “tabook”, which will keeps the jobs already selected in mind.

Pk
ij(t) =


[τij(t)]α∗[φij ]

β∗[ψij ]
γ

∑h/∈tabouk
[τih(t)]α∗[φih ]

β∗[ψih ]γ
, if j ∈ Ω

0 , else.
(17)

Ω represents the set of available jobs; φij =
1

vijk
; ψij = pij; and vijk and pij represent,

respectively, the date of validity of the component cijk related to job i and the duration of
execution (standardized), which have direct influences on the objective function. During
an iteration of the algorithm, several ants build a role in turn, a solution represented by a
sequence of jobs. At the end of each cycle, each of the m ants deposit a certain quantity of
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pheromones ∆τk
ij(t) defined in the following equation; in its way, this quantity depends on

the quality of the solution.
Let Pk

p min(t) be the evaluation of the objective to be optimized fpr the solution found
by the keme ant.

The contribution to updating the trace of the ant k is then calculated in the follow-
ing way:

∆τk
ij(t) = Pm

p min/Pk
p min(t)

where Pk
pmin

(t) is the number of perishable products associated with the ant k (Sk) at the
moment t, and Pm

p min
represents the minimum number of perishable products obtained

after the m ants have made their paths.
The algorithm performs an overall update of the intensity of the pheromone trace

τk
ij at the end of each cycle to avoid premature convergence of the ACO algorithm. This

update is influenced by an evaporation factor ρ, 0 < ρ < 1, which decreases the quantity
of pheromone present on all arcs (aij) [33]. This evaporation must not affect the tests: the
solutions to the taboo list.

τk
ij = ρ ∗ τk

ij +
m

∑
i=1

∆τl
ij

5. Implementation and Experimental Results
5.1. Case Study

The specificity in the agri-food industry is the limited dates of the products and semi-
finished products. It is a constraint specific to the agri-food industry. For the case study,
we consider a flow-shop scheduling problem with m = 3 machines, and we have n jobs
to be executed (6–9 jobs). For each job Ji, i = 6 . . . 9, we specify the earliest start time rij,
the processing time θij, and the validity limit date vij, as shown in Table 1. The following
Table contains the details of the tested instances.

Table 1. Characteristics of the tested instances.

Job Earliest Starting Time rij Processing Time θij Validity Limit Date vij

1

M1 1 2 40

M2 3 4 44

M3 5 7 53

2

M1 8 2 35

M2 9 1 40

M3 12 10 45

3

M1 22 2 37

M2 21 3 43

M3 24 2 55

4

M1 15 2 40

M2 16 3 45

M3 17 1 55

5

M1 27 5 30

M2 29 4 35

M3 31 4 38
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Table 1. Cont.

Job Earliest Starting Time rij Processing Time θij Validity Limit Date vij

6

M1 41 5 44

M2 44 10 50

M3 45 7 63

7

M1 50 5 48

M2 55 4 55

M3 57 3 70

8

M1 60 4 75

M2 65 3 65

M3 66 7 70

9

M1 70 1 72

M2 75 2 80

M3 78 3 85

5.1.1. Parameterization of the GA Algorithm

To execute the proposed GA and ACO algorithms, a tuning procedure is used. As ex-
plained before, the probability of crossover is 0.8. The mutation probability used in our
case is 0.2, so the mutation produces 20 individuals. The individual generated by mutation
must respect the constraints of the earliest start time and start date of perishability. The size
of the initial population comprises 200 individuals. A new populations is created using the
selection, reproduction, and mutation operators.

5.1.2. Parameterization of the ACO Algorithm

The size of the set of ants equals 50. The number of tested cycles equals 100. The taboo
list is updated in each iteration. The intensity of the pheromone trace is updated by the
parameter ρ. The value of this parameter is dynamically changed (0 < ρ < 1).

6. Experimental Results

In this section, the experimental results are given. The instances were executed
10 times to calculate the average values of Cmax and the number of perishable products.
The best scheduling solutions obtained by the two approaches are compared. Hereafter,
the Gantt chart of best solutions obtained are given in Figures 3–10. The Figure 11 presents
the best solution obtained by B&B algorithm.

Figure 3. Gantt chart of the best solution with six jobs by GA.
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Figure 4. Gantt chart of the best solution with six jobs by ACO.

Figure 5. Gantt chart of the best solution with seven jobs by GA.

Figure 6. Gantt chart of the best solution with seven jobs by ACO.

