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Fluidized-Bed Chemical Vapor Deposition

of Silicon on Very Dense Tungsten Powder

A very dense tungsten powder was coated by silicon from silane using the fluid-
ized-bed chemical vapor deposition process. A reactor of reduced diameter was
developed in order to decrease the weight of powders treated. Results show that
the fluidization of this powder is possible in this reactor, but with non-optimal gas
solid contact induced by the high powder density. Important disturbances of the
fluidized-bed temperatures appeared in the presence of silane, due to a partial bed
defluidization related to the cohesive nature of the deposit. These disturbances are
clearly exacerbated by the exceptional density of the particles. This is probably
why a powder agglomeration has been unavoidable when the bed temperature
was too low and/or the silane inlet concentration too high. However, a set of oper-
ating parameters could be found, allowing a uniform and continuous coating of
the whole powder surface.

Keywords: Chemical vapor deposition, Fluidization, Silicon coating, Silane, Very dense

powder
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1 Introduction

Fluidized-bed chemical vapor deposition (FBCVD) is an effi-

cient process to uniformly coat powders by a great variety of

materials [1]. FB reactors have excellent heat and mass transfer

capacities, high throughput rates, and can operate continu-

ously, thus reducing operating costs [2, 3]. Silicon from silane

(SiH4) precursor is certainly the most studied coating material

using this process because of its development for producing

solar-grade silicon to replace the Siemens process [3–11]. It is

worth noting that the literature works have most often been

conducted on easy-to-fluidize Geldart’s group B powders [12],

and employing FB reactors of internal diameters between 5 and

20 cm. The particles coated by Si FBCVD from silane are gen-

erally silicon seeds for the photovoltaic industry [3–11].

New nuclear fuels with limited enrichment in 235U are under

development for research nuclear reactors. Powdered U(Mo)

metallic fuels dispersed in an aluminum-base matrix appear

among the most promising materials. However, interfacial

interactions between the fuel and its matrix can occur under

irradiation, leading to a huge swelling of the fuel [13]. A solu-

tion could be to coat the fuel powder by a barrier before its dis-

persion into the matrix. Silicon seems to be a good candidate

[14]. Some promising irradiation tests have been performed

with U(Mo) coated with Si by physical vapor deposition (PVD)

[15, 16]. FBCVD could be another way to provide U(Mo) coat-

ed with Si, but its evaluation remains to be done.

Galerie et al. [17] have analyzed the deposition kinetics dur-

ing silicon FBCVD from silane on iron particles at tempera-

tures lower than 400 °C without giving information on the pro-

cess. To the best of our knowledge, no other study in literature

deals with FBCVD of Si from silane on metallic particles.

The metallic fuel U(Mo) powder has a very high density of

about 17 500 kgm–3 [18] close to that of tungsten (19 300 kgm–3).

This explains why a tungsten powder of mean diameter close

to that of the fuel powder has been used to analyze the feasibil-

ity to deposit silicon by FBCVD from silane. To the best of our

knowledge, this process has never been used to coat such dense

powders.

In a previous work of our group, the ability to fluidize this

powder has been demonstrated in a reactor of 5 cm internal

diameter [19]. However, the application requires minimizing

the weight of powder used for each coating experiment. Conse-

quently, in the present study, a FBCVD reactor of reduced

diameter (3.8 cm) has been tested.

First, experimental results about the fluidization hydrody-

namics of the tungsten powder in this reactor will be presented

prior to detail the thermal behavior of the FBCVD process and

then the results obtained about silicon deposition from silane.

