M Quintard 
email: oatao@listes-diff.inp-toulouse.fr
  
Transfers in Porous Media

Keywords: Porous media, Multiphase, Upscaling methods 1

Modeling heat transfer in porous media requires to take into account multiple-scale aspects inherent to porous media structures. Several methodologies have been developed to upscale the equations at a lower-scale and to obtain upper-scale models as it is outlined in a brief review based on a simple heat conduction example proposed in the rst part of this paper. The more general and classical problem of heat transfer in porous media is reviewed in this paper with the emphasis on the fact that dierent behaviors and hence dierent models emerge at a given macro-scale, depending on the interplay of the various characteristic times and lengths characterizing the problem. Various classes of models are discussed and their relationships outlined. Extensions to more complicated problems of heat transfer in porous media are discussed: coupling with mass diusion, eect of heat sources, radiation, boiling, etc.

Introduction

Heat transfer in porous media is central in many applications involving industrial devices (chemical engineering, heat exchangers, nuclear reactor, etc.) as well as complex geological formations (in situ combustion and pyrolysis, geothermal sites, etc.). As a consequence, such heat transfer problems are often characterized by highly non-linear couplings with many dierent scales involved. The most common multi-scale feature is illustrated in Fig. 1, which represent a typical porous medium two-scale description. The lower-scale is the pore-scale where phases are dierentiated, here a β-phase owing in a solid structure made of a σ-phase, with pore-scale characteristic lengths l β and l σ . The upper-scale or macro-scale calls for an eective representation characterized by variations of the variables at a scale L. To be applicable, such a macro-scale representation requires the validity of a separation of scale assumption implying l β , l σ r 0 L where r 0 is some intermediated scale at which macro-scale variables are dened (this scale is related to the classical discussion about the existence of a Representative Elementary Volume [START_REF] Hill | Elastic properties of reinforced solids: Some theoretical principles[END_REF], [START_REF] Bear | Dynamics of uids in porous media[END_REF])). In the sequel of this presentation, on will assume that all scales involved are nicely separated, but the reader must not forget that this does not happen all the time. If L is too close to l, direct numerical simulation or meso-scale approaches, such as network modeling [START_REF] Dullien | Porous media: uid transport and pore structure[END_REF]), must be used. Another class of porous media which will not be considered in this paper calls also for specic approaches: those with a fractal structure over a large range of scales [START_REF] Sahimi | Linear and nonlinear, scalar and vector transport processes in heterogeneous media: Fractals, percolation, and scaling laws[END_REF]).

In the above paragraph, the need for macro-scale models when dealing with practical applications has been emphasized. Of course, one may introduce ad hoc or heuristic models, and, as a matter of fact, this is the case for many of the classical macro-scale models used in the engineering practice. However, it is often more reliable to have at its disposal a comprehensive framework that links the known pore-scale physics to the associated macro-scale theory. Not only this provides a strong basis for developing correct (physically speaking) models, but it also oers a guidance for developing new, original models for surging problems. Because of the problem complexity, mainly due to the multi-scale aspects outlined above, there is not a single route from one pore-scale problem to a macro-scale model. Indeed, two major issues must be addressed:

• Given the interplay between the dierent mechanisms and the potential contrast of transport properties (such as diusivities for instance), several behaviors may be observed requiring specic macro-scale models. This is the case with the discussion in Sec. 3 about non-equilibrium and equilibrium models,

• Similarly, it is not surprising to nd that many dierent methods have been designed to deal with the upscaling aspects.

This paper oers a review of these two problems. The rst section proposes a brief overview of the dierent available upscaling techniques. Next, the potential for dierent macro-scale models will be illustrated for the classical porous medium heat transfer problem. Finally, indications will be given on open or modern problems which are the subject of current research in the area of heat transfer in porous media. Of course, the format of this paper does not allow for writing an encyclopedia, nor a thorough comprehensive review. It is modestly expected that keys will be provided for understanding what is at stake when working on such upscaling problems.

Upscaling methodologies: a brief overview

To illustrate the problem, let us start with a simple, steady-state heat transfer problem over a medium with a l-scale heterogeneous but continuous thermal conductivity, k (x). The typical pore-scale equation would be written as

∇ • (k (x) • ∇T ) = 0 (1)
where T is the temperature.

This equation is also equivalent, mathematically speaking, to the problem of a Darcy ow in a heterogeneous porous medium or to a classical mass diusion problem. Therefore, some of the cited papers in the following sections are in fact connected to these latter problems and not heat transfer. This meaningless dierence will not be stressed in the context of this review.

2.1

Obtaining a macro-scale theory through volume averaging How to dene macro-scale variables and how to obtain macro-scale equations?

