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ABsTRACT. We introduce a generalization of parametrized Rota-Baxter algebras, named Q2-Rota-
Baxter algebra, which includes family and matching Rota-Baxter algebras. We study the structure
needed on the set Q of parameters in order to obtain that free Q2-Rota-Baxter algebras are described
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2 TYPED TREES AND GENERALIZED ROTA-BAXTER ALGEBRAS

1. INTRODUCTION

A Rota-Baxter algebra is an associative algebra A with a linear endomorphism P : A — A,
such that for any a,b € A,

P(a)P(b) = P(aP(b)) + P(P(a)b) + AP(ab),

where A is a scalar called the weight of the Rota-Baxter operator P. Firstly introduced by Baxter
[1] in a context of probability theory and popularized by Rota [8, 9, 10], they now appear in
numerous fields of mathematics and physics, see for example [3] for examples and more details.

The first appearance of family Rota-Baxter algebras seems to be in [2], in the context of Renor-
malization in Quantum Field Theories. This terminology, due to Li Guo [6] refers to an associa-
tive algebra A with a family of linear endomorphims P, : A — A indexed by the elements of a
semigroup (£, %), such that for any a, b € A, for any a,f € Q,

Po(@)Ps(b) = Poup(Po(a)b + aPy(b) + Aab).

This notion of matching Rota-Baxter algebra is introduced in [11]. This time, the Rota-Baxter
operators are indexed by the elements of a set ) with no structure, and the weights are given by
a family of scalars (4, )qecq- For any a,b € A, for any a, 8 € Q,

Py (a)Pg(b) = Ps(P,(a)b) + P,(aPg(b)) + AgP,(ab).

These notions have been extended to other types of algebras (Lie, pre-Lie, dendriform. . .), see for
example [1 1, 12, 13, 14].

Our aim here is a generalization of both family and matching Rota-Baxter algebras, in the spirit
of what is made in [5] for dendriform algebras. We here consider that the set of parameters € is
given five operations <, —, <, > and -, and a family of scalars A = (148)eeq. An Q-Rota-Baxter
algebra of weight A is an associative algebra A with a family of linear endomorphisms indexed by
Q such that for any a, b € A, for any «, € Q,

Po(a)Pg(b) = Poosp(Parp(@)b) + Pocp(aPoqp(D)) + Ao gPap(ab).

Taking
a—->f=a—pL=a -B=ax*p, a>f=a, a<dp=p,

and 4,4 being constant, we recover in this way family Rota-Baxter algebras. Taking

a— B=p, a—p=a, a-p=aqa, at>pf=a, a<p=p,

and A, g depending only on §, w recover matching Rota-Baxter algebras.

For any set Q with five operations and any family of scalars A, we define an operad and a
category of Q-Rota-Baxter algebras (Definition 2.8). This is far too general, and we impose the
extra constraint that the combinatorics of Rota-Baxter algebras is somehow preserved. To be more
precise, as free Rota-Baxter algebras are based on planar rooted trees [ 14], we impose that free €2-
Rota-Baxter algebras own a description in terms of angularly decorated (by the set of generators)
and typed (by Q) planar rooted trees, that is to say in terms of planar rooted trees with angles
decorated by the generators and internal edges decorated by elements of €, with an inductive
description of the associative product and the Rota-Baxter operators being given by the grafting
on a new root, the created internal edge begin of the required type. We show in Theorem 2.14 that
this imposes strong constraints on {2: we obtain that this combinatorial description holds if, and
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only if Qis a A-ETS, as defined in Definition 2.3. In particular, (€, <—, —) has to be a diassocative
semigroup: for any a,f,y € Q,

(@e=pey=a=Bey)=a—(B-Yy),

(@=p) —y=a—B<y),

(@=pB—-y=@=p—=>y=a—=>B-7).
This notion firstly appeared in Loday’s work [7] under the name of (associative) dimonoid; the
free dimonoid is also constructed in Loday’s article. Moreover, (€2, <, —, <, >) is an extended
semigroup (see Definition 2.2 below), a notion used in [5] for parametrization of dendriform al-
gebras. Particular examples of A-ETS attached to a set give matching Rota-Baxter algebras (see
Example 2.4-(b), with ¢.(a ® 8) = Aa) and particular examples of A-ETS attached to a semigroup
gives family Rota-Baxter algebras (see Example 2.4-(c)). In the case of weight O, we obtain
the generalization of the result [3] establishing that any Rota-Baxter of weight O is a dendriform
algebra, see Proposition 2.11. Moreover, generalizing the construction of free commutative Rota-

Baxter algebras, we obtain that free commutative )-Rota-Baxter algebras can be described in
terms of Q-typed words (Proposition 2.18 and Theorem 2.20).

This paper is organised as follows. The first section introduces the definitions of EDS, A-ETS,
ETS and of Q-Rota-Baxter algebras. The main result on free Rota-Baxter algebras and A-ETS
is then proved (Theorem 2.14), with a description of free Q-Rota-Baxter algebras in terms of
trees. The last subsection deals with commutative (2-Rota-Baxter algebras and their description
in terms of typed words (Theorem 2.20). The second section gives more examples of A-ETS and
ETS, and in particular a classification of these objects of cardinality 2.

Notation. Throughout this paper, k is a unitary commutative ring which will be the base ring
of all modules, algebras, as well as linear maps.

2. Q-RoTA-BAXTER ALGEBRAS

2.1. Definitions. We first recall the definition of diassociative semigroups and extended diasso-
ciative semigroups of [5], where these objects were used for parametrized versions of dendriform
algebras.

Definition 2.1. [5, 7] A diassociative semigroup is a family (Q, <, —), where Q is a set and

—,—: QX Q — Q are maps such that
(@=pey=a=Bey)=a<B—>7y),
(@=p—y=a—=>B<y),
(@—-p)-y=l@=p->y=a—>B-7),

for all o, B,y € Q.

Definition 2.2. [5, Definition 2] An extended diassociative semigroup (abbr. EDS) is a fam-

ily (Q, «,—, <,>), where Q is a set and <, —, <,> : Q X Q — Q such that (Q,«,—) is a

diassociative semigroup and

(1) a> By =arp,

(2) (@—>p)<y=B<y,

(3) (@<f) (@ =P Ay)=a<(B <),
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4) (@<B)<((@ < p)<y) =<,
(5) (@<p) > (@=p)<y)=a<(B—y),
(6) (@<P)> (@« p)<y) =By,
(7 (@a>(B—oy) —@Bry)=(@<prvy,
(8) (@a>B-oy)<@Bry) =a<p,
©) (@a>B—=7)—>Bry)=@—=>p >,
(10) (a>-B-oy)>@Bry) =a>p,

for all @, B,y € Q.

We shall use here the notion of 1-extended triassociative semigroup, where a family of scalars
plays the role of weights.

