
HAL Id: hal-03464623
https://hal.science/hal-03464623v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporalizing Static Graph Autoencoders to Handle
Temporal Networks

Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart

To cite this version:
Mounir Haddad, Cécile Bothorel, Philippe Lenca, Dominique Bedart. Temporalizing Static Graph
Autoencoders to Handle Temporal Networks. ASONAM 2021: IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining, Nov 2021, The Hague, Netherlands.
�10.1145/3487351.3488333�. �hal-03464623�

https://hal.science/hal-03464623v1
https://hal.archives-ouvertes.fr

Temporalizing Static Graph Autoencoders to Handle
Temporal Networks

Mounir Haddad
Lab-STICC, CNRS UMR 6285
IMT Atlantique, Brest, France

DSI Global Services
Plessis-Robinson, France

mounir.haddad@imt-atlantique.fr

Cécile Bothorel
Lab-STICC, CNRS UMR 6285
IMT Atlantique, Brest, France

cecile.bothorel@imt-atlantique.fr

Philippe Lenca
Lab-STICC, CNRS UMR 6285
IMT Atlantique, Brest, France
philippe.lenca@imt-atlantique.fr

Dominique Bedart
DSI Global Services

Plessis-Robinson, France
dominique.bedart@dsi-globalservices.fr

Abstract—Graph autoencoders (GAE), also known as graph
embedding methods, learn latent representations of the nodes
of a graph in a low-dimensional space where the structural
information is preserved. While real-world graphs are generally
dynamic, only a few embedding methods handle the temporal
dimension: Even though they have proven their reliability, the
majority of the embedding techniques address the case of
static networks and present poor performances when applied
to temporal ones.

In this paper, we present a generic method to temporalize static
graph autoencoders, i.e. adapt different static graph embedding
methods to the case of temporal networks. This is made possible
by learning optimal connections between timesteps’ graphs in
order to form a single merged spatio-temporal network. We prove
that this highly improves the inference tasks’ accuracy of the
temporalized methods. We also show that the learned connections
are directly related to nodes characteristics and can be used
beyond the scope of the embedding they are designed for.

Index Terms—Graph autoencoders, Graph embeddings, Tem-
poral networks, Node classification, Edge reconstruction and
prediction

I. INTRODUCTION

Many real-world phenomena consist of interactions between
entities, generally represented in graphs. When they are ad-
dressed properly, these graphs can reveal important informa-
tion about their fundamental structures helping to discover
local, global or temporal interaction patterns. Such knowledge
is very useful to understand how information gets diffused
or how epidemics spread. However, in their original form,
graphs are not easily exploitable by machine learning models.
Therefore, a prerequisite is to build graphs’ representations
suitable for the downstream inference tasks.

During the last decade, new research approaches known
as representation learning techniques aim to encode various
data types into low-dimensional representations, called em-
beddings, in latent vector spaces [2]. Representation learning
techniques have been first designed for text mining [17] and
have shown very conclusive performances. Thereafter, they

have been adapted to other data structures such as graphs.
Some approaches are based on random walks [5], [9], [21],
matrix factorization [1], [4], [19], or neural networks [14],
[20], [26].

Although these methods are well-proven and show remark-
able results regarding numerous application scenarios, they
are designed to address static graphs and are generally less
efficient when they are applied to temporal ones, partly due to
the misalignment and the instability of the embeddings [10].
However, the temporal dimension is elementary for evolution
patterns appreciation. There are different ways to incorporate
this additional data. Some techniques employ the available
temporal information to build more efficient global embed-
dings [18], [29]. In this work, we focus on temporal graph
autoencoders, i.e. those which return sequences of embeddings
[11], [12], [16], [22], [28]. These techniques enhance the
performances on the inference tasks that are sensitive to the
temporal dimension. However, they are hard to design and
are therefore few comparing to the static ones. In this paper,
rather than conceiving another temporal embedding model,
we present a generic method to temporalize existing static
graph autoencoders, provided that they are composed of neural
networks taking graphs adjacency matrices as input.