2 Experimental

The FBCVD reactor for this study consists of a vertical cylin-

drical column of stainless steel, with 3.8 cm internal diameter

and 1m height. It is externally heated by a two-zone electrical
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furnace and the wall temperatures are monitored by two ther-

mocouples. Five thermocouples are also bundled into a 6mm

diameter stainless-steel tube, placed inside the reactor in order

to measure the bed temperatures at various heights. A sixth

thermocouple is placed under the stainless-steel porous plate

used for gas distribution. The inlet flow rates of silane (SiH4;

Air Liquide, N50) diluted in argon (Air Liquide, Alpha1) are

controlled by a ball rotameter and a mass flow controller,

respectively. A differential fast response pressure sensor with

taps under the distributor and top of the column measures the

total pressure drop across the bed. Moreover, an absolute pres-

sure sensor allows monitoring the total pressure below the dis-

tributor. A DasyLabâ system enables the online acquisition of

differential pressure, total pressure, and axial profile of bed

temperatures.

The FBCVD reactor was also used to perform fluidization

tests at room temperature and around 600 °C with pure argon

as carrier gas. Some fluidization tests at room temperature were

also carried out in a glass fluidization column with an internal

diameter of 0.05m and a height of 1m, equipped with the same

porous plate distributor. All experiments were performed

under atmospheric pressure.

The tungsten powder was supplied by NEYCO (CERAC,

Inc. T-1220). Its grain density is equal to 19 300 kgm–3. The

particle size distribution values measured by laser granulome-

try analysis on a Malvern MasterSizer Sirocco 2000 in dry

mode as illustrated in Fig. 1 a indicated that the distribution of

the particle diameters D10/D90 is 50mm/105 mm with a Sauter

diameter D3.2 of 70 mm.

Fluidization hydrodynamics was studied by plotting the bed

pressure drop versus increasing and decreasing gas superficial

velocity. A normalized bed pressure drop DP* was calculated

by dividing the bed pressure drop measured experimentally by

the theoretical bed pressure drop, equal to the bed weight per

column surface area. A normalized bed expansion H* was also

measured as the ratio between the expanded bed height and

the initial fixed bed height.

The morphology of the initial powder and of the coated par-

ticles was observed by scanning electron microscopy (SEM;

Philips XL 30 FEG and LEO 435 VP). SEM observations high-

lighted that tungsten particles are non-spherical and faceted, as

demonstrated in Fig. 1 b. X-Ray diffraction (XRD) analyses

were performed on the compacted powders before and after

deposition on a Seifert-3000TT equipment.

3 Results and Discussion

All the results below were obtained without premixing of the

powder once placed in the columns. Fig. 2 presents the normal-

ized bed pressure drop curves obtained in the glass column of

5 cm and in the FBCVD reactor of 3.8 cm at ambient tempera-

ture, for 1.3 kg of powder. In both curves, a fluidization hori-

zontal plateau is present for DP* close or equal to 1, proving

that a complete fluidization of particles was achieved. In the

glass column, a small part of powders remained stuck on the

walls due to electrostatic effects, which could explain that the

plateau is not exactly observed at DP* = 1 and that an hysteresis

appears between increasing and decreasing curves.

The minimum fluidization velocity Umf was classically deter-

mined by the method of Davidson and Harrison [20] at

decreasing gas velocity. A similar value of Umf was found in the

two reactors, near to 2.7 cm s–1. This value is very close to that

previously found in the 5-cm stainless-steel FBCVD reactor

using pure argon [21]. According to Liu et al. [22] and to Guo

et al. [23], when the reduction of the reactor diameter leads to

modifications of the FB hydrodynamics, the Umf value in-

creases and a pressure overshoot appears on the pressure drop

curves, due to wall effects. In our case, it can then be concluded

that the FB hydrodynamics is not markedly modified by the

reactor diameter reduction. Liu et al. found that wall effects

only appear for reactors of diameter below 2 cm, called micro

FB, which is coherent with our own results, even if the density

of the powders is very different.

a)

b)

100 microns

Figure 1. (a) Volume diameter distribution, (b) SEM micrograph

of the tungsten powder.



The bed expansions generally vary between 1.2

and 2 for conventional fluidized beds [24, 25]. In

our case (Fig. 2 c), the bed expansions do not

exceed 1.4, even for a fluidization ratio U/Umf of 6.