Definition 2.3. An A-extended triasssociative semigroup (abbr. A-ETS) is a family (Q, «, —
, <, >, -, %, 4), where (Q, <, —,<,>) is an EDS and 4 = (Ag8)epeq 18 a family of elements in K
indexed by Q? such that

(11) Aaspy = Agy

(12) Aaspacpiay = Apy

(13) Aocpy = Aap—y
(14) Ao 7)oy = Aagp
(15) Aep = Aapy
(16) Aaplapy = Apydapy

and, for all @, 8,y € Q:
(@) If Ay, = Ag,, # 0, then

(17) avB=av (@),
(18) (@—=p)y=a—B-y.
(b) If /la/qﬁ’(a/(_ﬁ)qy = /lﬂ’y * 0, then
(19) (@<B)- (@ =B <ay)=a<B-y),
(20) (@=p—y=a<= (@B
(C) If /l(¥'>(ﬁ—>7),ﬁ‘>7 = /l(l,ﬂ * 0, then
(21) a—->B-oy) =@ p -,
(22) (@a>@B—=>y) - Bry) =(@-p>y.
(d) If dpepy = Agpy # 0, then
(23) (@=p)y=a-B—-v),
(24) a<df=B>7y.
(e) If Ay = Ay p—y # 0, then
(25) (@B <ay=B<,

(26) (@-p) —y=a-B<y).
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(f) If ﬂa”g/la"g’y = /lﬂ’),/?.aﬁ.y * 0, then
(27) (@-p)-y=a- G-y

Example 2.4. (a) Let (Q, <, —,<,>) be an EDS. If we put 4,5 = 0 for any a,5 € Q, then
for any product -, (Q, <, —, <,>,-, 1) is a A-ETS.
(b) If for any a,f € Q,
a—p=F-oa=p<a=ab>f=a,

then (Q, <, —, <,>, -, 1) is a A-ETS if, and only if, the following map defines an associa-
tive product:

| kKQ®KkQ — KkQ
V. a®pB — Aypa-p.
Indeed, for any «, B, y € Q,

Yoo @1d)(a®B®Y) = depdapy(a-B) -,
l,[/. © (ld ® l/’)(a’ ®ﬁ ® 7) = /lﬁ,y/la,ﬁya : (B ' 7)’

which gives the missing condition (27).
(c) Let (Q, x) be a semigroup and A € k. We put, for any a, 8 € Q:

a—p=axp, a<pf=p,
a—pB=axp, a>p=a,
Aop = 4, a-f=axp.

Then (2, «, —,<,1>,-, 1) is a A-ETS.
(d) Let (€2, %) be an abelian group and let A € k. For any «, 8 € Q, we put:

a(—ﬁ:a’, a—)ﬁaﬁa
a<f=axp, avB=a""%p,
Aop = 4, a-B=a.

Then (Q, <, —, <,>,-, 1) is a A-ETS.
(e) Let Q = (Q, «, —,<,>,-, 1) be a A-ETS. For any a, 8 € Q, we put

a<PB=B—>a, a<a=pra,

a-=>"p=pa, av?a=pF<a,
_ P _

a-PB=4"a, /l;,ﬁ—/l,@,a-

Then (Q, <P, —°P P >°P_.°P_1°P)is also a A-ETS, called the opposite of Q2 and denoted
by Q°7. We shall say that Q is commutative if it is equal to its opposite.

Definition 2.5. A extended triasssociative semigroup (abbr. ETS) is a family (Q, «, —, <, >, -, %),
where (Q, «, —, <,>) is an EDS and

(28) (@ > p)xy=pFx*y,
(17) a>B=a>(B-y),
(18) (@—=p)-y=a—-B-y),
(29) (@<PB)x((@—=p)<y)=B=*v,

(19) (@<f)-(@=p)ay)=a<(B-y),
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(20) (@=p)—y=a<(B-y),
(30) (@>@B—=y)*Bry =ax*p,
(21) a—=> B2y =@ B =,
(22) (@a>B—=7) By =(@-prvy,
(€29) (@ =P xy=axB—-7y),
(23) (@=p)-y=a-(B—=7),
(24) a<f=p>y,
(32) axf=ax*Be<y),
(25) (@-B)<y =By,
(26) (@-B)—y=a-(B<vy),
(33) axf=axB-y),
(34) (@-p)xy=pB*y,
(27) (@-B)-y=a-B-y).
Example 2.6. (a) Let (Q, *, -) be a set with two products such that for any «, 8,y € Q:
(35) axf=ax(B-y),
(36) (@-B)*xy =B+,
(37) (@-B)y=a By
We put, for any «, 8 € Q:
a—p=a, a<dp=p,
a—B=a, a>p=0.

Then (Q, «, —, q,>, -, %) is an ETS.
(b) Let (Q, <, —,<,>,-, %) be an ETS. For any a, € Q, we put

a<P"B=B->a, a<a=8>a,
a - B =8« q, a>?a=8<a,
a*Opﬁ:ﬁ*a,, a,opﬁ:ﬁ.a/.

Then (Q, <7, =, <P > «°P_ .°P) is also an ETS, called the opposite of Q. We shall
say that Q is commutative if it is equal to its opposite.

Actually, each ETS induces a A-ETS, as the following result indicates:

Proposition 2.7. Let (Q, —, —,<,>,-,*) be an ETS and let (u,)qcq be a family of scalars. For
any a,f3 € Q, we put:

ﬂa,ﬂ = HaxpB-
Then (Q, «—,—,<,>,-, ) is a A-ETS.

Proof. Conditions (a)-(f) of Definition 2.3 are obviously satisfied by (17)-(27). (11) is (28), (12)
is (29), (13)is (31), (14) is (30), (15) 1s (32), and (16) comes from (33) and (34). O

We now propose the concept of 2-Rota-Baxter algebras as follows:
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Definition 2.8. Let Q be a set with five products «—, —, <,>,- and A = (4, 8)aeq be a family of
elements in k indexed by Q2. An Q-Rota-Baxter algebra of weight A is a family (A, (P,).e0)
where A is an associative algebra and P, : A® A — A is a linear map for each w € Q, such that

Pa(a)P,B(b) = Pa—>ﬁ(Pm>,B(a)b) + Pm—ﬁ(apaqﬁ(b)) + /la,ﬁpa-ﬁ(ab),

for all a,b € A and a,B € Q. If, further, A is commutative, then (A, (P,)wecq) 1S a commutative
Q)-Rota-Baxter algebra.

Taking all elements of A equal to 0, we get the concept of Q2-Rota-Baxter algebras of weight 0:

Definition 2.9. Let Q be a set with four products <, —,<,>. An Q-Rota-Baxter algebra of
weight O is a family (A, (P, )wcq) Where A is an associative algebraand P, : AQ A — A is a linear
map for each w € Q, such that

Pa(a)Pﬁ(b) = Pa—>,B(Pm>,B(a)b) + Pm—ﬁ(apaqﬁ(b))a
foralla,b € A and o, € Q.

Example 2.10. (a) If (Q, %) is a semigroup, we recover the definition of Rota-Baxter family
algebras [6, 13] by defining

a—fB=a—->PF=a-B=a*xp, at>pf=a, a<p=p,

and requiring all elements of A to be equal. Note that this is the A-ETS of Example 2.4 (c).
(b) For a set Q, define

a—->p=a<f=0, a>f=a«—pF=a-B=a,

and A, g = A,, for a family (4,).eq Of elements of k. Then we get the concept of matching
Rota-Baxter algebra [ 12], up to the change of the product of A into its opposite.

