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Abstract: Quantum simulations can provide new insights into the physics of strongly correlated
electronic systems. A well studied system, but still open in many regards, is the Hubbard-Holstein
Hamiltonian, where electronic repulsion is in competition with attraction generated by the electron-
phonon coupling. In this context we study the behavior of four quantum dots in a suspended carbon
nanotube and coupled to its flexural degrees of freedom. The system is described by a Hamiltonian
of the Hubbard-Holstein class, where electrons on different sites interact with the same phonon.
We find that the system presents a transition from the Mott insulating state to a polaronic state,
with the appearance of pairing correlations and the breaking of the translational symmetry. These
findings will motivate further theoretical and experimental efforts to employ nanoelectromechanical
systems to simulate strongly correlated systems with electron-phonon interactions.
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As for today, quantum simulators are the unique sys-
tems that can address, deepen our understanding, and ul-
timately solve with quantum advantage challenging prob-
lems of contemporary science: from quantum many body
dynamics, through static and transient high 7T, supercon-
ductivity to design of new materials. As an important ex-
ample one can think to the Hubbard model, a paradigm
of strongly correlated systems, and that has been investi-
gated through a number of experimental platforms. Such
platforms include arrays of three and four dots in semi-
conductor heterostructures [II, 2], as well as various se-
tups used in the ultracold-atom community [3HIT].

An important outstanding goal for quantum simu-
lators is to go beyond pure Hubbard models by ad-
dressing also interactions between the particles with vi-
brations of the lattice, that is, with phonons. The
electron-phonon (e-p) interactions can generate effec-
tive attractive electron-electron (e-e) interactions, via
the Cooper pairing channel in conventional supercon-
ductors [12] and therefore, directly compete with the
repulsive e-e interactions present.Such electron-phonon
class of models (EPCM) are crucial for understanding a
plethora of strongly correlated phases like antiferromag-
netism, charge density waves, superconductivity, high-
temperature superconductivity and the pseudogap states
in low-dimensional materials, [I3HI6]. The interplay be-
tween the e-p interaction and the Coulombic e-e repul-
sion is also of great importance for unconventional su-
perconductors such as alkali-metal-doped fullerides [I7],
puictides [18] [19], and aromatic superconductors [20].

Since phonons are essentially absent in optical lattices,
the study of EPCMs is challenging for atomic quantum
simulators. Noteworthy in this context are the recent
proposals for dynamical lattices [21] 22] and lattice gauge
theory models, in which additional dynamical degrees
of freedom on the bonds of the lattice (for reviews see

[23, 24]). On the other hand, electromechanical devices
have been employed with great success to couple mechan-
ical modes to quantum electron transport. In these sys-
tems the electrons can be localized in one (or two) quan-
tum dots (QDs), and they interact electrostatically with
one or several mechanical modes. The strong and con-
trollable localization of the charge, with reduced screen-
ing, allows one to reach very large e-p coupling constant.
This leads to strong back-action on the oscillator with the
predicted formation of polaronic states and suppression
of the conductance [25H28] and observed softening of the
mechanical resonating frequency [29] B0]. Several trans-
port regimes have been studied, such as single-electron
tunneling [29-41]), Kondo [42] [43] and the quantum Hall
effect [44]. Several parameters of the Hamiltonian can
be tuned independently, either at the fabrication stage
or during the experiment. By tuning the nearby gate
voltages, one can tune by a large amount the hopping
term between the QDs, the local potential, and the e-p
coupling. Advances in nanofabrication should soon en-
able the fabrication of several QDs (more than four) in a
suspended carbon nanotube.

Therefore, electromechanical devices appear to be very
promising as a new platform for simulating an EPCM.
In this Letter, we scrutinize this novel quantum simu-
lation platform, focusing on the concrete example of a
phonon-induced delocalization transition. Given the the-
oretical interest in the EPCM, a tunable quantum sim-
ulator for such models is highly sought after, especially
due to the restricted validity range of devised numerical
and analytical approaches, such as quantum Monte Carlo
[45], density-matrix renormalization group (DMRG) [46],
variational ansatz [47, 48], dynamical mean-field theory
(DMFT) [49], density-matrix embedding theory (DMET)
[50).