For this purpose, we use and modify the so-called
supra-adjacency representation of a temporal network [7],
[23], [25]. It consists of a mapping between a sequence
of graphs (a temporal network in our case) and a static
supra-graph whose supra-nodes are pairs of {node, timestep}
of the original temporal graph. The supra-edges of this supra-
graph are transposed from the original graph: For example, an
edge between the nodes v1 and v2 at timestep t translates into
a supra-edge between the supra-nodes {v1, t} and {v2, t}. At
this stage, the supra-graph is composed of T disconnected
components, where T is the number of timesteps in the
original temporal graph. Then, to connect pairs of supra-nodes
not belonging to the same component, additional weighted

supra-edges are created. In the rest of the paper, temporal
edges and temporal weights will respectively refer to these
additional supra-edges and their weights.

Our main contribution lies in the way these temporal
edges are created. Indeed, where other supra-adjacency-based
approaches [7], [23], [25] attribute fixed weights to the supra-
edges connecting the supra-nodes, we assign learned weights,
making our method more data-driven. We show in our ex-
periments that the built supra-graph is more suitable to node
classification/prediction and link reconstruction/prediction in-
ference tasks in terms of performances. Also, we demonstrate
that the learned temporal edges can directly be employed to
temporalize other static graph embeddings models that are
not suitable for the presented temporalization method, such as
skip-gram-based ones [9], [21]. This ensures highly improved
inference performances. Finally, we expose some interesting
correlations between the characteristics of the nodes and the
learned temporal edges’ weights.

The remainder of this paper is organized as follows. In
section II, we describe our temporalization approach. Section
III presents our experimental setting. In section IV, we expose
the performed experiments and interpret the results.

II. AUTOENCODERS TEMPORALIZATION

The key idea behind our approach is the way we adapt and
slightly modify autoencoders’ structure to learn the optimal
weights to be assigned to the temporal edges.

A. Additional input layer

Given a static neural network-based embedding method tak-
ing an adjacency matrix as input, we first insert a preliminary
layer connected to the input data, which role is to form the
supra-adjacency matrix. Concretely, this layer builds a block
diagonal matrix of shape (|V |·T)×(|V |·T) from the sequence
of T input |V | × |V | adjacency matrices, where V is the set
of the original graph nodes. Then, additional trainable entries,
corresponding to the weights of temporal edges, are filled in
the block diagonal matrix, as figure 1a shows.

For the sake of model simplicity, we do not consider the pos-
sibility of creating temporal edges between any supra-nodes.
The temporal edges we allow are of shape: {v, ti}, {v, tj}
(figures 1b and 1c), i.e. supra-edges between a node and
itself at different timesteps. Otherwise, the number of trainable
weights would be much larger, increasing training time.

We consider different variants of temporal edges:
1) Directed/undirected temporal edges: Once the supra-

adjacency matrix is built, all its entries have the same nature,
irrespective of whether they correspond to learned temporal
edges or supra-edges derived from the original graph. This
means that, beyond their latent character, temporal edges may
also have a practical signification similar to the other edges: If
so, a temporal edge between {v, ti} and {v, tj} would mean
that there is a mutual influence between the states of the node v
at ti and tj . Having said that, a node that would impact itself in
previous timesteps doesn’t seem to be realistic. Therefore, one
possibility to avoid this situation is to use directed temporal

edges, for example a directed edge from {v, ti} to {v, tj} with
ti < tj . This translates into an asymmetric supra-adjacency
matrix where only the lower triangular part of the matrix is
filled with the learned temporal weights. Otherwise, one can
still consider symmetric supra-adjacency matrices. In such a
case, an undirected connection between {v, ti} and {v, tj} can
be interpreted as a temporal smoothing constraint that forces
the continuity of a node’s embeddings over time, rather than
a mutual influence between two different timesteps states of
a node. We define the hyperparameter s that controls the two
possibilities: s equals 0 or 1 when we respectively impose
directed/undirected temporal edges (resp. figures 1c and 1d).