Macro-scale variables are in some broad sense regularized elds of the microscale elds. This is not surprising that the idea of regularization through some spatial convolution was originally proposed as a designated tool to achieve this task [START_REF] Marle | Application de la méthode de la thermodynamique des processus irréversible à l'écoulement d'un uide à travers un milieux poreux[END_REF], [START_REF] Whitaker | Diusion and dispersion in porous media[END_REF], [START_REF] Slattery | Flow of viscoelastic uids through porous media[END_REF], [START_REF] Marle | On macroscopic equations governing multiphase ow with diusion and chemical reactions in porous media[END_REF]). In this framework, one would dene the macro-scale temperature eld by where V (x) is a volume centered at x and of volume V . The regularization process through spatial averaging may require special attention if used with simple kernel functions such as the one involved in Eq. ( 2). This point is not discussed in this paper and the reader is referred to [START_REF] Marle | Application de la méthode de la thermodynamique des processus irréversible à l'écoulement d'un uide à travers un milieux poreux[END_REF], [START_REF] Mls | On the existence of the derivative of the volume average[END_REF], [START_REF] Marle | On macroscopic equations governing multiphase ow with diusion and chemical reactions in porous media[END_REF] and the series of paper Quintard and Whitaker (1994e,d,c,b,a) for a better understanding of the problem. A macro-scale equation could be obtained from averaging of the pore-scale equation, and this would lead to

T (x, t) = 1 V ˆr∈V (x) T (r) dV r (2) L V β l β l σ σ
∇ • k (x) • ∇T = 0 (3)
which cannot be readily put under a closed form, i.e., an equation involving only T as the independent variable with some eective property. A work-ow has been proposed to solve this problem and that makes use of the following steps:

Step 1 : dene temperature deviation

T = T + T (4)
Step 2: develop averaged equation

∇ • k (x) • ∇ T + ∇ T = 0 (5) 
Step 3 : obtain micro-scale governing equation for the deviation

∇ • k (x) • ∇ T = -∇ • (k (x) • ∇ T ) (6)
Step 4: develop a closure, i.e., solve in an approximate manner (using approximations based on the separation of scales) the coupled micro and macro-scale problem

T = b.∇ T + ... (7) 
where the mapping vector b is determined by

∇ • (k • ∇b) = -∇ • k (8) completed by (not discussed in this paper) b = 0 ; b(x + l) = b(x) i = 1, 2, 3 (9) 
where the last equation corresponds to periodicity conditions.

Step 5 : Obtain a closed form of the macro-scale equation, i.e.,

∇ • (K ef f • ∇ T ) = 0 (10)
in which the eective property, here a thermal conductivity tensor, is given by

K ef f = k • (I + ∇b) (11) 
The upscaling process provides not only the form of the equation compatible with the assumptions made, but also a way of calculating the eective property through the knowledge of pore-scale characteristics. While in the past such calculations were considered as too cumbersome and impractical, given the poor access to pore-scale characteristic and the computational requirements, this is now becoming more of a routine thanks to bigger computers and tools like CT-scanners [START_REF] Adler | Porous media: Geometry and transport[END_REF]). Indeed, several commercial softwares for CT-scan treatment oer tools to compute the most simple eective properties (diusivity, permeability, ...).

The above work-ow is a schematic presentation for a simple problem. The reader may nd a more comprehensive presentation in [START_REF] Whitaker | The Method of Volume Averaging[END_REF]. Other techniques were devised to interpret the additional terms that appear when balance equations are averaged. For instance, this can be achieved heuristically [START_REF] Slattery | Flow of viscoelastic uids through porous media[END_REF], [START_REF] Bear | Introduction to Modeling of Transport Phenomena in Porous Media[END_REF]) or in recognition of the physical notions of tortuosity, dispersion terms, etc... Intermediate approaches have been used to interpret micro-scale numerical simulations and to propose new forms of macro-scale equations (e.g. in [START_REF] Hsu | A closure model for transient heat conduction in porous media[END_REF], [START_REF] Nakayama | A two-energy equation model for conduction and convection in porous media[END_REF]), which oers, through a less complex closure, a possible way of dealing with complicated coupled problems.

Other point of views

Dierent routes have been proposed to achieve the same goal, which dier by many dierent aspects. In particular, one should look at the denition of the macro-scale variable. The reader will nd below a brief overview of the major branches.