This can be explained by the fact that in a fluidized

bed the particles are submitted to three different

major forces, the gravitational force, i.e., the weight

of particles, the gas-particle interaction drag force,

and the particle-particle or particle-wall interaction

force. According to Wang et al. [26], when very

dense particles are fluidized, the gravitational force

dominates the others. As a consequence, the bed

expansion is low meaning that the number and size

of gas bubbles into the bed are low, too. Even if

bubbles can have negative impacts such as gas

bypassing through bubbles, it is clear that bubble

motion and gas circulation around the bubbles

contribute to good gas and solids mixing.

One of the most famous empirical correlations

predicting the fluidized-bed expansion, especially

for Geldart’s group A particles, is that of Richard-

son and Zaki [27]. This correlation indicates that

bed expansion decreases if the particle density

increases, meaning that for very dense powders the

gas-solid contact is of lower quality. A hysteresis

exists between the increasing and decreasing

expansion curves at low gas velocity. This means

that the powder is aeratable as Geldart’s group A

particles, probably due to its quite low mean diam-

eter [28]. So, even if non-optimal, the FB hydro-

dynamics seems convenient to ensure good thermal

and mass transfers conditions necessary to perform

CVD in this reactor with reduced diameter.

The operating conditions tested by FBCVD and

the average bed temperatures before, during, and

after each deposition experiment are detailed in

Tab. 1. The operating parameters were chosen on

the basis of previous results of our group [6, 29], in

order to not agglomerate the bed and to form sili-

con deposits of at least 0.5 mm thickness for an easi-

er characterization. For all runs, the fluidization

ratio U/Umf was fixed to 5.3 and the weight of pow-

ders was 1.5 kg corresponding to a ratio between

the fixed bed height and the reactor diameter of

3.4.

The experimental results are summarized in

Tab. 2. The silane conversion rates and weight per-

centages of silicon deposited on powders were

deduced from bed weighing before and after depo-

sition. A theoretical thickness of silicon was also

calculated from the mass of deposited silicon on

the bed, assuming that the deposit is uniform on

the whole powder surface. The real thickness of the

coatings was determined from SEM analyses in a

cross section after mechanical polishing of em-

bedded powders in epoxy or after crushing the

coated particles.

As detailed in Tab. 2, laser size analyses per-

formed after each run indicate that the Sauter

a)

b)

c)

Figure 2. (a) Normalized bed pressure drop in the glass column with 5 cm diam-
eter and (b) in the FBCVD reactor with 3.8 cm diameter, (c) normalized bed ex-

pansion in the glass column vs. increasing and decreasing argon velocities at

ambient temperature.



diameter of powders is slightly higher than the initial one, indi-

cating that no bed agglomeration occurred, except for runs W5

and W7. The deposit thicknesses could not be deduced from

these results because they are in the measurement uncertainty

of the method.

Fig. 3 presents the thermal profiles obtained during runs W6,

W5, and W7. They are characteristic of the whole thermal pro-

files obtained without and with bed agglomeration phenomena.

The heating step duration was around 70min. Once stable

thermal profiles were obtained, the FB temperature gradient

(thermocouples TC1 to TC5) before silane injection was lower

than 10 °C. This confirms that the bed of powders was conven-

iently fluidized at high temperature. The temperature TC6

measured under the distributor was kept below 200 °C in order

to not decompose silane before its entrance into the reactor

and to not plug the distributor by silicon deposition.

It is worth noting that for experiments without any agglom-

eration phenomenon like run W6 (Fig. 3 a), as soon as silane is

injected into the bed, a thermal gradient systematically appears,

the bottom part of the bed being gradually colder. This gradient

was on average close to 70 °C and it systematically decreases a

few minutes after the end of silane injection, probably due to a

partial and reversible defluidization of the bed.