2) Temporal window: The main intuition behind the pre-
sented autoencoder temporalization method lies in the fact that
a node embedding should be conditioned by its interactions as
well as by its previous states. The most straightforward way to
achieve this is to create temporal edges between each pair of
supra-nodes {v, t}, {v, t+1} (with (v, t) ∈ V × [[1, T − 1]]).
However, it is possible to let the temporalized autoencoder
build more sophisticated and complex temporal evolution
patterns by allowing the temporal edges to cover longer time
intervals. To that end, we consider a hyper-parameter called
the temporal window w. For a given value of w, the set of
temporal edges to add to the supra-adjacency matrix is: {v, t},
{v, t+ i} for (v, i, t) ∈ V × [[1, w]]× [[1, T −1]] with t+ i ⩽ T
(figure 1e). Also, it is possible to combine undirected temporal
edges with a temporal window w > 1 as shown in figure 1f.

B. Output layer modification

In order to obtain reliable embeddings, the last layer of
graph autoencoders generally consists of a comparison be-
tween the input adjacency matrix and a pairwise similarity
measure of nodes’ embeddings, often the dot product. In our
case, it is not relevant to compare the whole supra-adjacency
matrix to the similarities of all supra-nodes pairs. As a matter
of fact, the reliability of the embeddings is determined by
the ability to preserve the input graph structures. Thus, as
the temporal edges are additional artifacts, they shouldn’t be
taken into account within the last layer. Consequently, in the
last layer, the comparison is made between the supra-adjacency
matrix with no temporal edges and the similarities of the supra-
nodes pairs that belong to the same timestep. This is equivalent
to comparing the sequence of the T input adjacency matrices
and the pairwise similarities of nodes for each timestep.

C. Temporal embeddings

A temporalized autoencoder learns latent representations
of supra-nodes. This means that, given a temporal graph
composed of |V | nodes on T timesteps, the temporalized
autoencoder returns |V | · T embedding vectors, one for each
supra-node. Then, it is easily possible to reshape this em-
bedding matrix into T matrices of shape |V | × d, where d
is the embedding dimension. Each one of these T matrices
represents the embeddings of the original graph nodes’ at a
certain timestep.

(a) Supra-adjacency
matrix structure

(b) Temporal graph basic
temporalization

(c) Temporalization with
s = 0 and w = 1

(d) Temporalization with
s = 1 and w = 1

(e) Temporalization with
s = 0 and w = 2

(f) Temporalization with
s = 1 and w = 2

Fig. 1: Examples of supra-adjacency matrices. Ai represents
the i-th timestep adjacency and the symbols + mark the
locations of the temporal weights entries

III. EXPERIMENTAL SETTING

A. Temporalized autoencoders

As stated in section II, the embedding methods that are
suitable to our temporalization technique must meet some
criteria: They should consist of neural networks taking an
adjacency matrix in input. We consider 5 models, presented
in the following papers:

• SDNE [26]: This model learns embeddings by training a
neural network aiming to preserve jointly the first-order
and the second-order proximity of graphs nodes’. Apart
from the embedding dimension d, SDNE has two hy-
perparameters α and ν as well as the number of hidden
layers and their respective sizes. In our experiments, we
use popular default values for α and ν and we consider
only one hidden layer, with a size equal to 2d.

• GAE/VGAE [14]: This work describes two different
methods. The main idea behind both is employing a
graph convolutional network [13] as the encoder and
an embedding pairwise inner product as the decoder.
VGAE differs from GAE as it maps the input data to

a distribution rather than a vector. The embeddings are
obtained by a random sample of the learned distribution.
In our experiments, we use the default values for the two
models’ hyperparameters, i.e. the learning rate, the decay,
and the dropout. For the hidden layer, we set its size to
double the embedding dimension.