Homogenization theory

Asymptotic methods have been used in mathematics to study dierential operators involving rapidly oscillating coecients. The development of the homogenization theory for porous media problems follows this idea, with the macroscale elds dened in the sense of some limit with respect to a small number, , characteristic of the separation of scale, i.e., l L . This idea can be developed mathematically speaking following dierent routes. This is beyond the scope of this paper to provide a complete picture, and we will, for simplicity, outline the development using asymptotic developments for periodic domains, as in [START_REF] Sanchez-Palencia | Solutions périodiques par rapport aux variables d'espaces et applications[END_REF][START_REF] Sanchez-Palencia | Equations aux dérivées partielles dans un type de milieux hétérogènes[END_REF], Ene andSanchez-Palencia (1975), Babu²ka (1976), [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF], [START_REF] Ene | Some thermal problems in ow through a periodic model of porous media[END_REF], [START_REF] Auriault | Eective macroscopic description for heat conduction in periodic composites[END_REF], [START_REF] Mikelic | Homogenization of the heat-equation for a domain with a network of pipes with a well-mixed uid[END_REF], [START_REF] Auriault | Eective macroscopic description for heat conduction in periodic composites[END_REF] and many other contributions. One may refer to [START_REF] Tartar | The General Theory of Homogenization: A Personalized Introduction[END_REF] for the presentation of a dierent, less restrictive view. Basically, the temperature eld will be looked at in terms of a multi-scale expansion involving x and y treated as independent variables in the limit → 0 such as

T (x) = i T i x, y = x i (12)
where the rst term will play the role of the macro-scale variable and the subsequent terms the role of the deviation, like in Eq. ( 4). The perturbation analysis gives the following results (here we assume that k (x, y) = k (y)).

The -2 term implies T 0 (x, y) = T 0 (x), while the term -1 gives a local (closure) problem such as

∇ y • (k • ∇ y T 1 ) + ∇ y • (k • ∇ x T 0 ) = 0 (13)
which suggests a solution of the form

T 1 (x, y) = b(y).∇ x T 0 (x) (14) 
with the periodic mapping vector b(y) obeying

∇ y •(k • ∇ y b) = -∇ y •k ; b = 0 ; b(x+l i ) = b(x) i = 1, 2, 3 (15) 
The 0 term, after integration over a unit cell, gives the macro-scale equation

∇ x • (K ef f • ∇ x T 0 ) = 0 (16)
where the eective thermal conductivity is given by

K ef f = k • (I + ∇ y b) (17) 
This is beyond the scope of this paper to give a complete comparison between the two methods. The reader may refer to a preliminary work by [START_REF] Bourgeat | Eléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture[END_REF] and a more thorough analysis by [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?[END_REF], [START_REF] Davit | Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF]. One sees from the two developments that:

• the operational denition of the macro-scale variables is dierent, while one may recognize that T = i T i x, y = x i = T 0 ,

• closure is based on a perturbation analysis making use of the separation of scales, through order of estimates analysis or through the manipulation of the "independent" variables (in a limit sense) x and y,

• the macro-scale equation is obtained after averaging the micro-scale equation, taking into account the separation of scales.

Given the fact that both methods solve the same deterministic problem, it is not surprising that the perturbation analysis gives the same "closure" and the same macro-scale equation.

Stochastic method

A non deterministic point of view has been adopted by many scientists, especially in the eld of hydrogeology [START_REF] Matheron | Les variables régionalisées et leur estimation : une application de la théorie des fonctions aléatoires aux sciences de la nature[END_REF], [START_REF] Gelhar | Stochastic subsurface hydrology. from theory to applications[END_REF], [START_REF] Dagan | Flow and Transport in Porous Formations[END_REF], [START_REF] Dagan | Subsurface Flow and Transport: A Stochastic Approach[END_REF]). Because of the complex and more or less disordered heterogeneities found in natural media, the actual porous medium is seen as a particular realization of a stochastic ensemble and, therefore, the macro-scale variable is dened as an expectation, i.e.

T e = E(T )

While there is not a direct connection between T e = E(T ) and T , the link between the stochastic point of view and spatial averaging comes from an ergodicity assumption which is most often (but not always, [START_REF] Dagan | Transport in heterogeneous porous formations: Spatial moments, ergodicity, and eective dispersion[END_REF]!) considered when building the ensemble statistical properties. In this framework, the thermal conductivity in the heat equation becomes a random space function and the heat equation itself is a stochastic PDE. Many dierent techniques are available to get solutions of the corresponding stochastic problem, and they do not compare necessarily with the methods described above for volume averaging with closure of for the homogenization theory. However, some methods make use of a perturbation analysis in terms of the covariance of k (see [START_REF] Beran | Statistical continuum theories[END_REF], [START_REF] Dagan | Flow and Transport in Porous Formations[END_REF]), which is reminiscent of the way a "closure" is obtained with the previously introduced two-scale methods. One may refer to [START_REF] Wood | Volume averaging for determining the eective dispersion tensor: Closure using periodic unit cells and comparison with ensemble averaging[END_REF] for a comparison between the stochastic analysis of the problem of dispersion in [START_REF] Fiori | Concentration uctuations in aquifer transport: A rigorous rst-order solution and applications[END_REF] and results obtained with the use of a volume averaging theory from [START_REF] Quintard | Dispersion in heterogeneous porous media : one-equation non-equilibrium model[END_REF].