As we know, Rota-Baxter algebras of weight O induce dendriform algebras [3]. Similarly,
we can show that each QQ-Rota-Baxter algebra of weight O has a structure of an QQ-dendriform
algebra [5, definition 11]:

Proposition 2.11. Let Q be a set with four products «—,—,<,> and (A, (P,).cq) an Q-Rota-
Baxter algebra of weight 0. Then (A, (<u)weq, >w)weq) is an Q-dendriform algebra, where

a<,b:=aP,b), a>,b:=P,a)b,
foralla,b € A and w € Q.
Proof. Fora,b,c € A and a, € Q,

(Cl <a b) <ﬂ c= (aP(t(b))Pﬁ(c) = a(P(t(b)Pﬂ(C)) = a(P(y—)ﬁ(PwDﬁ(b)c) + Pm—ﬂ(bP(Mﬁ(C)))

= aPlI—)ﬂ(P(IDﬁ(b)C) + apm—ﬁ(bp(mﬁ(c)) =a <a—>ﬁ (b >al>ﬁ C) t+a <a<—ﬁ (b <a<ﬁ C)’
a>q (b <g c) = Po(a)(bPs(c)) = (Pu(a)b)Pgs(c) = (a >, b) <g c,
a>q (b >p ) = Po(@)(Pp(b)c) = (Po(@)Pp(D))c = (Posp(Parp(@)b) + Pocp(aPop(b)))c

= Pa_%»(PWﬁ(a)b)c + Pm_ﬁ(aPaqﬁ(b)c = (a > b) >a—p €+ (a <e<B b) >aep €. O
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2.2. Q-Rota-Baxter algebras on typed angularly decorated planar rooted trees. First, let us
recall some notations on planar rooted trees (see [ 4] for more details). For a planar rooted tree
T, we shall consider the root and the leaves of T as edges rather than vertices. Denote by IE(T)
the set of internal edges of T, i.e. edges which are neither leaves nor the root and denote by V(7))
the set of vertices of 7. For each vertex v yields a (possibly empty) set of angles A(v), an angle
being a pair (e, ¢’) of adjacent incoming edges for v. Let A(T') = LI A(v) be the set of angles of

veV(T)
T. Then:

Definition 2.12. [14, Definition 2.2] Let X and Q be two sets. An X-angularly decorated Q-
typed (abbr. typed angularly decorated) planar rooted tree is a triple 7 = (7, dec, type), where
T is a planar rooted tree, dec : A(T) — X and type : IE(T) — € are maps.

For n > 0, let 7,(X, Q) denote the set of X-angularly decorated Q-typed planar rooted trees
with n+1 leaves and at least one internal vertex such that internal edges are decorated by elements
of Q. We put

T(X, Q) 1= |_| T.(X, Q) and kT(X, Q) := @ kT,(X, Q).

n=0 n=0

For example,

08[1... e ,

To(X, Q) = * 'a, .

X,
X
a
B y Y ol B
DX, Q) = yg, Yo Y ,\~’{, @, oy eXa By, €Qf,
a

Graphically, an element T € TJ(X, Q) is of the form:

T,.,., withn >0, where x,---,x, € X, @; € Q if T; # | and otherwise

a; does not exist for 1 <i<n+ 1.

For each w € Q, there is a grafting operator B}, : KT(X, Q) — kT(X, Q) which add a new root
to a tree and an new internal edge typed by w between the new root and the root of the tree.

For example,
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The depth dep(T) of a rooted tree T is the maximal length of linear chains from the root to the
leaves of the tree. For example,

dep(*) - dep(\)/) — 1 and dep(.w) - dep(fty) —2.

We also consider the trivial tree | and put by convention dep(|) := 0. For each typed angularly
decorated planar rooted tree 7', define the number of branches of 7 to be bra(T) = 0if T = |.
Otherwise, dep(T’) > 1 and T is of the form

where T; € T(X, Q) U {|},j=1,...,n+ 1. We define bra(T') := n + 1. For example,

bra(*) -1, bra(\%j/) =2 and bra(ﬁ/y/) =3,

Let X be a set, (Q, <, —, <, >, ) be a set with five products, and A = (4,) g2 be a family of
elements in k indexed by Q?. By analogy with the construction of free Rota-Baxter algebras, we
define a product ¢ on kT(X, Q) as follows. For T, T’ € T(X, Q), we define T ¢ T’ by induction on
dep(T') + dep(T’) > 2. For the initial step dep(T') + dep(7”’) = 2, we have dep(T) = dep(T’) = 1
and T, T’ are of the form

xl'”xm , )71”')’;1 .
T = and T = , with m,n > 0.

Define

X1

(38) ToT =

There are four cases to consider.
Case1: T,,,; = | = T|. Define

(39)
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Case 2: T,,,, # | = T|. Define

(42) © (B;mﬂ_’ﬂ] B(-:m+l>ﬁ] (Tn+1) © T{) + B(-;mﬂ(_ﬁl (Tm+1 ¢ B;m+|<]ﬁl (TI))

Here the first ¢ is defined by Case 3, the second, third and fourth ¢ are defined by induction and
the last ¢ is defined by Case 2. This inductively define the multiplication ¢ on T(X, Q). We then
extend ¢ by linearity to kT (X, ). We then have the following result:

Lemma 2.13. Let (Q, «—, —,<,1>, -, 1) be a A-ETS. Then (KT (X, Q), ¢) is an associative algebra
with identity *

Proof. By the construction of ¢, KT (X, Q) is closed under ¢ and * is the identity of ©.
Now we show the associativity of ¢, i.e.
(43) (Ty0Ty) o T3 =T, ¢ (Ty 0 T5),

for all Ty, T,, T5 € T(X, Q) We prove Eq. (43) by induction on the sum of depths p := dep(T;) +
dep(T,) + dep(T3). If p = 3, then dep(T,) = dep(T») = dep(T3) = 1 and T}, T,, T5 are of the form

X1 “-xl )’1.”)’"1 Zlu.Zn .
T, = , T, = , and T; = with I,m,n > 0.
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Then (T} ¢ T,) ¢ T3 = Ty o (T, o T5) by a direct calculation.
For the induction step p > 4, we use induction on the sum of branches g := bra(7,) + bra(7,) +

bra(73). If ¢ = 3 and one of T4, T,, T5 has depth 1, then this tree must be of the form * and the
associativity of ¢ follows directly. Assume
T\ = B(T}), T, = By(T;), T3 = B)(T;) forsome a,B,y € Qand T}, T,,T; € T(X, Q),
then
(Ty o Ty) o Ts = (By(T)) ¢ B+(T£)) o B+(T')
= B, _4(Bo.5(T)) o Ty) o By(T3) + B _4(T| o By 5(T)) © B, (T3) + Ao By 5(T7 o T5) o B;(T3)
= B(tr—%)—w(B(a—ﬁ)w(BwB(T )0 T3) 0 T3) + By (Boop(T1) © T) © By (T5))
+ Aoy By (Bl g(T1) 0 T3) 0 T3) + Bl gy (Bl s (T} 0 Big(T3)) 0 T5)
+ By gy, ((T] 0 By 5(T5)) © Bl gy (T3)) + Adacpy Bl gy, (T © By p(T3)) © T3)
+ AagBlgyo (Bl gy (T} 0 T3) 0 T3) + dagBio gy (T} 0 T3) 0 Bl (T5))
+ AaplapyBlog.,(T1 0 T5) o TY)
= B(Jra—>ﬁ)—>7(B(a—>ﬁ)l>7(B op(T1) © T3) 0 T3) + By (Boop(T1) © T) © By (T3))
+ Aaspy Blamspyy (Basg(T1) © T3) © T5) + Bl gy (Bl oy (T1 © Brog(T2)) © T5)
+ By gy (T} © (Bog(T5) 0 Bl gy (TD)) + Aacpy Bl gy, (T} 0 Blop(T5)) 0 T5)
+ AopBl, ﬁ)_,y(B(a 5y (T3 0 T3) 0 T3) + Aq Bl gy (T} 0 T3) 0 Bl 5. (T3)
+ AaplapyBlog.,(T1 0 Ty) o T3) (by the induction hypothesis)
= B;ra—w)—w(B(a—ﬁ)w(Baw(T )0 T3) 0 T3) & Bigopyy (Boop(T1) © T3) © By, (T3))
+ AaspyBlopyy (Basg(T)) 0 T3) 0 T3) + Bl g (Bly gy, (T1 © By p(T1) © T3)
*+ Blocpy(T1 © Bloap)o@epyan Blasp@epan(T2) © T3)
+ Blac ey (T1 © Blogpy wepyay)(T2 © BlaapyaacpyanT3)
+ Adosp, (m—ﬁ)wB(m—ﬁy—y(T’ © Bz—omﬁ) (aepyapT2 0 T; ) + dacpyB (a%ﬁ)y((r © ngﬂ(Té)) o T3)
+ AapB, ﬁm(B(a sy (T1 0 T3) 0 T3) + Ay yBloy (T} 0 T3) 0 B, o (T5))
+ Ao pdap, B wp)(T1 0 T) o T5),