• ARGAE/ARGVAE [20]: In this work, the variational
graph autoencoder approach models have been taken
over and modified using adversarial regularization [8] to
enforce latent embeddings to match a prior distribution.
In a similar way to [14], two variants are designed,
ARGAE and its variational version ARGVAE. In our
experiments, we keep the same hyperparameters’ values
used in GAE/VGAE.

For the temporalization purpose, two additional hy-
perparameters s and w, are required as described in
section II-A. In our experiments, we test a grid search over
(s, w) ∈ {0, 1} × {1, 2, 3}. In the rest of the paper, a tempor-
alized autoencoder will be noted TT (trained temporalization),
e.g. SDNE TT or GAE TT.

B. Baseline methods

To evaluate our approach, we compare the temporalized
autoencoders’ performances to other static and temporal em-
bedding models. As static ones, we consider deepwalk (DW)
[21], node2vec (N2V) [9] as well as the original static autoen-
coders we temporalize, i.e. SDNE, GAE, VGAE, ARGAE, and
ARGVAE.

Also, to challenge the step where we learn the temporal
weights, we temporalize each one of the static embedding
methods using fixed (non-trainable) temporal edges’ weights,
in a similar way to the other supra-adjacency-based methods
[7], [15], [23], [25]. In this context, we consider different
strategies for assigning the fixed temporal weights: the maxi-
mum/average value of all the temporal network weights, or, for
each node, the maximum/average value of its edges’ weights.
In the rest of the paper, this fixed temporalization method will
be noted FT, e.g. SDNE FT or GAE FT.

For the temporal embedding baseline methods, we employ
dynamicTriad (DT) [28] and temporalNode2vec (TN2V) [11].

Below, the hyperparameters sets tested for the different
baseline methods considered in the comparison:

• DW: with wl and ws representing respectively the
walk length and the window size, a grid search over
(wl,ws) ∈ {40, 80, 120} × {3, 5, 7}.

• N2V: we keep the values of wl and ws giving the best
performances in DW, then we perform a grid search over
(p, q) ∈ {0.5, 1, 2}2.

• DT: a grid search over (β0, β1) ∈ {0.01, 0.1, 1, 10}2
where β0 and β1 respectively stand for the triad closure
process weight and the temporal smoothing parameter.

• TN2V: This model has 8 hyperparameters. For our ex-
periments, we employ authors’ tested values.

C. Datasets

To compare the different algorithms’ performances, we
gathered 3 real-world temporal networks, for which we have
metadata about the nodes’ labels, i.e. the ground-truth com-
munities the nodes belong to.

• AMiner [24]: This dataset1 consists of 11371 coauthor
relationships (edges) between 2385 researchers (nodes),
divided into 8 timestamped weighted graphs, one per
year, where weights refer to the number of common
articles between two authors. Regarding the research
domains their articles address, researchers are mapped
to research fields (labels).

• Yelp: This dataset2 traces the timestamped comments web
users made on businesses (malls, restaurants...). Upon this
data, we build a temporal graph divided into 7 timesteps
of equal durations, where the 2445 users and businesses
are the nodes and the 2839 comments are the edges. As
businesses are assigned with categories, we map users to
the same categories, regarding the kind of businesses they
usually comment on.

• Tmall: This dataset is extracted from the sales at Tmall3

during the period preceding the ”Double Eleven Day”
event. It traces the interactions online shoppers had with
products. Based on this data, we form a temporal graph of
8 timesteps (with equal durations), 2586 nodes (shoppers
and products) and 4152 edges (interactions). Similarly to
Yelp, we assign labels to the nodes based on the products’
categories.

As the three considered datasets have a number of nodes
of the same order of magnitude (and approximately a dozen
of ground-truth communities), we consider an embedding
dimension d = 16 for all of them4.

D. Application scenarios

To compare the different models’ performances, we consider
4 inference tasks.

• Node classification/prediction: Based on the output em-
beddings, the goal is to find nodes’ labels using a classi-
fier: the current timestep’s ones for the node classification
and the next timestep’s ones for the node prediction.