A less limited approach in terms of the thermal conductivity variance corresponds to the self-consistent method and the many variants also called eectivemedium theories in which the eective conductivity is built from the calculation of the interaction between an inclusion embedded into a homogeneous medium having the eective transport property [START_REF] Dagan | Flow and Transport in Porous Formations[END_REF]).

While this also can be done through the examination of the closure problems for the method of volume averaging or the homogenization theory, stochastic analysis allows to develop in a quite straightforward manner bounds for the eective thermal conductivity. One easily obtain (see [START_REF] Dagan | Flow and Transport in Porous Formations[END_REF], chap. 2) by looking at the expectation for the ow energy that

K H ≤ K ef f ≤ K A (19) 
where K H and K A are the harmonic mean and arithmetic mean respectively of the pore-scale thermal conductivity. This question of bounds for the eective properties is of a great practical importance. Wiener's bounds [START_REF] Wiener | Die theorie des mischkörpers für das feld der stationären strömung. erste abhandlung: Die mittelwertsätze für kraft, polarisation und energie[END_REF]), as expressed by Eq. 19, are in general too far apart and more narrow bounds can be developed for specic classes of material, see a popular example in [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF] or a more thorough discussion in [START_REF] Torquato | Random Heterogeneous Materials: Microstructure and Macroscopic Properties[END_REF].

Variants

The method of volume averaging has triggered many variants. For example, [START_REF] Marle | Application de la méthode de la thermodynamique des processus irréversible à l'écoulement d'un uide à travers un milieux poreux[END_REF][START_REF] Marle | Ecoulements monophasiques en milieu poreux[END_REF] proposed to justify Darcy's law using irreversible thermodynamics. The idea that macroscale models should be compatible with the principles of thermodynamics was not new [START_REF] Mokadam | Thermodynamic analysis of the Darcy law[END_REF], [START_REF] Scheidegger | General theory of dispersion in porous media[END_REF][START_REF] Biot | Mechanics of deformation and acoustic propagation in porous media[END_REF]), but the coupling with volume averaging produced a specic methodology used by several authors (for instance [START_REF] Hassanizadeh | General conservation equations for multi-phase systems : 1. averaging procedure[END_REF], Ben-nethum and Cushman (1996), ...). Such a methodology is also reminiscent of the theory of mixtures (see [START_REF] Bowen | Continuum Physics, chap. theory of mixtures[END_REF]). While there is not a specic closure, i.e., a deterministic mapping between macro-scale variables and deviations, the structure of the macro-scale models for complex, non-linear coupled systems may be constrained by the method.

The method of moments for spatially periodic media, as developed in [START_REF] Brenner | Dispersion resulting from ow through spatially periodic porous media[END_REF], [START_REF] Kitanidis | Analysis of macrodispersion through volume-averaging: Moment equations[END_REF], bears also some resemblance with the two-scale methods discussed in Sec. 2.1 and 2.2.

Many other ideas have been tested and this is beyond the scope of this paper to provide a comprehensive analysis. This short comparison of several methods put the emphasis on:

• the denition of macro-scales variables,

• the way the coupled micro-and macro-scale problems are approximated,

• the existence of an explicit closure, which provides a straightforward way of calculating eective properties from the micro-scale characteristics.

In the next sections, results are presented for more complex heat transfer in porous media problems. Given the format allowed for this contribution, we will not detail the steps for the upscaling developments but rather put the emphasis on several fundamental questions, in particular the question of the existence of various models for the same mathematical problem, depending on the ow properties and pore-scale characteristics. This is an intricate question which is often overlooked and may result in misleading recommendations.

3

The classical heat transfer in porous media problem In this section, major results are reviewed corresponding to the classical heat transfer in porous media problem, i.e., diusion/convection in the uid saturating the pore space and conduction in the solid phase. It is assumed that the ow is laminar and that the uid density and viscosity are constant. As a consequence, the total mass balance problem and the momentum balance problem can be solved independently. In fact, it suces that the variations of density and viscosity over a representative unit cell are small. The one phase ow upscaling problem leads to the classical Darcy's law (see [START_REF] Ene | Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux[END_REF], Whitaker (1986a)) when the pore-scale Reynolds number is small enough. Inertia terms play a role when the pore-scale Reynolds number increases and a

generalized Forchheimer equation may be used [START_REF] Wodié | Correction non linéaire de la loi de Darcy[END_REF], [START_REF] Skjetne | High-velocity laminar and turbulent ow in porous media[END_REF], [START_REF] Whitaker | The forchheimer equation: A theoretical development[END_REF]). It has also been shown in [START_REF] Lasseux | On the stationary macroscopic inertial eects for one phase ow in ordered and disordered porous media[END_REF] that this Forchheimer model is relatively robust and accurate. As a consequence of the above decoupling assumption, the macro-scale and micro-scale velocity elds are dealt with independently and are known elds for the pure heat transfer problem described by the following equations

(ρc p ) β ∂T β ∂t + (ρc p ) β v β • ∇T β = ∇ • (k β ∇T β ) in V β (20) 
T β = T σ at A βσ (21) n βσ • k β ∇T β = n βσ • k σ ∇T σ at A βσ (22) (ρc p ) σ ∂T σ ∂t = ∇ • (k σ ∇T σ ) in V σ (23) 
where (ρc p ) α , T α , k α are the α-phase specic heat, temperature and thermal conductivity respectively, and v β is the velocity eld.