In this Letter, we discuss in detail, within practical



FIG. 1. (a) Schematic of the proposed setup: Four QDs in red
are electrostatically defined along a suspended nanotube using
the gate electrodes at the bottom of the trench. The electron
states of the four QDs are coupled to the nanotube mechanical
eigenmodes depicted as black lines. Real-time charge sensing
of the QD array can be experimentally monitored with the
sensing dots in grey defined on the sides [I]. (b) Ilustration
of the different regimes: Weak electron-phonon coupling (A <
Acrit) supports a Mott state with one electron per dot; the
small distortion Az of the nanotube arises from the capacitive
force when applying the voltage on the gate electrodes to form
the quantum dots. In the presence of strong electron-phonon
coupling (A > Agrit), the nanotube gets deformed by a larger
amount and the electrons get paired in the two central dots.

experimental limits, the blueprint of a quantum simula-
tion of an EPCM with e-e and e-p interactions using an
electromechanical device. Specifically, we study the be-
havior of a system consisting of four QDs coupled to a
set of phonons as a function of the e-p coupling constant
and the hopping integral. In contrast to the well-studied
Hubbard-Holstein model [5I] with local e-p interaction,
this setup realizes long range e-p interactions, as captured
by the Hubbard-Froehlich model [52]. For vanishing hop-
ping, the problem can be exactly solved, and a discon-
tinuous transition from a Mott localized state to a sym-
metry breaking polaronic state with double occupancy
of the central dots is observed. The sharp transition al-
lows for a continuous evolution when the hopping terms
are finite, with setting in of pairing and phonon correla-
tions. The transition can be detected in the zero hopping
limit by measuring the occupation of the different dots
with nearby single-electron transistors [I] (Fig. [[). The
obtained results indicate that the system is particularly
rich and is interesting to investigate both experimentally
and theoretically because of the correlated states gener-
ated by the interplay of the electronic and phononic de-
grees of freedom. Note that even in the experimentally
most accessible and controllable regime of very low hop-
ping, which is the focus of this Letter, there are phonon-
induced fluctuations responsible for the interesting tran-
sition from Mott to polaronic states.

We consider a suspended carbon nanotube with four

equally spaced QDs (see Fig. . The quantum dots are
electrostatically defined along the nanotube with voltages
applied to the gate electrodes patterned at the bottom of
the trench (Fig. , which enables the realization of well-
defined quantum dots [53]. We assume a perfectly sym-
metric device, where the three hopping terms ¢ between
the four dots and local chemical potentials are equal. In
this configuration the local Coulomb repulsion U is con-
sidered to be the same in each dot. We assume that the
interdot Coulomb coupling is negligible. The system is
prepared with only four electrons populating the dots.
The tunnelling amplitude to the leads of the first and
fourth dots is assumed to be negligible, so that the to-
tal number of electrons remain fixed. The charge on the
dots naturally couples to the flexural modes of the car-
bon nanotube (see for instance [54]). The Hamiltonian
describing the system belongs to the EPCM and therefore
has a form: H = H, + H, + He_p. The electronic part
is He = H, + Hy with H, = —t>, el jcio + hoc.
and a Hubbard term Hy = %Y. n;(n; — 1), where
ng =y, c;rpcw. Here, the index ¢ represents the QDs,
o = + accounts for the electrons’ internal degree of free-
dom, and ¢; , are the destruction operators for the elec-
tronic states. We will focus on the case of two degrees
of freedom, corresponding either to the valley degrees of
freedom for the spin-polarized electrons, or the spin de-
grees of freedom when the valley symmetry is broken.
The parameters ¢ and U set the energy scale of hop-
ping and on-site interaction. Since the system is isolated
from the leads we can set the chemical potential to zero.
The phonon part reads H, = Zu hw#ajta“. Here a, is
the destruction operator for the flexural mode u. We
assume the limit of strong tension (guitar string limit)
for which the resonating angular frequency w, = pwo
of the different modes is an integer multiple of the fun-
damental mode frequency wg. The e-p coupling reads
Hep =32, gipni(au + aL)7 with its strength set by a
electrostatically tunable parameter go [28], and explic-
itly given by g; . = go2p3/? sin[mp(2i — 1)/8] sin[rp/8).
This expression is obtained by expanding the functional
dependence of the capacitance, between each dot and the
gate, on the displacement of the nanotube, and integrat-
ing it for the total dot extension, which is assumed to
be 1/4 of the total nanotube length. The hopping term
t/(2mh) and the electron phonon coupling g/(27h) can be
electrostatically tuned between 1 and 100 GHz and be-
tween 0.01 and 1 GHz, respectively. Here h is the reduced
Planck constant. The other parameters can be controlled
by fabrication. Typically, the repulsion is U/(27h) ~ 2
THz, while the fundamental mode wy/(27) can range be-
tween 1 MHz and 1 GHz. The hopping parameter t of
each tunnel barrier and the chemical potential of each
dot can independently be tuned by appropriately vary-
ing the applied voltage on the nine gate electrodes shown
in Fig. |1} see also Ref. [55, 56]. The gate voltage, and
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FIG. 2. (a,b) System behavior at ¢ = 0: As a function of the dimensionless coupling parameter A = g2/wU, we plot the
number of doubly occupied sites in the ground state (a), and the density contrast between dot 1 and dot 2, (nz —n1), at finite
temperature (b). The extent of the intermediate regime (1 double occupancy), between the Mott state (no double occupancy)
and the paired state (2 double occupancies), depends on the number of modes Nmoa taken into consideration. The density
contrast between these opposite regimes is clearly visible even at T'= 2K. (c) System behavior at finite hopping: As a function
A and ¢, we plot (c1) the number of phonons, (c2) the variance of the phonon operator, (c3) the number of double occupancies,
(c4) the average value of charge correlations in the ground state. We consider a system of four electrons in four dots, with
U/(2wh) = 2400GHz, and w/(27) = 1.35MHz. In (c), we have restricted ourselves to a single-mode model, evaluated by exact
diagonalization thorugh iterated shift method in a Hilbert space of up to 30 phonons. Qualitatively, the parameter space at
small t/U is divided into two localized regimes (Mott and paired regime), while at sufficiently large t/U a delocalized regime
occurs, as indicated by finite charge correlations.