• Edge reconstruction/prediction: In these two tasks, a clas-
sifier is trained on the distances between pairs of nodes’
embeddings to determine the pairs that are connected by
an edge (in the current timestep for the reconstruction
and in the next one for the prediction).

For the different inference tasks, we use logistic regression as
the classifier and the F1 score as the evaluation metric.

1We use an extract of the original AMiner dataset
2An extract of Yelp challenge dataset: https://www.yelp.com/dataset
3https://tianchi.aliyun.com/competition/entrance/231576/information
4The embedding dimension to choose depends mostly on the number of

the ground-truth communities, but also on the number of nodes [3], [11].

IV. EXPERIMENTS AND RESULTS ANALYSIS

A. Temporalization contribution

First, we compare the inference scores of the original au-
toencoders and their fixed and trained temporalization. Figure
2 shows the results of this experiment where we represent
the best scores for each model (best hyperparameters for TT
and best fixing weights strategy for FT), inference task, and
dataset.

As expected, the original autoencoders are less efficient than
the temporalized ones. Also, we can see a noticeable difference
in models performances ranking between the time-dependent
tasks (i.e. node prediction and edge prediction) and the time-
agnostic tasks (node classification and edge reconstruction).
As a matter of fact, for the edge prediction task and, to a
lesser extent, for the node class prediction task, the trained
temporization presents better performances comparing to the
fixed temporization. The original static autoencoder is out-
performed by both temporalization variants. First, this means
that temporalizing autoencoders, in a fixed or trained fashion,
improves the embeddings efficiency. Secondly, learning the
temporal weights brings additional enhancement to the tem-
poralization process. This can be explained by the ability of the
trained temporalization of capturing both spatial structures and
temporal evolution patterns of the input temporal graph. On
the other hand, the improvement of temporalization is minor
and unsystematic when it comes to node classification and
edge reconstruction.

Also, we notice that the different autoencoders globally
react in the same way to the temporalization process. The
improvements made on the tasks sensitive to the temporal
dimension concern all the considered embedding methods and
do not seem to change models ranking in F1 score.

B. Learned temporal weights reuse

Next, we look at the possibility of reusing the temporal
weights learned within the autoencoders temporalization pro-
cess. The aim is to figure out whether these temporal weights
are specific to the autoencoder they have been conceived for,
or they might be used beyond this scope. To that end, we
conceive temporalized (fixed and trained) versions of DW and
N2V as follows:

• DW FT and N2V FT: fixed temporalization, in a similar
fashion to the fixed temporalization described in III-B.

• DW TT and N2V TT: fixed (non-trainable) temporal-
ization where we employ the temporal weights learned
within the temporalized autoencoder that gives the best
F1 score for each inference task and dataset.

Figure 3 exposes the obtained results. Overall, temporalizing
DW and N2V highly increases the inference performances
for both time-dependent and time-independent inference tasks.
Furthermore, DW TT (resp. N2V TT) presents an improve-
ment, often very small, but yet systematic, comparing to
DW FT (resp. N2V FT). This confirms our prior intuition
stating that the learned temporal weights capture information
about the temporal evolution patterns of nodes and can thus be

Fig. 2: Improvements induced by the autoencoders temporalization

used for other purposes than their conception scope. Also, one
possible explanation for the small difference between the FT
and TT variants performances is that the F1 score is already
high (generally above 0.9 for edge-related tasks).

C. Comparison to temporal baseline methods

In order to challenge our temporalization method, we com-
pare the performances of the temporalized autoencoders to
the temporal embedding approaches according to the setting
described in section III-B. Table I summarises the obtained
results: for each method, dataset, and inference task, the
embeddings giving the best performances are reported.

The most important remark concerns the temporalized ver-
sion of N2V. Indeed, N2V TT outperforms all the other

methods (including the temporal ones), for all the datasets
and tasks. DW TT has also good performances, especially for
AMiner and Yelp datasets. This corroborates the observations
presented in section IV-B concerning the effectiveness of the
learned temporal weights. On another note, the temporalized
autoencoders have dissimilar results: For example, GAE TT
gives superior results comparing to DT on node-related tasks
and better scores than TN2V on edge-related tasks. On the
other hand, SDNE TT’s results are relatively low, although
temporalization has enhanced them.