The objective of this section is not to give the complete mathematical developments but rather to put the emphasis on the dierent modeling options that emerge, depending on the assumptions made. Therefore, only major steps that illustrate this discussion are reproduced here, using the framework of the theory of volume averaging [START_REF] Whitaker | The Method of Volume Averaging[END_REF]) as a mere guideline. Additional literature will be cited to complete the learning process for those interested in the upscaling details.

3.1

The structure of the micro-macro coupled problem

As schematically described in Sec. 2.1, one needs to develop the coupled macroscale and micro-scale equations. It is only listed below the averaged and deviation equation for the β-phase as well as the boundary conditions at A βσ .

The mathematical development makes extensive use of the classical averaging theorems (see [START_REF] Marle | On macroscopic equations governing multiphase ow with diusion and chemical reactions in porous media[END_REF] for a proof using the theory of distribution) given by

∇ψ β = ∇ ψ β + 1 V Âβσ n βσ ψ β dA (24a) ∇ • A β = ∇ • A β + 1 V Âβσ n βσ • A β dA (24b) ∂ψ β ∂t = ∂ ψ β ∂t - 1 V Âβσ n βσ • w βσ ψ β dA (24c)
where n βσ is the normal to the interface A βσ , w βσ the interface velocity.

Averaging of Eq. 20 leads to

ε β (ρc p ) β ∂ T β β ∂t accumulation + ε β (ρc p ) β v β β • ∇ T β β convection = ∇ •   kβ   εβ∇ T β β + 1 V Âβσ n βσ Tβ dA       conduction/tortuosity -(ρc p ) β ∇ • ṽβ Tβ dispersion + 1 V Âβσ n βσ • k β ∇T β dA interfacial ux (25)
where the traditional terms arising when upscaling ows in porous media, i.e., dispersion, tortuosity eects and exchange terms have been emphasized. In this equation the following notations have been adopted

ε β = V β V = 1 -ε σ ; T β = ε β T β β (26) T α = T α α + Tα (27)
for the β-phase volume fraction, ε β , the intrinsic averaged temperature, T β β , and the temperature deviation Tα .

The micro-scale equation may be written as

(ρc p ) β ∂ Tβ ∂t + (ρc p ) β ṽβ .∇ T β β + (ρc p ) β v β .∇ Tβ = ∇.(k β ∇ Tβ ) -ε -1 β ∇.   kβ 1 V Âβσ n βσ Tβ dA    -ε -1 β k β 1 V Âβσ n βσ .∇ Tβ dA (28)
Similar equations may be developed for the σ-phase. The boundary conditions at A βσ are given by

Tβ = Tσ -T β β -T σ σ source term (29) -n βσ .k β ∇ Tβ -n βσ .k β ∇ T β β source term = -n βσ .k σ ∇ Tσ -n βσ .k σ ∇ T σ σ source term (30)
where this time the source terms that will trigger the development of temperature deviations have been emphasized.

Various models

This coupled problem for the two macro-scale equations and the two micro-scale equations is characterized by several time and length scales. Depending on the way these dierent scales are ordered, dierent approximations may be used leading to dierent macro-scale models. To make it short, one will consider the time-scales dened by the following estimates:

(ρcp) β l 2 β k β , (ρcp)σl 2 σ kσ , ε β (ρcp) β L 2 K * β and εσ(ρcp)σL 2 K * σ
, where the characteristic macro-scale diusivities K * β and K * σ will be specied a posteriori.