For a deeper analysis of this phenomenon, Tab. 1 provides

the average bed temperatures measured before, during, and

after silane injection for each run. It appears that the mean

temperatures in the presence of silane are always higher than

those before silane injection, from 2 °C to 12 °C depending on

the conditions tested. This could be due to an overheating of

the furnace to meet its target wall temperature when the bed is

partly defluidized, since the gas-solid heat transfers are cer-

tainly lower. The temperatures corresponding to the period of

15min after deposition are also often higher than those before

silane injection, certainly due to the thermal inertia of the reac-

tor. The bed pressure drop (not shown) was close to the appa-

rent bed weight before silane injection, slightly increased dur-

ing deposition by 10mbar on average, and recovered its initial

value after deposition. It is well-known that silicon CVD from

silane can involve some reversible disturbances of the bed ther-

mal profile and pressure drop due to a partial defluidization of

the bed, probably related to the appearance of short-lived

agglomerates. Indeed, silicon dangling bonds are probably

formed on the surface of each particle during deposition, acting

as a glue for the surrounding particles [5, 6].

Fig. 3 b presents the bed thermal profile during run W5, in

which an irreversible agglomeration of powders occurred a few

minutes after silane injection. A sharp increase of the bed pres-

sure drop (not shown) and a marked thermal gradient of more

than 200 °C were rapidly observed along the bed, leading to the

immediate stop of silane feeding.

Run W7 began with 4 vol% of silane but since strong distur-

bances of temperatures and of bed pressure drop rapidly

appeared, the silane molar fraction was reduced to 2.9%, thus

leading to more stable process conditions (Fig. 3 c). But the

thermal gradient remained higher than for runs performed at

lower inlet silane concentration.

Table 1. Operating conditions tested and measured average bed temperatures.

Run
Silane inlet vol.

[%]

Run duration

[min]

Average bed T before

deposition [°C]

Average bed T during

deposition [°C]

Average bed T after

deposition [°C]

W2quater 2.6 120 587 597 604

W3 2.6 120 606 608 609

W4 5.2 60 621 624 620

W5a 5.2 15 605 621 580

W6 2.6 120 618 625 621

W7 a) 4–2.9 60 604 602 603

a) These runs have led to irreversible bed agglomeration.

Table 2. Experimental results.

Run
Silane conversion

rate [%]

Silicon [wt%] deposited

on powders

Thickness deduced

from bed weighing [mm]

Thickness deduced

from SEM [mm]

Sauter diameter

of powders [mm]

W2quater 100 0.83 0.76 0.75 70.9

W3 100 0.96 0.87 0.72 71.3

W4 100 0.78 0.71 0.53 70.9

W5a) – – 0.27 – –

W6 100 0.97 0.88 0.8 72.4

W7 a) 93.4 0.4 0.37 0.37 69.5

a) These runs have led to irreversible bed agglomeration.



In the case of silicon FBCVD on powders of conventional

density, most often of Geldart’s group B, and with reactors of

larger diameter [3–11], the bed thermal disturban-

ces are clearly lower than in our case even for much

higher silane inlet molar fractions. This means that

neither the variations of the fluidization gas prop-

erties nor the reaction enthalpy can explain the bed

pressure drop and thermal profiles disturbances we

observed. The latter are clearly linked to the very

high density of the tungsten particles.

As previously explained, fluidized particles are

submitted to three different major forces, namely,

the weight of particles, the gas-particle interaction

drag force, and the particle-particle or particle-wall

interaction force. Different particle-particle forces

can coexist, which are either repulsive like the solid

collision forces or attractive like the Van der Waals

or the electrostatic forces. In the case of silicon

deposition from silane, a specific attractive force

appears, related to the deposition chemistry on the

particle surface. As long as the repulsive forces are

higher than the attractive ones, for worse only a

partial defluidization is observed, leading to higher

bed pressure drop and thermal profiles. When this

is not the case, an irreversible agglomeration of

particles occurs. In the case of the very dense tung-

sten particles, we have previously explained that

the dominant force into the bed without silane is

the weight of particles, meaning that the repulsive

force linked to particle collisions is lower than for

powders of more classical density. So, the silane

concentrations for which agglomeration happens

are lower than for conventional powders.