It should be noted that, as described in the experimental
setting in section III-A, we use the popular default values
for the autoencoders hyperparameters, contrary to DT, TN2V,
DW TT, and N2V TT: For the sake of simplicity, only the

Fig. 3: DW and N2V temporalization using trained and fixed temporal weights

Method AMiner Yelp Tmall
nc np er ep nc np er ep nc np er ep

SDNE TT 0.49 0.48 0.601 0.591 0.47 0.43 0.798 0.661 0.37 0.39 0.754 0.624
GAE TT 0.57 0.56 0.912 0.841 0.49 0.49 0.897 0.815 0.41 0.41 0.896 0.812

VGAE TT 0.54 0.53 0.901 0.797 0.50 0.49 0.879 0.779 0.41 0.41 0.885 0.773
ARGAE TT 0.55 0.55 0.883 0.783 0.50 0.50 0.875 0.786 0.41 0.40 0.875 0.761

ARGVAE TT 0.54 0.52 0.784 0.721 0.45 0.45 0.756 0.720 0.38 0.38 0.771 0.764
DT 0.56 0.54 0.997 0.927 0.48 0.45 0.979 0.957 0.37 0.37 0.988 0.931

TN2V 0.61 0.60 0.886 0.747 0.53 0.49 0.871 0.813 0.52 0.48 0.883 0.800
DW TT 0.70 0.69 0.930 0.838 0.53 0.52 0.985 0.906 0.46 0.45 0.967 0.877
N2V TT 0.73 0.73 0.999 0.971 0.53 0.53 0.999 0.999 0.48 0.48 0.999 0.993

TABLE I: Temporalized autoencoders vs. temporal embedding models. nc, np, er, and ep respectively stand for node
classification, node class prediction, edge reconstruction, and edge prediction.

temporalization hyperparameters s and w are varied. Conse-
quently, it is likely to improve the temporalized autoencoders
scores by varying their hyperparameters.

D. Temporalization hyperparameters analysis

Thereafter, we analyze the impact of the temporalization
hyperparameters on the inference scores (figure 4). Concerning
the hyperparameter s controlling the supra-adjacency matrix
symmetry, we can see that, apart from the edge reconstruction
task, considering undirected temporal edges is more advanta-
geous. One possible reason justifying this finding may be the
need of forcing strong temporal continuity to achieve better
performances, as explained in section II-A1. On another note,
regarding the temporal window, we notice that, overall, larger
w values lead to improved inference scores. This might be due
to the possibility of building sophisticated temporal evolution
patterns with large values of w, as shown in section II-A2.

E. Temporal weights analysis

Finally, we take interest in the interpretation of the temporal
weights. The idea is to explain the learned value of a temporal
weight regarding the characteristics of the supra-nodes it
connects. Given a supra-edge between {v, ti} and {v, tj},
we define 3 explanatory features:

• Adjacency change (|∆A|): The euclidean distance be-
tween the adjacency vector of v at the timestep ti and
the one at tj . |∆A|= ||Adj(vj)−Adj(vi)||

• Sum weights change (∆SW): The difference between the
sum of the weights of v edges at the timesteps ti and tj .
∆SW =

∑
weights(vj) −

∑
weights(vi)

• Sum weights sum (SWS): The sum of the weights
of all the edges v has in the timesteps ti and tj .
SWS =

∑
weights(vj) +

∑
weights(vi)

That being set, we compute the Spearman partial correlation
between the target variable (i.e. the learned temporal weights)
and the explanatory features. Figure 5 shows the results of this
experiment where we represent the correlations as well as their
corresponding p-values. There are different observations one
can make. First, we notice that the correlations are different

Fig. 4: The impact of the temporalization hyperparameters s
and w. For the impact evaluation of s (respectively w), the best
inference score for w ∈ {1, 2, 3} (respectively for s ∈ {0, 1})
is reported.