Local equilibrium

Local equilibrium arises when all length-scales are well separated between the macro-scale and the micro-scale and when the pore-scale characteristic times are similar, i.e.,

(ρc p ) β l 2 β k β ≈ (ρc p ) σ l 2 σ k σ ε β (ρc p ) β L 2 K * β ≈ ε σ (ρc p ) σ L 2 K * σ (31)
As a consequence, the two macro-scale temperatures are close enough so one can introduce the following approximation, characteristic of the so-called localequilibrium case,

T β β = T σ σ = T (32) 
with the total heat for the mixture given by

ε β (ρc p ) β T β β + ε σ (ρc p ) σ T σ σ = (ρc p ) * T (33)
in which the eective heat capacity is a simple average: (ρc p ) * = ε β (ρc p ) β + ε σ (ρc p ) σ . Under these circumstances, one may derive a simple closure with the following estimates for the temperature deviations [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF])

Tβ = b β (y).∇ T (x, t) + ... (34a) Tσ = b σ (y).∇ T (x, t) + ... (34b) 
The mapping vectors, b β and b σ , are given by a steady-state closure problem expressed as

(ρc p ) β ṽβ + (ρc p ) β v β .∇b β = k β ∇ 2 b β in V β (35a) B.C.1 -n βσ .k β ∇b β -n βσ k β = -n βσ .k σ ∇b σ -n βσ k σ at A βσ (35b) B.C.2 b β = b σ at A βσ (35c) 0 = k σ ∇ 2 b σ in V σ (35d) b β (x + l i ) = b β (x) ; b σ (x + l i ) = b σ (x) i = 1, 2, 3 (35e) b β + b σ = 0 (35f )
Adding Eq. 28 with its σ-phase counterpart, and substituting the deviations by their expressions Eqs. 34, one obtains the following local-equilibrium macroscale equation

(ρc p ) * ∂ T ∂t + ε β (ρc p ) β U β • ∇ T = ∇ • K * eq • ∇ T (36) 
where the eective thermal conductivity tensor is given by

K * eq = (ε β k β + ε σ k σ ) I + k β -k σ V Âβσ n βσ b β dA -(ρc p ) β ṽβ b β β (37)
and where U β = v β β . The eective thermal conductivity can be estimated experimentally or calculated by solving Eqs. 35 over a representative unit cell of the porous medium, a strategy that becomes more and more popular with the development of CT-scanners or other devices for pore-scale investigation.

Several correlations have been proposed in the literature, see some examples in [START_REF] Kaviany | Principles of Heat Transfer in Porous Media[END_REF], [START_REF] Kandula | On the eective thermal conductivity of porous packed beds with uniform spherical particles[END_REF]. The eective diusivity is very sensitive to the topology and pore-scale physical characteristics, especially when the solid thermal conductivity is much larger than the uid conductivity (about two order of magnitude) and when contacts exist between the solid inclusions [START_REF] Zehner | Thermal conductivity of granular materials at moderate temperatures[END_REF], [START_REF] Shonnard | The eective thermal conductivity for a pointcontact porous medium: an experimental study[END_REF], [START_REF] Oliveira | Role of inter-and intraparticle diusion in nonuniform particle size gasless compacted-powder combustion synthesis i: Formulation[END_REF]).

Non-equilibrium models

Non-equilibrium models arise when the contrast between the transport properties of the various phases are not well separated. For instance, the diusivity of the solid phase is much lower than the diusivity of the uid phase. In this case, the heat wave goes rapidly through the unit cell in the liquid phase and the temperature eld relaxes slowly in the solid phase, thus producing a wellknown tailing eect. The relaxation process involves many dierent time-scales (the spectrum is controlled by the eigenvalues of the diusion problem over the solid phase). This makes the solution of the coupled problem described in Sec.

3.1 non-local in time (memory eects), and perhaps in space (i.e., the solution depends on all time and space values). Indeed, a closure keeping all local time-scales involves a time convolution as has been discussed in [START_REF] Moyne | Two-equation model for a diusive process in porous media using the volume averaging method with an unsteady state closure[END_REF] for a pure conductive problem and in [START_REF] Davit | Correspondence between oneand two-equation models for solute transport in two-region heterogeneous porous media[END_REF] from a more general perspective. The deviations in this framework are expressed as

Tβ = b ββ ∂ ∂t ∇ T β β + b βσ ∂ ∂t ∇ T σ σ -s β ∂ ∂t T β β -T σ σ + ... (38a) Tσ = b σβ ∂ ∂t ∇ T β β + b σσ ∂ ∂t ∇ T σ σ + s σ ∂ ∂t T σ σ -T β β + ... (38b) 
where the mapping variables closure problems are time-dependent. The mapping variables relax more rapidly with time than the macro-scale temperatures and one may seek a steady-state closure under the following form [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF], [START_REF] Zanotti | Development of transport equations for multiphase systems -i: General development for two-phase systems[END_REF], [START_REF] Levec | Longitudinal and lateral thermal dispersion in packed beds -i: Theory[END_REF], [START_REF] Quintard | One-and two-equation models for transient diusion processes in two-phase systems[END_REF], [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: Numerical results for eective properties[END_REF])

Tβ = b ββ .∇ T β β + b βσ .∇ T σ σ -s β T β β -T σ σ + .. (39a) Tσ = b σβ .∇ T β β + b σσ .∇ T σ σ + s σ T σ σ -T β β + .. ( 39b 
)
where the mapping variables are the limit of the time dependent closure for t → 0. As an example, the problem for the mapping variables s β and s σ is given by