thus the electromechanical coupling, can also be tuned in electronic Fock state, which is selected by the potential
a large range by changing the number N; of filled shells, Hy + Hp, times an effective phononic vacuum.
that is, by tuning the chemical potential such that the
electron number changes from N to N + 2N,N, where
Ny is the number of QDs and the factor 2 accounts for
the spin degeneracy.

Formally, the e-p coupling can be removed from the
Hamiltonian by a Lang-Firsov (LF) transformation, U =

From the physical point of view the LF transformation
allows to write the total energy of the system in terms
of the displacement measured from the equilibrium po-
sition that minimizes the energy for given values of n;.
This generates the effective attractive polaronic potential

5 . - g : \ - ] since Eq. is negative and quadratic in the number of
e” with § = Zi,u Wy ni(aj,—a,). By applying this trans- particles. As illustrated in Fig. b), two main regimes
formation accounts, the phonon coupling is accounted for .41 be distinguished: (i) In the regime of weak electron-

through an additional effective interaction between elec- phonon coupling, the Hubbard repulsion Hy dominates
trons: over Hp, and therefore the Mott-insulating configuration
o Gindjpm with one electron per dot is selected. (ii) In the regime

Hy=— Z Z W, il s (1) of strong electron-phonon coupling, Hy is dominant, and

Bl the leading contribution from the g = 1 mode depletes

the system on the outer dots and induces electron pair-
ing on the inner dots. The system gains energy by the
significant displacement of the nanotube.

which is long-range due to the non-local nature of the
phonons, and which can induce electron attraction. In
addition to generating this effective potential, the LF

transformation also modifies the effective hopping, mak- For concreteness, let us consider in detail a nanotube
ing it prone to numerical instabilities. Therefore, we use with N = 4 QDs, at half-filling and unpolarized with re-
the LF transformation only in the atomic limit, ¢ = 0, spect to o, i.e. we have N/2 electrons with o = +, and
where arbitrary numerical accuracy is possible. N/2 electrons with ¢ = —. We introduce the dimension-