Fig. 5: Temporal weights analysis: Spearman partial correlations with p-values between the learned temporal weights and the
defined nodes explanatory features. The smaller the p-values, the larger the size of the points (the values are in boxes).

(a) (b) (c)

Fig. 6: Situations which tend to give low temporal weight
(represented by a thin line): (a) neighborhood modifications,
(b) node’s weights decrease, and (c) node’s weights weakness.

between, on one side, SDNE, ARGAE, and ARGVAE, and,
on the other, GAE and VGAE.

• For SDNE, ARGAE, and ARGVAE, we remark that
∆SW and SWS have globally a strong positive corre-
lation with the learned temporal weights: partial correla-
tions superior to 0.31, with a p-value inferior to 10−187.
Also, there is a less pronounced negative correlation
between |∆A|and the temporal weights (around -0.1),
with p-values inferior to 10−23. In other words, these
correlations mean that, a node v that changes in terms
of adjacency (i.e. neighborhood) between two timesteps
ti and tj , or which weights globally get reduced from
ti to tj , or which weights are relatively weak at ti and
tj , will generally have a relatively small temporal weight
between its supra-nodes at ti and tj . Figure 6 summarises
these different scenarios.

• Concerning GAE and VGAE, it seems that the obser-

vations above, made on the other temporalized autoen-
coders, are still appropriate, but with some noticeable
anomalies. First, the partial correlations between |∆A|and
the temporal weights on AMiner have an opposite sign
as they are positive. Also, for ∆SW and SWS, the partial
correlations are significantly smaller compared to the 3
other autoencoders. Moreover, the p-values of the partial
correlation for the explanatory features are less marked.
Further investigation is needed to explain these anomalies
concerning GAE and VGAE partial correlations.

Regarding these findings, an in-depth analysis aiming to
discover the correlations between various nodes features and
the learned temporal weights could result into a fast training
and more generic temporalization method. As a matter of
fact, training a temporalized autencoder is a relatively heavy
operation as, on the considered datasets, it takes approximately
90 minutes on a 24 cores machine with 64 GB of RAM.
Also, if its benefits seem to be clear on the autoencoders
that are being temporalized, reusing the temporal weights on
other static embedding methods brings minor improvements
as shown in section IV-B. Consequently, it is possible to
consider designing a user-defined method that creates temporal
weights based on nodes’ explanatory features, with respect
to the discovered partial correlations. Such a process would
be a lightweight method to temporalize any static embedding
approach (in a similar fashion to DW TT and N2V TT) with
no constraints on its structure or its input type, unlike our
proposed temporalization method. Further work about this
possibility is underway.

V. CONCLUSION AND DISCUSSION

In this paper, we presented a graph autoencoder tempor-
alization method that adapts static embedding methods to the

case of temporal networks. To that end, we employ and modify
the concept of supra-adjacency matrices to make part of its en-
tries trainable, i.e. the temporal weights, encoding the temporal
relationship between a node and itself at different timesteps.
We adapt and slightly modify autoencoders’ structure to learn
the optimal weights to be assigned to the temporal edges. By
proceeding in this way, the temporalized autoencoders produce
significantly more accurate embeddings regarding different
node-related and edge-related inference tasks. We also show
that the usefulness of the learned temporal weights goes
beyond the scope of the autoencoder they have been conceived
for, as they can be employed to temporalize other static embed-
ding methods and greatly enhance their performances. Finally,
we examine the impact of the temporalization hyperparameters
and analyze the correlations between the learned temporal
weights and some nodes’ temporal characteristics.

In this work, it is useful to recall that the temporalized
autoencoder is in itself to be considered as a parameter of
the presented temporalization method. This means that one
can adapt our process to any neural network autoencoder that
takes adjacency matrices in input. Also, if the considered
autoencoder supports some additional node features, then the
resulting temporalized version also does. This is for exam-
ple the case with GAE, VGAE, ARGAE, and ARGVAE.
Furthermore, it can handle temporal node features. Finally,
it is worthwhile to mention that our temporalization process
can be adapted to other graph neural networks that address
problems different than representation learning. For example,
our method is suitable to temporalize graph generation neural
networks such as [6], [27].