(ρc p ) β v β .∇s β = k β ∇ 2 s β -ε -1 β h β , in V β (40a) B.C.1. n βσ .k β ∇s β = n βσ .k σ ∇s σ , at A βσ (40b) B.C.2. s β = 1 + s σ , at A βσ (40c) 0 = k σ ∇ 2 s σ + ε -1 σ h σ , in V σ (40d) s β (r + l i ) = s β (r), s σ (r + l i ) = s σ (r) , i = 1, 2, 3 (40e) 
s β = 0 ; s σ = 0 (40f ) h β = n βσ .k β ∇s β δ βσ ; h σ = -n σβ .k σ ∇s σ δ βσ = h β = h 2eq (40g)
where δ βσ is the surface Dirac function on A βσ . It is of a fundamental importance to see that the heat exchange coecient, h 2eq , is a result of this integrodierential closure problem and not given a priori. Using this steady-state closure, the macro-scale equations can be written under the form of a generalized two-equation model as

ε β (ρc p ) β ∂ T β β ∂t + ε β (ρc p ) β v β β .∇ T β β -u ββ .∇ T β β -u βσ .∇ T σ σ = ∇. K * ββ .∇ T β β + K * βσ .∇ T σ σ -h 2eq T β β -T σ σ (41a) ε σ (ρc p ) σ ∂ T σ σ ∂t -u σβ .∇ T β β -u σσ .∇ T σ σ = ∇. K * σβ .∇ T β β + K * σσ .∇ T σ σ -h 2eq T σ σ -T β β (41b)
where the various eective parameters are obtained from the mapping variables.

Making T β = T σ , one recovers the one equation equilibrium model with

K * eq = K * ββ + K * βσ + K * σβ + K * σσ (42)
Simpler closures may be used depending on the assumptions made on the physical characteristics of the problem [START_REF] Hsu | A closure model for transient heat conduction in porous media[END_REF], DeGroot and Straatman ( 2011)). If one drops the additional convective and cross-terms 1 , one recov- ers the traditional two-equation model often used in the literature [START_REF] Schlünder | Equivalence of one-and two-phase models for heat transfer processes in packed beds: one-dimensional theory[END_REF], [START_REF] Glatzmaier | Use of volume averaging for the modeling of thermal properties of porous material[END_REF]). The heat exchange coecient, h 2eq , provides one single relaxation time as opposed to the full spectrum discussed in the introduction to this section. Hence, this is not really an intrinsic property of the porous medium and its value depends on the theory used to dene it or the measurement method. Indeed, several values have been proposed in the literature and the reader is referred to [START_REF] Landereau | Quasi-steady two-equation models for diusive transport in fractured porous media: Large-scale properties for densely fractured systems[END_REF] for a more thorough discussion in the case of pure diusion in a system with a lower diusivity in the solid. In this case, the proposed values are related to the eigenvalue spectrum of the solid grain diusive problem in dierent ways, for instance the rst eigenvalue, etc.... The value obtained from the closure problem Eqs. 40 plays a fundamental role, as will be shown in Sec. 3.2, and is related to the harmonic mean of the eigenvalues.

Another problem comes from the periodicity conditions which are often used when solving closure problems (as is the case in Eq. 40e). If one takes, as an analogy of a porous medium problem, heat transfer in a tube (the Graetz problem), such conditions are compatible with the established regime [START_REF] Goler | Heat and mass transfer in tubes: An analysis using the method of volume averaging[END_REF]). This produces a smaller impact of the pore-scale Péclet number on the eective heat exchange coecient as one would estimate by taking into account entrance eects. Taking into account these entrance eects would lead to a non-local (in space) analysis, i.e., the transport equation and especially the eective properties depend also on the ow and boundary conditions far from the local position. It also contributes to the dierences encountered in the literature between the dierent correlations or estimates of the heat exchange coecient.

1 The reader must be warned that these additional terms may play a role if one wants to have an accurate theory, as is illustrated in [START_REF] Goler | Heat and mass transfer in tubes: An analysis using the method of volume averaging[END_REF] The heat exchange coecient is also often written as

h 2eq = a v h (43)
where a v is the porous medium specic surface and h is an intrinsic heat transfer coecient. This comes from the supposed existence of an established lm or boundary layer at the pore-scale that can be introduced as a pore-scale boundary condition at A βσ . Indeed, if one assumes that such a boundary condition exists at the pore-scale, one recovers from the upscaling process a two-equation model with an exchange terms written like Eq. 43 [START_REF] Pernin | Deux modèles de transfert de chaleur en milieu poreux[END_REF], [START_REF] Auriault | Modelling of pollutant migration in porous media with interfacial transfer: Local equilibrium/non-equilibrium[END_REF]). However, it is clear that h should be a result of the upscaling development and not an input. Furthermore, while the appearance of a v is natural in some upscaling processes, equilibrium adsorption for instance, this is not the case here since the problem giving h 2eq , Eqs. 40a through 40g, involves a diusive process which will generate cut-o or smoothing eects for rough or fractal surfaces. Therefore, Eq. 43 is not true in general. This problem is often overlooked in the literature.