and

Ty o (Ty 0 T3) = By(T}) o (B(T3) o B,(T3))

= BX(T)) o By, (B}, (T}) o T}) + BL(T)) o Bj_ (T} o B} (T}) + A5, BL(T}) o Bf, (T} o T%)
B;—>(B—>7)(Bw>(ﬂ—>7)(T ) o ﬂl>y(T ) o T; )) + Ba(—(ﬁ—)y)(T, © ng(ﬁ—w)( ,3[>y(T ) o T3))
+ Aop— By, (ﬁ—w)(T/ o (Bg,,(T5) o T3)) + B _>(ﬂ<_y)(B;>(ﬂ<_y)(T1) o (T3 o By, (T3)))
+ By gey(T1 © Boagey(T5 © By (T3)) + Adapy By s (T1 © (T o By, (T3)))
+ Ay BY g (Bl (T1) & (T3 0 T3) + Ay Bl g (T} © Bl gy (T3 0 T3))
+ Ay Aapy By ppy(T1 © (T5 0 T3))

= BY gy (Bl (TD) © B (TH)  T3) + By (T Bl (B (TH) © T)
+ dapy B, (ﬁ—w)(Tl o ( ,Bl>y(T )o T3)) + Ba_>(ﬂ<_y)(Bm>(ﬁ<—y)(T1) o (T B;q'y(T?,:)))
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+ B*H(ﬂ(_y)(T’ o B+<1(ﬁ<_y)(T’ o B;QY(T’))) + Ao pyB +(B<—y)(T{ o(T; 0 ngy(Tg)))
+ Agy a—>(ﬁy)(Bm>(ﬁ 7)(T Yo (TyoTy)+ Apy aM—(ﬁy)(Tl © B&_(ﬁ.w(Té o T3))
+ AgyAdapyB (ﬂ,y)(T{ o (T5 ¢ T5)) (by the induction hypothesis)
= Bospon) Biaw gy Blas ooy (T © T2) 0 T5)

+ B, g (Bao gy o) (T1 @ Blawpsyyapoyy(T2)) © T5)

+ Aavgy) 50y Bas gy Blas gy oy (11 © T2) 0 T3) + By g (T1 © By (B (T3) © T3))

+ Ao gy B <ﬁ—>7)(T o ( ﬁw(Té) o T})) + Bgﬁ(ﬁ(_y)(B:;D(Bw)(T]’) o(T; ngy(T3)))

+ Bﬂ_(ﬂ(_y)(T’ o B+4(ﬁ<_y)(T’ o B;QV(T’))) + Ao pyB +(ﬂ(_y)(T’ o(T; 0 ngy(T3)))

+ Ay By 5. (Boopy)(T1) © (T30 T3)) + Apy By 5. (T1 © Bo 5 (T5 © T3))

+ ApyAdapy a-(ﬂ-y)(T{ o (T; o T3)).
By the induction hypothesis and (Q, <, —, <, >, -, 1) being a A-ETS, we get

(TyoTy)oTz =T 0 (T oT3).
If g > 3, then at least one of T, T, T3 have branches greater than or equal to 2. If bra(7) > 2

then there exist 7'}, T| of the form

and T =

such that 7y = T] o T{". Hence
(TyoTy)oTs=(T{oT{)oTy)oT;

=T o(T{ oTy)oT; (by the induction hypothesis)
=T] o (T} ¢ Ty) o T) (by the form of 7| and the definition of ¢)
=T] o (T o (T, o Ty)) (by the induction hypothesis)
=T o T o(TyoT3) (by the form of 7| and the definition of ¢)
=T, 0 (T, T3).
If bra(T,) > 2 or bra(T3) > 2, the associativity can be proved similarly. O

Leti: X —» kT(X, Q), x — \\)/ be the natural inclusion. Then

Theorem 2.14. Let Q be a set with five products <, —,<,>,- and A a family of elements in k
indexed by Q. Then the following conditions are equivalent:
(a) (KT(X, Q), ¢, (B])u,eq) together with the map i is the free Q-Rota-Baxter algebra generated
by X.
(b) (kT(X, Q), o, (B})weq) is an Q-Rota-Baxter algebra.
©) (Q,,—,<,>,-, ) is a -ETS.

Proof. (a) = (b) It is obvious.

(b) => (c) For a, 8, € Q and \)/ \y/ \Z/ € T(X, Q), we have
BN )0 BEON ) e BN
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= Bl y(BLyON )0 N o BIONS )+ BL (N 0 B, (N ) o BION)
+ AogB? ﬁ(\)/ o \y/) o B;(\Z/)

= By By Biog N )0 N )0 )
4Bl (Brog N )0 N0 By (N
+ Ada—spyBlamp(Bg >5(\\/) o \/) 3 \/)
* Blopyn( (m—ﬁ)w(\/ © 334/5(\/)) 0 \/)
Bl (O 0 B (N D 0 By ()
dacpyBlaep O 0 Bry O )0 N)
* dapBagn( <aﬁ>>y(\/ \/) o \/)
+ AaBlpe (O 0 N0 Bl )
+ ﬂmﬂﬂa-ﬁ,yB(a.ﬁ).y((\/ o \/) o \Z’/)
= By (Bl By (N )0 N )0 )
# Bl A Brag N e N0 B ()
4 Ay Bl (Big N )0 N )0 )
F Bl Bl (N 0 BL,ON o N
+ B(+<r<—ﬁ)<—7(\/ © B(a<ﬁ)—>((a<—,6')<17)(B(a<1ﬁ)l>((a<—ﬁ)<w)(\/) © \Z/))
+ BZH;)W(\)/ ° B <1ﬁ)<—((a<—ﬁ)<1y)(\/ ° B <1ﬁ)<1((a<—ﬁ)<w)(\/)))
+ Adosp, (a<—B)<17'B(+a<—ﬁ)<—y(\/ © B(,ap) ((m—ﬁ)qy)(\/ o \/))
+dacpyBlaep O 0 Biy O )0 )
* dapBapn( <aﬁ>>y(\/ \/) o \/)
4 dapBlup (O 0 N )0 Bl (N)
+ ﬂa,ﬁfla-ﬁ,yB(am.y((\/ o \/) o \Z/)

a|>ﬁ y avf m>ﬂ
= _> o > 3 (@=B<y + A, <—
= )zvy t o ﬁ)y OBY (o> gy + eGP

13
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Yy
(@ e (DB <y) O ;
a < B> (@ <y x Na<p)<((@<p)<y) x ) -
+ (@ —p) ey (@<p) - (@ <=p)<y) + Egiﬁb;—(_(()(/ye )<1y1§ +/1a<]ﬁ’(m_ﬁ)<]7 (acfﬁﬁ))(_((;y B <y)