REFERENCES

[1] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Nips, volume 14, pages
585–591, 2001.

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1798–1828, 2013.

[3] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian em-
bedding of graphs: Unsupervised inductive learning via ranking. arXiv
preprint arXiv:1707.03815, 2017.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In Proceedings of the
24th ACM international on conference on information and knowledge
management, pages 891–900, 2015.

[5] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp:
Hierarchical representation learning for networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[6] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model
for small molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[7] Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko
Kivelä, Yamir Moreno, Mason A Porter, Sergio Gómez, and Alex
Arenas. Mathematical formulation of multilayer networks. Physical
Review X, 3(4):041022, 2013.

[8] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[9] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864,
2016.

[10] Furkan Gürsoy, Mounir Haddad, and Cécile Bothorel. Alignment and
stability of embeddings: measurement and inference improvement. arXiv
preprint arXiv:2101.07251, 2021.

[11] Mounir Haddad, Cécile Bothorel, Philippe Lenca, and Dominique
Bedart. Temporalnode2vec: Temporal node embedding in temporal
networks. In International Conference on Complex Networks and Their
Applications, pages 891–902. Springer, 2019.

[12] Chengbin Hou, Han Zhang, Shan He, and Ke Tang. Glodyne: Global
topology preserving dynamic network embedding. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[13] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[14] Thomas N Kipf and Max Welling. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016.

[15] Lin Li and William M Campbell. Matching community structure across
online social networks. arXiv preprint arXiv:1608.01373, 2016.

[16] Sedigheh Mahdavi, Shima Khoshraftar, and Aijun An. dynnode2vec:
Scalable dynamic network embedding. In 2018 IEEE International
Conference on Big Data (Big Data), pages 3762–3765. IEEE, 2018.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[18] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K
Ahmed, Eunyee Koh, and Sungchul Kim. Continuous-time dynamic
network embeddings. In Companion Proceedings of the The Web
Conference 2018, pages 969–976, 2018.

[19] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.
Asymmetric transitivity preserving graph embedding. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1105–1114, 2016.

[20] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and
Chengqi Zhang. Adversarially regularized graph autoencoder for graph
embedding. arXiv preprint arXiv:1802.04407, 2018.

[21] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 701–710, 2014.

[22] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard,
Federico Monti, and Michael Bronstein. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637,
2020.

[23] Koya Sato, Mizuki Oka, Alain Barrat, and Ciro Cattuto. Dyane:
dynamics-aware node embedding for temporal networks. arXiv preprint
arXiv:1909.05976, 2019.

[24] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong
Su. Arnetminer: extraction and mining of academic social networks.
In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 990–998, 2008.

[25] Eugenio Valdano, Luca Ferreri, Chiara Poletto, and Vittoria Colizza.
Analytical computation of the epidemic threshold on temporal networks.
Physical Review X, 5(2):021005, 2015.

[26] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1225–1234,
2016.

[27] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure
Leskovec. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International Conference on Machine Learning,
pages 5708–5717. PMLR, 2018.

[28] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang.
Dynamic network embedding by modeling triadic closure process. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

[29] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie
Wu. Embedding temporal network via neighborhood formation. In
Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2857–2866, 2018.

	Introduction
	Autoencoders temporalization
	Additional input layer
	Directed/undirected temporal edges
	Temporal window

	Output layer modification
	Temporal embeddings

	Experimental setting
	Temporalized autoencoders
	Baseline methods
	Datasets
	Application scenarios

	Experiments and results analysis
	Temporalization contribution
	Learned temporal weights reuse
	Comparison to temporal baseline methods
	Temporalization hyperparameters analysis
	Temporal weights analysis

	Conclusion and discussion
	References