Agglomeration seems to be exalted if the silane

concentration is increased (runs W5 and W7 com-

pared to run W3) and/or if the bed temperature is

decreased (run W5 compared to run W4). It is like-

ly that the number of Si dangling bonds per unit

surface area of powder increases with silane con-

centration. The chemistry and kinetics of silane

pyrolysis and of silicon deposition are probably

slightly different at 600 °C and at 620 °C, leading to

more numerous dangling bonds at 600 °C.

As desired, for the runs without agglomeration,

the silane conversion rate was always close to 100%

as detailed in Tab. 2. These good conversion rates are

due to the combination of low inlet silane concentra-

tions, sufficiently high bed temperatures, and large

enough residence times of the reactive gas into the

bed [29]. The theoretical thicknesses deduced from

bed weighing before and after deposition were

always larger than 0.5 mm as initially planned,

except for the two peculiar runs W5 and W7.

SEM views of the powder surface before and after

silicon deposition are displayed in Fig. 4. The differ-

ence between coated and uncoated tungsten surface

is obvious: the nontreated surface of particles is rela-

tively smooth, whereas the silicon deposit forms a

nodular film. Such morphology is characteristic of

silicon CVD films from silane for this range of temperatures

under atmospheric pressure [5, 6]. This is due to the fact that sili-

a)

b)

c)

Figure 3. Thermal profiles in the bed (TC1 to TC5) and below the distributor

(TC6) during runs (a) W6, (b) W5, (c) W7. Heights above the distributor for ther-
mocouple TC1: 1 cm, TC2: 12 cm, TC3: 7 cm, TC4: 5 cm, TC5: 2.5 cm.



con deposition in an FB reactor not only involves heterogeneous

deposition mechanisms from silane, but also homogeneous for-

mation of silicon nuclei in the gas phase, which can be scavenged

by the bed particles [11]. It is worth noting that for all experi-

ments the top part of the reactor was covered by a very thin

brown layer probably formed of these homogeneously born sili-

con nuclei. No clear trend appears for the influence of bed tem-

perature or of silane inlet concentration on the coating morphol-

ogy, probably because the ranges of variation are too small.

Fig. 5 presents SEM views of crushed powders after runs W4

and W6, on which the uniformity and continuity of the deposit

on the tungsten surface clearly appears as its nodular morphol-

ogy. On these SEM micrographs, it is not possible to distin-

guish an intermediate layer between the substrate and the Si

layer that could indicate the formation of a silicide layer as

reported by Yoon et al. [30] in a study about planar CVD of Si

on W at higher temperatures of 1000 °C and more. It is worth

noting that the deposit thickness can be estimated on these

micrographs. For the whole runs without bed agglomeration,

the measured thicknesses are close to those deduced from bed

weighing as detailed in Tab. 2, thus proving the uniformity of

the deposit over the whole powder surface. This is a major

result since it indicates that even if the bed was partly deflui-

dized, the mixing of the powders by the gas was intense enough

to ensure uniform deposition conditions.

Some XRD measurements were performed before and after

experiments as illustrated in Fig. 6, revealing that for all the

conditions tested, the silicon deposit is composed of amor-

phous and polycrystalline phases, with {111} and {220} prefer-

ential orientations. Such mixed product is a classical result for

the range of temperatures tested [11]. These crystalline prefer-

ential orientations of silicon were also obtained in another

work on planar substrates in the same range of temperatures

[31]. No influence of the temperature appears on the XRD dif-

fractometers, certainly due to the fact that the tested tempera-

ture range is quite small.

4 Conclusions

Very dense tungsten powders simulating nuclear fuel particles

were coated by silicon from silane (SiH4) using the fluidized-

bed chemical vapor deposition process. A reactor of reduced

diameter in comparison with previous works was selected in

order to decrease the weight of powder.

First, it could be verified that the decrease of reactor dia-

meter from 5 to 3.8 cm does not modify the fluidization behav-

ior of the tungsten powder. These particles can fluidize with

characteristics of Geldart’s group A powders due to their small

mean diameter, but with non-optimal gas solid contact cer-

tainly induced by their exceptional density.