Z

< , x\V/z
&y . z Aa-p)ay
+ /lm—/i)’ %ﬁ) y + /lw,ﬁ ((5.5";;%/ + ﬁa,ﬂ (@-p) =7y + /la,ﬂ/la-ﬁ,)’ (@-B) -y’
and

BION o BN )0 BN )

=B ON Yo By B, O o N+ BIONY ) 0 By, (N 0 B, (N )
+ /IMB;(\’/) o B;;_y(\y/ o \Z/)

= By Blagpo N )0 B, (N )0 N)
F B (N 0B B, (N )0 N
FdaprBlip(ON 0 B, (N ) o N)
4Bl gy Biagpen (N )0 ON 0 B (N )
Bl ey O 0 By ON 0 B (N )
FlaperBrgeny (N 0 ON 0 B (N )
QB Blaipn N )0 O 0 )
+ A By (N 0 Bl O 0 N)
ey Blp (N 0 ON 0 N)

= BZ—)%HV)(BZZD(ﬁ—W))H(ﬂw)(ng(ﬁﬂy))D(ﬂw)(\)/) ° \y/) o \Z/)
+ B(+Y—>(ﬁ—>7)(B<+r>(ﬁ—>7)<—(ﬂl>y)(\)/ ° B:a1>(ﬁ—>y)<1(ﬁ>y))(\y/)) o \\Z/)
+ ﬂaD(ﬁ*Y),ﬁDYB;H(JBay)(Bz-ab(ﬁay)){ﬁby)(\)/ o \y/) o \Z/)
Bl (N 0 By B, O ) e )
+ dupy BN 0 (B, (N )0 N
4B gy Bingpen N )0 ON 0 B (N )
F By (N 0By O 0 B, (N )
F g Bl (N o O 0 B, (N )
A By Blaipon N )0 O 0 )
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+ A, szwa(\)/ © B+<—(ﬁ7)(\y/ © \Z/))
iy has B «sw(\/ YN

N (o> (/j >y)
(((Iaiw > D—%‘E g)v t @@y cpry 2 + Aav oy poy @B V(z)-_)(ﬂ(ﬁszjy

y
+ Ww =y +a + oo NDar+ N a’“ )
ap=y a-(B-y) crﬁ(ﬁH @ B
1 Y/ Bay ar(B-y) 1 £x<(ﬁ 7) 1 NV
T Aapey - (ﬁ(_y) ﬁy a— (@ y) T Apy + ,37 @By a- By

By Lemma 2.13 and identifying the types of the planar rooted trees, we get that (Q, «, —, <,
>, -, A)1s a A-ETS.

(c) = (a) By Lemma 2.13 and the definition of ¢, (KT(X, Q), ¢, (B]).,eq) is an Q-Rota-Baxter
algebra. Now we show the freeness of kT (X, Q).

Let (R, -, (Py)wen) be an Q-Rota-Baxter algebra of weight Aq and f : X — R a set map. We
extend f to an Q-Rota-Baxter algebra morphism f:kT(X, Q) — Rsuch that foi=f.

For T € T(X, Q), we define f(T') by induction on dep(T). If dep(T") = 1, then T is of the form

X1 Xm

T =

Define
A(T) = fx1) - fx2) -+ f ).

For the induction step of dep(T) > 2, we define ?(T) by induction on the branches of 7. If
bra(T) = 1, then T is of the form

Define

F(T) = Py (Po,(F(T1) - f(x1) - Poy(F(T2)) -+ Poy (F(T)) - () - Po(F(T i)
If bra(T") > 1, then T is of the form

Define
F(T) = Po,(FT)) - f(x1) - Poy(F(T2)) -+ P, (F(T)) - f(3) - Po(F(Tonin)).
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By construction of f.foi=fand P,f = ?BZ) for all v € Q. Next we show that f is an
algebra homomorphism, i.e.

(44) f(ToT) = f(T) f(T") forall T,T’" € T(X, Q).
We prove Eq. (44) by induction on dep(T") + dep(T”). If dep(T) + dep(T’) = 2, then dep(T) =
dep(7T”) = 1 and

X1 Xm Y1 Yn

T = and T = , with m,n > 0,

and

T oT) = fOn)-- fOm) - FOD - fon) = (F@) -+ fGa)) - (FG) -+ fn) = F(T) o F(T).

_ For the induction step of dep(T’) + dep(7”) > 3. If T ¢ T” belongs to the first three cases, then
f(T oT") = f(T) - f(T") by the definition of ¢ and the construction of f. So we only need to
consider the fourth case. Then

T, T,

j— j— ar @,
JToT)= f(( T, XN\ fon—© (B:;,n+1—>ﬁl am+1\>ﬁ1(Tm+1) oTj ) + Bam+1<—ﬂ1(Tm+l ¢ BZ,11+1<1,5'1(TI))

a;
T; T

2 B
+ /1(1’77+1’ﬁ| BZerl'ﬁl (Tm+1 © T‘l/)))<> 1 \ n Ty’,'*'l )
ﬁ;ﬁ—l

:(Pm@(n»-f(xl)-Paﬁ(Tz» Pop (FT) - fn) - (Bl (Bl Tst) © T)

+ B;m IP,BI (Tm+1 (Ym+l<1,81 (T )) + ﬂa’”*l ﬁl (Ym+l ,Bl (Tm+l © T )))

- fO1) - Pa,(F(T) -+ Py, (f(T},1)

= (Pa, (F(T1)) - £(x1) - Pay(F(T2)) -+ Po, (F(T)) - £ ) Pagyor (F(Ti1))
(Ps,(FTD) - fO1) - Pa,(F(T9)) -+ P, . (F(T},)))

= f(T) o f(T").

Moreover, by the construction of f, it is the unique way to extend f as an Q-Rota-Baxter
algebra morphism. Hence (kT(X, Q), ¢, (B]),ecq) together with the map i is the free Q-Rota-
Baxter algebra generated by X. O

Remark 2.15. (a) In Definition 2.8, Q is required to be a set with five products «, —, <, >, -
and A is required to be a family of elements in k indexed by Q2. This defines a category of
Q)-Rota-Baxter algebras for any such Q. Generally, free QQ-Rota-Baxter algebras are not
based on Q-angularly decorated planar trees. However, by Theorem 2.14, the condition of
a free Q-Rota-Baxter algebra based on the combinatorics of Q-angularly decorated planar
trees, similar to the one of (classical) Rota-Baxter algebras, is equivalent to (€, <, —
,<,>, -, ) being a A-ETS.
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(b) As a particular case, we recover the description of free family Rota-Baxter algebras of
[14]. An alternative description of free Rota-Baxter algebras (with rooted forests) is done

in [4].
Taking all elements in A to be 0, we get the following result:

Corollary 2.16. Let Q be a set with four products <, —, <,>. Then the following conditions are
equivalent:

(@) (KT(X, Q), ¢, (B)ueq) together with the map i is the free Q-Rota-Baxter algebra of weight
0 generated by X.