Figure 7. Gantt chart of the best solution with eight jobs by GA.

Figure 8. Gantt chart of the best solution with eight jobs by ACO.

Figure 9. Gantt chart of the best solution with nine jobs by GA.
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Figure 10. Gantt chart of the best solution with nine jobs by ACO.

Figure 11. Gantt chart of the best solution with six jobs by B&B.

6.1. Comparative Study

To compare the robustness of the algorithms proposed, GA, ACO, and four instances
were tested and compared with the results of the Branch and Bound method. Table 2 sum
up the results obtained. From the results obtained, we can conclude that the GA and ACO
give satisfactory results and near optimal solutions as with the Branch and Bound method.
As we can see, the ACO and AG algorithms obtain the same makespan values in instances
with six and seven jobs such as B&B. However, the ACO has not obtained the optimal
number of perishable products (0 in the case of the instance with six jobs). From Table 2,
we can remark that the GA algorithm gives the best solutions compared with ACO, except
in the case with eight jobs (Ppmin = 2).

Figures 12 and 13 show the best average values, makespans, and number of perishable
products obtained for two algorithms (GA and ACO).

Figure 12. Comparison of the makespan values.
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Figure 13. Comparison of the perishable products.

Table 2. Experimental results of the B&B, GA, and ACO algorithms.

Tested Instance B & B GA ACO

Best Solution Cmax Ppmin Best Solution Cmax Ppmin Best Solution Cmax Ppmin

6_Jobs 124356 63 0 124356 63 0 312456 63 1
7_Jobs 1234567 66 1 1523467 66 1 1532467 66 1
8_Jobs 21345678 74 1 45231678 76 2 54231687 77 1
9_Jobs 321456789 77 2 532416897 88 2 514326798 90 4

6.2. Interpretation

The schedule’s Gantt chart representation correspond to the best obtained solution
found by the ACO and GA algorithms. The schedules in Figures 3 and 4 are obtained after
applying the proposed GA and ACO algorithms, respectively.

When considering deterministic scheduling with an objective to minimize makespan,
there are no preferences in selecting one as both have the same makespan, which is 63 time
units. However, when considering the number of perishable products, the schedule found
by GA algorithm is better than the solution found by ACO. In fact, the GA algorithm
gives a solution with a perishable product when solving the instance with six jobs and
three machines.

For instance, with eight jobs and three machines, the ACO algorithm provides a better
result in terms of the number of perishable products (only one) compared with the result
found by the AG algorithm (two perishable products).

However, the makespan value of the best solution found by AG is better than that
found by ACO, equals to 76 (see Figures 7 and 8) For the instance with nine jobs and three
machines, the GA algorithm provides a better result compared with that of ACO. The
schedule in Figure 9 is more efficient than the schedule in Figure 10 since it has a lower
makespan value and lower number of perishable products. The makespan value equals
88, which is better than the 90 found by ACO. Additionally, there are only two perishable
products in the schedule in Figure 9, but with ACO, there are four perishable products.

The computational results indicate that the schedules generated using the proposed
genetic algorithm GA have statically superior performances in terms of makespan and the
number of perishable products compared with the ACO algorithm.

To complete our study and to assess the performance of our algorithms more, the B&B
algorithm is used to obtain a lower bound. The computational results mentioned in the
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table below indicate that the performance of predictive schedules generated by the GA
are similar to or near those found by the B&B algorithm. In fact, the GA provides similar
schedule performances for the instances with six jobs and seven jobs to that of the B&B.
When considering bigger instances with eight and nine jobs, the GA provides solutions
with similar values of makespan (76 compared with 74 by the B & B) and similar values of
the number of perishable products (Ppmin = 2 compared with Ppmin = 1 by B&B ).

7. Conclusions and Perspectives

This paper presents a Genetic Algorithm and an Ant Colony Optimization algorithm
to solve the dynamic industry scheduling problem in agri-food production. The two meta-
heuristics aim to find the best agri-food scheduling with the lowest value of makespan and
the lowest number of perishable products. The algorithms were tested on a real case of
the agri-food industry with three machines while varying the number of jobs from six to
nine. The experimental results indicate that both algorithms are very effective compared to
the B&B algorithm. However, the GA algorithm provides better results compared with the
ACO algorithm. An interesting direction for future research is to take into consideration
other real dynamic events such as the breakdown of the machines and the cancellation of
the job. Additionally, we aim to design a new multi-agents decentralized GA and ACO
suitable to communicate and collaborate with IoT applications.
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