Then, operating conditions involving inlet molar fractions of

silane between 2.6 to 5.2% in argon and bed temperatures be-

tween 590 °C and 625 °C were determined, allowing to uni-

formly deposit continuous silicon films of at least 0.5 mm thick-

ness on the whole surface of the powder. The coatings are of

nodular morphology and appear as mixed-phase, amorphous,

and polycrystalline.

a)

b)

Figure 4. SEM micrographs of the tungsten powder (a) before

and (b) after deposition.

a)

b)

Figure 5. SEM micrographs of some crushed tungsten particles

after (a) run W4, (b) run W6.



When the inlet molar fraction of silane was too high and/or

the bed temperature too low, an irreversible bed agglomeration

occurred. Moreover, bed thermal gradients and pressure drop

disturbances classically associated to this process were more in-

tense than in previous works involving easy-to-fluidize pow-

ders and larger reactor diameters. This could be due mainly to

the high density of the tungsten powder and also to the de-

crease of reactor diameter, both reducing the intensity of the

gas-solid mixing and thus favoring defluidization phenomena

induced by the cohesive nature of the silicon deposit.

These results prove that the FBCVD process is an appropriate

technology to deposit silicon coatings on very dense particles,

even in a reactor of reduced diameter. New experiments are in

progress in order to study higher deposition temperatures to bet-

termeet barrier requirements for nuclear fuel applications.
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[17] A. Galerie, G. Le Dû, M. Caillet, P. A. Mari, B. Pingaux,

J. Phys. 1989, 50, C5-709–C5-717.
[18] H. J. Ryu, J. M. Park, K. H. Lee, B. O. Yoo, Y. H. Jung, Y. J.

Jeong, Y. S. Lee, Y. S. Kim, RRFM, European Research Reactor

Conference, Saint Petersburg, Russia, April 2013.

[19] P. Rodriguez, B. Caussat, C. Ablitzer, X. Iltis, M. Brothier,

J. Nanosci. Nanotechnol. 2011, 11, 8083–8088.
[20] J. F. Davidson, D. Harrison, Fluidised Particles, Cambridge

University Press, New York 1963.
[21] P. Rodriguez, B. Caussat, C. Ablitzer, X. Iltis, M. Brothier,

Chem. Eng. Res. Des. 2013, 91, 2477–2483.
[22] X. Liu, G. Xu, S. Gao, Chem. Eng. J. 2008, 137, 302–307.
[23] Q. J. Guo, Y. Xu, X. Yue, Chem. Eng. Technol. 2009, 32,

1992–1999.
[24] D. C. Saua, S. Mohanty, K. C. Biswal, Chem. Eng. Proc. 2010,

49, 418–424.
[25] D. Geldart, A. C. Y. Wong, Chem. Eng. Sci. 1984, 39, 1481–

1488.
[26] Y. Wang, Y. Cheng, Y. Jin, H. T. Bi, Powder Technol. 2007,

172, 167.
[27] J. F. Richardson, W. N. Zaki, Trans. Inst. Chem. Eng. 1954,

32, 35–53.
[28] A. Castellanos, Adv. Phys. 2005, 54, 263–376.
[29] L. Cadoret, C. Rossignol, J. Dexpert-Ghys, B. Caussat, Mater.

Sci. Eng. B 2010, 170, 41–50.
[30] J. K. Yoon, K. W. Lee, S. J. Chung, I. J. Shon, J. M. Doh, G.

H. Kim, J. Alloys Comp. 2006, 420, 199–206.
[31] J. M. Westra, V. Vavrunkova, P. Sutta, M. Seman, Energy Pro-

cedia 2010, 2, 235–241.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80

a
.u

.

2 Theta

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80

a
.u

.

2 Theta

a)

b)

Figure 6. XRD diffractomers of the powder after (a) run W2qua-

ter and (b) run W6.