(b) (KT(X, Q), o, (B})weq) is an Q-Rota-Baxter algebra of weight 0.

(©) (Q, «,—>,<q,>) is an EDS.

2.3. Commutative Q-Rota-Baxter algebras on typed words. Let ) be a set and V a vector
space. Recall from [5] that the space of Q-typed words in V is

Shi(V) = (HKQ) D @ ver.
n>1
For the ease of statement, we redefine the space of Q-typed words in V as
shyvV) =P rvek)e- ok eV

n>0 (n+1)’s V and n’s (kQ)

and write each pure tensor v =1, ® w; ® - - - ® w, ® v, € Q under the form
V=1 ®a)1 Vi ®u)2 te ®w,, Vi,

wheren > 0, wy, -+ ,w, € Q and vy, -- ,v, € V with the convention v = vgif n = 0. We call v
an Q-typed word in V and define its length £(v) :=n + 1.

Let A be an algebra with identity 1,4, (Q, <, —, <,>,-) be a set with five products and 4 =
(Aep)@preq> be a family of elements in k indexed by Q2. For any pure tensors a = a, ®q, a’,b =
by ®s, b’ € Sh{,(A) with £(a) = m and £(b) = n, define a ¢ b inductively as follows:

apby, ifm=n=0,
apby ®,, @', ifm>0,n=0,
45) aob:=: aoby®g b, ifm=0,n>0,
aobo ®d1—>ﬁ1 ((IA ®C¥1l>,31 a’) <o b/) + Cl()b() ®(¥Pﬁl (a' <& (IA ®Cl1<1ﬁ1 b/))
+Aq, p,00bo ®q, 5, (8" 0 D), ifm>0,n>0.

Extending bilinearly, we construct a product ¢ on Shg(A).

Lemma 2.17. Let A be an algebra with identity 14, Q a set with five products <, —,<,>,- and A
a family of elements in K indexed by Q. If (Q, <, —, <, >, -, A) is a A-ESD, then (Sh§(A), ©) is an
associative algebra with identity 1 4.

Proof. By Eq. (45), Sh$,(A) is closed under ¢ and 1, is the identity of ¢.
For pure tensors a, b, ¢ € Sh;z(A), we prove

(46) (aob)oc=ao(boc)

by induction on £(a) + £(b) + £(c). If £(a) + £(b) + {(c) = 3, then {(a) = ¢(b) = {(c) = 1 and
a=ayb =by,c=cy. Hence

(@aob)oc=aybycy =ac(boc).
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Suppose Eq. (46) holds for £(a) + £(b) + £(c) < p, where p > 3 is a fixed integer. Consider the
case of £(a) + {(b) + {(¢) = p + 1. If one of £(a), {(b), {(c) is equal to 1, then Eq. (46) holds by
direct calculation. Hence we assume £¢(a) > 1,£(b) > 1,£(c) > 1 and

a=0ayQ®, a, b=b®;b, c=c0o®,c.
Then

(aob)oc
= (a0b0)co ®ay—p)—y (14 Bay5p0y (14 Bayeep, @) o b)) o )
+ (a0bo)co Oy —p1ey (14 Baysp, @) 0 b') o (14 ®ay5p)ay €))
+ Ay (@0D0)Co By 5171 (14 ®ayop, @) 0 D) 0 )
+ (aobo)Co ®(ay—py—y1 (14 By piysy; (@ 0 (14 ®ay4p, b)) 0 €)
+ (a0b0)co ®a gy (@ 0 (1a ®ay 41—y (14 Bay gy sy B) ¢ €)))
+ (a0bo)Co B(aypyey (@" ¢ (14 By 9@ —pnayn B (14 Oy 9)aer =gy €))))
+ Ay ) 1)) (@0D0)Co B(ay ey, (@70 (1 B(ayap)) (1< (B © €)))
+ Ay (@0D0)Co By —py)yr (A" 0 (14 By, 45, D)) 0 )
+ Ay 8, (@0P0)CO By p1)—y1 (14 By pysy, (@70 D)) 0 ')
+ Aoy 5, (A0D0)Co Bay 1)y, ((@" 0 D) 0 (14 ®ay.5)4y, €))
+ Aoy g1 A 1)y (@0D0)Co Ba, 1)y, ((@" 0 D) o ¢)

and

ao(boco)
= ao(boco) ®a, (g -y (14 Bais815y)—~@15y) (14 Barogi—ye@isyn @) 0 b)) o ¢)
+ ap(boCo) ®ay g1 -y1) (14 e85y @imy1) (@ © (1a Bayo@—n)a@isy) D)) © €)
+ a1y 8571)80(P0C0) a8 -y1) (14 B8,y groyn (@ 0 D)) o )
+ ao(boCo) ®ay (g -y (@" 0 (14 Bay<(—yp) (14 By, B') 0 €)))
+ Ay (5159 80(D0C0) Bay 81—y (@" ¢ (14 By, B) 0 €))
+ ao(boco) a1 —y1) (14 Bayo(s—yp) @) ¢ (b © (14 p, <y, €)))
+ ao(boCo) Bay gy (8" 0 (14 ®aya(g—yy) (B 0 (14 ®p 4y, €))))
+ Ay g1y @0(boCo) ®ayg—yy) (@" 0 (B 0 (14 ®p,4y, €)))
+ 4, 5,40(b0€0) ®ay—(1y1) (14 Bayo(gy1) @) © (B 0 ¢'))
+ A, 5,40(b0€0) Bay (1) (@" 0 (14 Bay<(gy41) (B © €)))
+ A,y Aan 811 @0(D0C0) By (51 (@7 0 (B 0 €)).

By induction hypothesis and (Q, <, —, <, >, -, 1) being a A-ETS, (a¢b) o ¢ =a ¢ (b ¢ ¢). Hence
(Sh;(A), ©) is an associative algebra with identity 14. O

For each w € Q, define a linear map P, : Sh;(A) — Shi(A),a — 14 ®, a. If further A is
a commutative algebra and (Q, «, —,<,>,-, 1) is a commutative 1-ETS, we get the following
result:
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Proposition 2.18. If A is a commutative algebra with identity 1, and (Q, —,—,<,>,-, 1) is a
commutative A-ETS, then (Shi(A), ¢, (P,,)weq) is the free commutative Q-Rota-Baxter algebra
generated by A.

Proof. For a,b € Shj,(A) and @, € Q,
Py,(a) o Pg(b) = (14 ®,a) o (14 ®b)
= 14 ®ap (1 ®asp @) ©b) + 1 ®pep (a0 (14 Rup b))
+ Aopla ®p(@aob)
= Py p(Pysp(@) o b) + Py p(@o Pyp(b)) + A, 3Pyp(a o b),
hence Shg(A) 1s an Q-Rota-Baxter algebra. Next we show
a7 aob=boa
by induction on £(a) + £(b). If £(a) + {(b) = 2, then {(a) = {(b) = 1 and
aob=aqayoby=agpby = bpayg = by o ay=b o a.
Suppose Eq. (47) holds for £(a) + £(b) < p, where p > 2 is a fixed integer. We consider the case
of £(a) + {(b) = p + 1. If one of £(a), {(b) is equal to 1, then Eq. (47) holds directly. We assume
that a = ag ®,, a’,b = by ®g, b’, then
aob = (ay®,, a’) o (by®p b")
= aobo ®q,p, (14 Baynp, @) ©B') + Apbo By, (2" ¢ (14 By a5, D)) + Ay 5, G0 Bary p, (@ 0 D)
= boay ®q,-p, (14 Bayop, @) 0 B") + boap ®q,p, (2" 0 (14 ®a,45, b)) + Aoy 5, boa0 B, 5, (" 0 D)
(by A being a commutative algebra)
= bty ®a,—p, (b 0 (14 ®aysp, ")) + by ®ayp, (14 ®a 5, b)) 0 Q") + Ay, 5,b0a0 ®g, 5, (b' 0 Q")
(by the induction hypothesis)
= boay ®p,ay (b 0 (14 @40, ")) + by O, 0, (14 Opy00, b)) © Q") + Ap, 0, boa ®p,.o, (b' 0 A")
(by Q being commutative)
= (by®p b") 0 (ap®,, a') =b®a.