In the atomic limit, the ground state is described by an ~ less parameter A = g3/(wU) which in the atomic limit



conveniently serves as a single control parameter of the
system. We find that the N!/[(N/2)!]> = 6 Mott states
(i.e. all states with occupation numbers {1,1,1,1}) have
energy E/U = f%)\, and the unique paired state with
occupation numbers {0,2,2,0} has E/U = 2— %)\. Ac-
cordingly, these two sets of states provide the electronic
ground states of the system for any value of A, with a
level crossing at Aerit = 3/72. We note that in this critical
point, there are four additional ground states, referred to
as “intermediate” states and characterized through occu-
pation numbers {1,2,1,0} or {0,1,2,1} with an energy-
dependence E/U = 1 —m2\. To obtain these expressions
for the energies, we have carried out an infinite sum over
the phonon modes, although for practical purposes one
might instead truncate this sum at a finite number of
modes Npoq. In this case, the scenario in the critical
region is slightly altered: The degeneracy of three differ-
ent types of density patterns (Mott, paired, intermedi-
ate) is lost. Instead, the intermediate states may appear
above the ground states for any A. This happens, e.g.,
for Npmoqa = 1 or Npoq = 5. Preferentially, though, the
truncation of the modes gives rise to a tiny but finite pa-
rameter regime, in which the intermediate states become
the unique ground states. This behavior is illustrated in
Fig. a), where the three regimes are distinguished by
the number of doubly occupied sites in the ground state,
plotted versus the dimensionless coupling parameter A.

In practice, the number of doubly occupied dots is hard
to quantify, since it would require simultaneous mea-
surements of all local densities. However, as shown in
Fig. b), the density estimation on only two sites is suffi-
cient to clearly distinguish between the different regimes.
Concretely, we evaluate the density difference between
an inner and an outer dot (ne —n1). This quantity takes
the value 2 in the paired state, 1 in the intermediate
state, and 0 in the Mott state. Here, instead of ground
state averages, we have considered thermal averages at
temperatures between 0.5K and 2K, assuming that the
system’s energy scale is given by an interaction parame-
ter U/(2wh) = 2400GHz. Moreover, we have varied the
number of modes, Nyoq = 1, 3, or 6. Importantly, in
all cases and for all temperatures, the transition from
Mott to paired state is clearly seen from this data, with
a steeper change at T = 0.5K. At larger T, the inter-
mediate regime broadens, and notably, the broadening is
more pronounced in the 3- or 6-mode model than in the
one-mode model, where the intermediate state is absent
from the ground state manifold. In none of these cases,
though, the intermediate state would give rise to a flat
regime at (no — n1) = 1, demonstrating the secondary
role played by the intermediate states.

The LF transformation can be viewed as a polaron
dressing of the electrons, in which a certain electron
occupation n; implies the presence of N, = <a:ftaﬂ> =

2
(Zl nzu) phonons in mode p. From this number,

Wi

readily obtained at ¢ = 0, we find valuable informa-
tion also for the system at small but finite ¢. As men-
tioned above, numerical instability then prohibit the
use of the LF transformation, and truncation of the
phononic Hilbert space becomes necessary. According to
the expression for IV, we find that, near criticality, the
first (and most occupied) mode has Ny ~ (8 AU/ go)?
phonons. Thus, for the experimentally most relevant case
of U > gy, it is impossible to treat a Hilbert space with
O(Ny) phonons.

Instead, we have developed an iterative shift method
based on making the replacement

a, — a, + S, (2)

where @, is a shifted phonon operator, and S, is a com-
plex number. If we choose S, = m7 and numerically
diagonalize the full Hamiltonian within a highly trun-
cated Hilbert space of tilded phonons (e.g., nmax =~ 30),
we recover, at t = 0, the same result as obtained before
using the LF transformation. At finite ¢, the shift param-
eter S, has to be adjusted properly, which can be done
iteratively: Using the ¢ = 0 shift as an initial guess, we
determine a new shift parameter

S, =\ {(@h + 5@ + S0, (3)

and repeat updating this parameter, until S, and SL
agree with the desired numerical precision. We have ver-
ified this method at small values of U/gyg ~ 1, where a
numerical procedure without shift is also possible, due to
the relatively small number of phonons.

In the following, we report on our results for the ex-
perimentally realistic values U/(27h) = 2400GHz, being
much larger than the phonon coupling strength gy (tun-
able, on the order of 1GHz [41]), and the phonon fre-
quency, set to w/(27) = 1.35MHz in order to exploit the
system near criticality. Such low resonance frequencies
can be achieved in long nanotubes [57]. In this scenario,
the phonon number is O(10°%), and therefore, we fully
rely on the shift method.