Hence (Shg(A), ) is a commutative algebra.

Let (R, -, (P,)weq) be a commutative Q-Rota-Baxter algebra and f : A — R a commutative
algebra homomorphism. We extend f to an Q-Rota-Baxter algebra morphism f : Shi(A) — R as
follows: for a € Sh(,(A), we define ?(a) by induction on £(a). If £{(a) = 1, then define ?(a) = f(a).
Suppose f(a) has been defined for all a with £(a) < p, where p > 1 is a fixed integer. Consider
the case of £(a) = p + 1. We suppose that a = ay ®,, a’, and we then put:

f@) = flag) - Po,(f@").
We can get that it is the unique way to extend f as an Q2-Rota-Baxter algebra morphism. Hence
(Shi(A), o) is the free commutative Q-Rota-Baxter algebra generated by A. |

Let us assume that A is unitary. We denote its unit by 1,. For each w € Q, define a linear map
P, : Sho(A) — Shg(A),a — 1, ®, a.

Proposition 2.19. If A is a unitary commutative algebra and (Q, «—, —, <,>,-, A) is a commuta-
tive A-ETS, then (Shq(A), ¢, (Py)weq) is a commutative Q-Rota-Baxter algebra.
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Proof. For a,b € Sho(A) and a, € Q,
Py(a) o Pg(b) = (14 ®, a) o (14, ® b)
= 14 ®4p (14 ®aspg @) 0 b) + 14 @ (a0 (14 ®ap b))
+ Aopla ®p(@acb)
= Pog(Posp(@) o b) + Py pg(@a o Pougp(b)) + Ay sPop(aob),
hence Shg(A) is an Q-Rota-Baxter algebra. Next we show
(48) aob=boa
by induction on £(a) + £(b). If £(a) + {(b) = 2, then {(a) = {(b) = 1 and
aob =uayoby=agby = boayg = by ©ap=b ¢ a.

Suppose Eq. (48) holds for £(a) + £(b) < p, where p > 2 is a fixed integer. We consider the case
of £(a) + {(b) = p + 1. If one of {(a), {(b) is equal to 1, then Eq. (48) holds directly. So assume
a = dq ®0/1 a’,b = b() ®,31 b’, then

aob = (ay®, a’) o (b ®p b")
= apby ®a,—p, (14 Baysp, @) © D) + apby ®a,p, (A" ¢ (14 ®y,45, b)) + Ao, g,a0b0 ®g, 5, (2" 0 D)
= boap ®u—p, (14 ®pop @) 0 D') + boag ®ayp, (@ 0 (14 ®pyap, D)) + Aay g, boao By 5, (@ 0 D)
(by A being a commutative algebra)
= byay ®a,—p, (b 0 (14 ®aysp, A")) + boay ®ayp, (14 ®ayqp, b)) 0 Q") + Ay, 5,b0a0 ®g, 5, (b' 0 A")
(by the induction hypothesis)
= boay ®p,ca, (b © (14 ®p,aa;, @) + boao ®p, o, (14 Rpoa, ') 0 A") + A, o, boao ®p,.0, (b 0 Q")
(by Q being commutative)
= (by® b") 0 (ap®,, a') =b®a.
Hence (Shq(A), ¢) is a commutative algebra. m|
Let A be a commutative algebra. We put uA = k@ A and give it a product defined by
A+ a)u+b)=Au+ (b + ua + ab).
Then uA is a commutative unitary algebra and its unit 1, is the unit 1 of k.

Theorem 2.20. We put
Shy(4) =Ae (HuAe (kQ) @ @ (kQ) @ uA.

nz2 n's Vand (n—1)'s (kQ)

Then Shg,(A) is the free commutative Q-Rota-Baxter algebra generated by the algebra A.

Proof. Let (R, -, (P,).cq) be a commutative Q-Rota-Baxter algebra and f : A — R a (nonunitary)
algebra homomorphism. We extend f, first from u#A to R as a unitary algebra morphism by
sending 1,4 to 1g, then as an ()-Rota-Baxter algebra morphism j_” : Sh;,(A) — R as follows: for
a € Shq(A), we define ]_C(a) by induction on £(a). If £(a) = 1, then define ]_f(a) = f(a). Suppose
f(a) has been defined for all a with £(a) < p, where p > 1 is a fixed integer. Consider the case of
f(a) = p + 1. Suppose a = ay ®,, a’, then define

f(@) := f(ap) - Po,(f(@")).
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For any a € Shg,(A) and for any a € Q:

foPo(@) = f(14®, ) = 13- Po(f@)) = P, o f(a).
Let us prove that this is an algebra morphism. Let a,b € Shg,(A), let us prove that flaob) =
f(a)f(b) by induction on n = £(a) + {(b). If {(a) = £(b) = 1, then

faob) = faohy) = f(aobo) = f(ao) - f(bo) = f(a)- f(b).
If £(a) = 1 and £(b) > 1, then
f(aob) = f(aghy ®, )
flaoho) - Py, o f@)
f(@o) - f(bo) - Pa, o f@)
= f@) - f(b).
This is similar if £@) > 1 and £(b) = 1. If £@) > 1 and €(b) > 1, then
f@ob) = f(aohy ®a,-p, (1 ®aysp, @) 0 b)) + flaobo @qep, (@ 0 (1 ®q,qp, b))
+ F(Aay 5 @0bo @y, (2" 0 D))
= f(aobo) - Payop, © F((1 ®ayop, @) 0 B') + f(aoho) - Pocp, © f@ o (1 ®q,45 b))
+ Aoy 5, f(@obo) - Payp, © f(@ o)
= f(ao) - f(bo) -+ f(Payopy(Payop (@) 0 0)) + f(ao) - f(bo) - f(Pacp (@ © Poyas, (b))
+ Aoy 5 f (@) - f(bo) - f(Payp, (@’ o b))
= f(ap) - f(bo) - f(Pa,(a")Pg, (b))

= f(ao) - f(bo) - f(Pa, (@) - f(Pg, (b)) (by the induction hypothesis)

= f(ao) - f(by) - Po, 0 f(@') - P, o f(b)

= f(ap) - Po, o f@@") - f(bo) - Pg, o f(b) (as B is commutative)

= f(@)- f(b).
We get that it is the unique way to extend f as an Q-Rota-Baxter algebra morphism. Hence
Shg,(A) is the free commutative Q-Rota-Baxter algebra generated by A. O

3. MorE REsULTS ON A-ETS anp ETS
3.1. Description in terms of linear and bilinear maps. As in Lemma 5 of [5], we obtain:

Lemma 3.1. Let (Q, <, —, <, >, ) be a set with five operations and A = (A g)qpeq be a family of
elements in k indexed by Q* . We denote by kQ the vector space generated by Q. We put:

[ kKO —  kQ®?
Pt a®B — a<—LRa<p,
[ kKQ® — kQ*?
¥ a®f — a—-Larp,
[ KQ®* — kQ
v a®pB — Agpa-p.
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Then (Q, «—,—,<,>,-,A) is a A-ETS if, and only if:

(49) (t®id) o (1d® ¢, ) o (T®1d) o (¢, ®id) = (¢, ®1d) o (Id ® . ),
(50) (d®¢ )o(t®id)o(d®¢. )R (T®id) o (¢p. ®id) = (¢ ®id) o (Id® ¢.),
51) ((d®e_)o(t®id)o(id®¢.)o (t®id) o (p. ®id) = (¢ ®id) o (Id® ¢_,),

(52) (1d®¢.)o(p,®id) o ((d®¢_,) = (¢, ®id) o (Id® T) o (¢ ®1id),
(53) (1d®¢_)o(p_®id) o ((d®¢_,) = (¢ ®id) o (Id® T) 0 (¢, ®1d),
(54) poo(id®y.)= . ®id) o (id® 7)o (p_, ®id),
55 W.o®id)o(id®T1)o(d® ¢ )o(t®id)o (¢ ®id) =Top._ o (idQY.),

(56) (dey.)o(p,®id)o (Id®¢_,) = ¢_, o (Y. ®1id),

(57) Y. ®id)o (id®T1) 0o (¢ ®id) = (Y. ®id) o (Id ® ¢_,),

(58) Y. ®id)o (id®¢.) = ¢, o (Y. ®id),

(59) Yoo ®id) =¢. o (id®y.).

In particular, . is an associative product.

Proof. By Lemma 5 in [5], Egs. (49)-(53) are equivalent to (Q, «, —, <, >) being an EDS. More-
over, direct computations prove that Eq. (54) is equivalent to Eq. (11) and condition (a); Eq. (55)
is equivalent to Eq. (12) and condition (b); Eq. (56) is equivalent to Eq. (13) and condition (c);
Eq. (57) is equivalent to Eq. (14) and condition (d); Eq. (58) is equivalent to Eq. (15) and condi-
tion (e); Eq. (59) is equivalent to Eq. (16) and condition (f) in Definition 2.3. m|

Similarly, we obtain for ETS:

Lemma 3.2. Let (Q, <, —, <, >, %,-) be a set with six operations. We put:

QrF — Q2
P { (@f) — (@« pa<p),
Q? — Q2
oo { (@pf) — (a—pa>p),
Q? — Q2
b { (@f) — (a-B.ax*p).
Then (Q, «,—, <,>,*,-) is an ETS if, and only if, (34)-(38) of [5] are satisfied and:
(60) (o ®id) o (Id® ¢,) = (t®id) o (Id® ¢,) o (T®1d) o (p_, ®id),
(61) (g ®id) o (Id® p,) = (1d®¢,) o (T®id) o (Id® ¢. ) o (T ®1id) o (p_ ®id),

(62) ((d®¢.)o(p.®id)o(id®¢_,) = (¢ ®id) o (Id® 1) o (Id ® ¢.),

(63) (d®e.)o(t®id)o(p. ®1d) =(1d®¢,) o (T®1d) o (Id® T) 0 (Id® 0_,),

(64) (p.®@id) o (d® ¢, ) =(t®id) o Id® p. ) o (T ®id) o (¢, ®1id),

(65) (. ®1d) 0 (1d®T) 0 (. ®1d) = (1d® T) o (. ®1d) o (id ® ,).

Proof. By Lemma 5 in [5], Egs. (34)-(38) are equivalent to (2, «, —, <, >) being an EDS. More-
over, direct computations prove that Eq. (60) is equivalent to Eqgs. (17),(18) and (28); Eq. (61) is
equivalent to Egs. (19), (20) and (29); Eq. (62) is equivalent to Egs. (21), (22) and (30); Eq. (63)
is equivalent to Egs. (23), (24) and (31); Eq. (64) is equivalent to Egs. (25), (26) and (32); Eq. (65)
is equivalent to Egs. (27), (33) and (34). O
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3.2. A description of all 1-ETS of cardinality two. The following table gives all A-ETS. We
slightly generalize our definition, by accepting more general maps ¢. : kQ®* — kQ. The
underlying set is {a, b} and all the products are given by a 2 X 2 table. Here, A, u are elements of
the base field k.

Type — - < > Qs Name
a a\|fa a\|[a a\|[a a\|[(A+wa A+ ua
A (a a) (a a) a a)|\a al] | \(A+wa Ada+ ub A, p)
a b\|(a a\|[(A+wa A+ pa
a bl \\b bl \Q+mwa aa+m)| A28
a a\|fa b)\|[a a\|[a a\|[da Ada) [(da Ab , .,
B (a a) (a b) a al|l\a al|\la /la)’ (/la Ab Bi(4), BY(1)
a b\|[a a , .
Y N P By, B
a a\|[fa a\|[a a\|[a a Ada Aa
¢ (a b) (a b) a allla a (ﬂa /lb) G
a b\|[a a
a b)|[\b b G
b b\|(b b
b b)|\b b G
a a\|[b b 00 c
a a)|\b b 0 0 2
b b\|[a a
b bl|\a a Ca
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Type | « - < > @s Name
a a a a a a a a Ada Aa Ada Aa , .
b (b b) (“ a) a_a (a a (/la /la)’ (/lb /lb) Di(d), DY(A)
a b a a ) .
a b (b b D’,(1), D7 ()
a a a a a a a a Ada Aa
E (b b) (b b) a a (a a (/lb Ab) Ei(
a b a a
a b (b b E3(2)
a a b b 00 E
a a b b 00 2
a a\l|fa bY|[(a a\|[a a\|[(A+wa A+wa\ [((A+wa A+ wb , .
d (b b) (a b) a a (a a ((Mu)a /10+/1b)’((/l+,u)b Aa+ ) | F1Hs FUAL0
Ada Ab Ada Aa , ,
(xla /lb)’ (/lb /lb) Fi), FY()
Z Z (Z Z any associative product * F5(x)
a b a b da O
b a (b a (o /lb) Fa()
a a b b 00 F
a al|\b b 00 2
a b b a
b a (a b Fs
a b a b a a a a da Ab
G (a b) (a b) a a (a a (/la /lb) Gi()
a b a a
a b (b b G3(1)
a a b b 00 G
a al|\b b 00 2
a b a b a a a a Ada Ab
H (b a) (b a) a a (a a (xlb /la) H, ()
a b a a
a b (b b Hy()

The commutative A-ETS are the ones of type A and H, C;(1), C3(1), Cs(1), F' (A, p), F{' (A, 1)
and F4(4). The opposite of B|(1), B} (1), B,(1) and B} (1) are respectively D} (1), D} (1), D;(1)
and D7 (A). The opposite of C; is Cy4. The opposite of E;(1), E; and E3(2) are respectively G(A),
G, and G3(4). The opposite of Fi(4) is F{'(1). The A-ETS F, and F5 are not commutative but
are isomorphic to their opposite in a non trivial way. Finally, if * is an associative product, the
opposite of F3(x) is F3(x7).

3.3. A description of all ETS of cardinality two. The following table gives all the ETS of
cardinality 2.
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