Our results are shown in Fig. c17c4) for a one-mode
model. The inclusion of more modes, is numerically
challenging and expensive but does not alter the over-
all picture. Qualitatively, we find three regimes: At
small ¢/U, there are the two localized regimes (Mott and
paired regime), clearly distinguished by the occupation
of the dots [e.g. number of double occupancies plotted
in Fig. 63)], but also through an abrupt change of the
number of phonons [Fig. [[c1)]. At sufficiently large t/U,
a delocalized regime occurs, characterized through an in-
termediate phonon number and an intermediate number
of doubly occupied dots. Interesting features of this third
regime are finite values of electronic correlations, and the
correlated phonon state. The latter is indicated by non-
vanishing values of var(a) = (a'a) — (a')(a) [Fig. (02)].



As an illustration of the electronic correlations, we plot
in Fig. c4) the average charge correlations C' given by

1
C= N sz: ({(ning)o — (ni)o(nj)o) - (4)

We note that in this regime, we have also obtained finite
values of other pair correlators, such as s-wave or p-wave

pairing correlators, (S;S;)o or (P;Pj)o, with S;r = CITCL,

and P/ = (CLMCL + C:[+1¢Cj¢)/\ﬁ-

The correlated nature makes the delocalized state at
large t crucially different from the intermediate state at
t = 0 discussed earlier, despite their similar structure
of the density. We stress that the delocalized regime is
not adiabatically connected to the intermediate ¢t = 0
states, as we have checked (at a small value of U) by a
three-mode calculation, which explicitly exhibits ¢t = 0
intermediate states [cf. Fig.[Ifa)]. Specifically, this cal-
culation has shown that (i) finite values of ¢ suppress the
intermediate state until it fully vanishes, and that (ii)
the delocalized regime, characterized by finite pair corre-
lations, occurs only at even larger values of ¢. Intuitively,
the suppression of the intermediate state by the hopping
is understood from the extremely limited amount of first-
order hopping which are possible in this configuration.

Any physical realization of the device implies a degree
of static disorder induced by the unavoidable fabrication
imperfections. One can expect that the ”phase” diagram
presented in Fig. [2|should be affected only for values of A
for which the difference in energy between the competing
states is smaller than the typical energy scale £ of the
static disorder. Using the estimate for vanishing ¢ one
finds that this region has a size dA ~ (3/7%)€/U. When
&€ < U this region is very small, indicating that the main
picture is robust against weak disorder.

In summary, we have proposed an experimentally fea-
sible way for quantum simulation of a Hamiltonian be-
longing to the EPCM, by placing four equally placed
QDs in a suspended nanotube. A Mott state dominated
by the e-e interaction, a polaronic state dominated by
the e-p interaction, and a strongly correlated delocalized
state at large hopping is observed. At small hopping,
an intermediate state but not adiabatically connected to
the strongly delocalized state is also found. The system
has been theoretically explored by employing the Lang-
Firsov transformation, which gives us analytically exact
results for zero hopping, and by developing a numerically
self-consistent iterative shift method. The distinction be-
tween the different regimes is done by looking at quanti-
ties such as the local electron density and e-e correlators,
or the phonon distribution. These quantities in the finite
hopping limit may be accessible in experiments where
two of the dots are locally coupled to two different su-
perconducting resonators [58]. Moreover, in the proposed
experimental setup, the parameters are sufficiently tun-
able to explore the different regimes, and we find that

the stability of the states against finite temperatures is
well within feasible temperature bounds.

Although this work focuses on the quantum simulation
of the competition between the e-e and e-p coupling in
four QDs embedded in a nanotube, it should be noted
that our overall scheme is quite general. The first im-
portant extension would be to consider more dots. We
focused on four because of current experimental capabil-
ities. Albeit its reduced size, the system is already very
rich. Ongoing advances in nanofabrication are expected
to enable the fabrication of several QDs in suspended
carbon nanotube, allowing to further investigate the evo-
lution from the microscopic to the macroscopic system.
Investigation of many intriguing scenarios are possible by
controlling quantities like the number of electrons or dots,
spin/valley degree of freedom, and the nature of mechani-
cal modes (guitar string or doubly clamped beam without
tensile tension). When filling N/2 electrons in N dots,
the Peierls transition and charge density wave states may
emerge with the help of the inter-dot Coulomb repulsion
to prevent electrons to localize in nearby dots. Finally, by
considering a current flowing through the nanotube, non-
equilibrium physics could also be explored in the presence
of e-p coupling, in such setups.
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