The problem of the conditions for the existence of two-temperature regimes has received a lot of attention in the literature [START_REF] Whitaker | Improved constraints for the principle of local thermal equilibrium[END_REF], [START_REF] Quintard | One-and two-equation models for transient diusion processes in two-phase systems[END_REF], [START_REF] Amiri | Analysis of dispersion eects and non-thermal equilibrium, non-darcian, variable porosity incompressible ow through porous media[END_REF], [START_REF] Quintard | Local thermal equilibrium for transient heat conduction: Theory and comparison with numerical experiments[END_REF], [START_REF] Minkowycz | On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: the sparrow number[END_REF][START_REF] Vadasz | Explicit conditions for local thermal equilibrium in porous media heat conduction[END_REF]). Simple estimates of the various time and length-scales may often be enough in many practical instances to decide whether a non-equilibrium analysis is needed or not, if dierences are clear (for instance several order of magnitude). If this is not the case, the matter is a little bit more complex and depends on the geometry and topology of the unit cell [START_REF] Quintard | One-and two-equation models for transient diusion processes in two-phase systems[END_REF]), the boundary value problem solved (Vafai andSozen (1990), Vadasz (2005)), the processes involved, for instance natural convection [START_REF] Rees | 6 -local thermal non-equilibrium in porous medium convection[END_REF]), phase change [START_REF] Soezen | Analysis of the non-thermal equilibrium condensing ow of a gas through a packed bed[END_REF]Vafai (1990), Duval et al. (2004)), the coupling with reactive transport [START_REF] Fatehi | Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion[END_REF], [START_REF] Oliveira | Nonequilibrium in the transport of heat and reactants in combustion in porous media[END_REF]), etc...

Asymptotic behavior and One-Equation Non-Equilibrium model

It has been shown in [START_REF] Zanotti | Development of transport equations for multiphase systems -i: General development for two-phase systems[END_REF], [START_REF] Levec | Longitudinal and lateral thermal dispersion in packed beds -i: Theory[END_REF], [START_REF] Davit | Correspondence between oneand two-equation models for solute transport in two-region heterogeneous porous media[END_REF] that the two equation model can be approximated asymptotically as t → ∞ for a uniform 1D ow by a classical heat equation

ε β (ρc p ) β + ε σ (ρc p ) σ ∂ T βσ ∂t +ε β (ρc p ) β v β β •∇ T βσ = ∇• K * ∞ • ∇ T βσ ( 44 
)
where

T βσ = β (ρc p ) β T β β + σ (ρc p ) σ T σ σ β (ρc p ) β + σ (ρc p ) σ (45)
is the mixture average temperature and in which K * ∞ is given by (dropping additional cross terms)

K * ∞ = K * eq + 1 h 2eq ε β (ρc p ) β ε σ (ρc p ) σ 2 ε β (ρc p ) β + ε σ (ρc p ) σ 2 U β U β (46)
One sees from this equation that the eective asymptotic thermal dispersion tensor is obviously greater than the local equilibrium value, K * eq . One must emphasize that the one-equation non-equilibrium model does not imply that the two-averaged temperature are equal, as discussed in [START_REF] Levec | Longitudinal and lateral thermal dispersion in packed beds -i: Theory[END_REF], [START_REF] Davit | Correspondence between oneand two-equation models for solute transport in two-region heterogeneous porous media[END_REF]. This merely means that the front spreading tends to mask the lag between the two average temperatures. Another important discovery is that a direct closure can be found based on T βσ [START_REF] Moyne | Thermal dispersion in porous media: One-equation model[END_REF], [START_REF] Quintard | Dispersion in heterogeneous porous media : one-equation non-equilibrium model[END_REF], [START_REF] Davit | Equivalence between volume averaging and moments matching techniques for mass transport models in porous media[END_REF]) if one looks at the pore-scale temperature elds through the following decomposition

Tβ = T β -T βσ ≈ b ∞ β .∇ T βσ ; Tσ = T σ -T βσ ≈ b ∞ σ .∇ T βσ (47)
It was proven numerically and analytically [START_REF] Quintard | Dispersion in heterogeneous porous media : one-equation non-equilibrium model[END_REF], [START_REF] Davit | Equivalence between volume averaging and moments matching techniques for mass transport models in porous media[END_REF]) that the resulting non-equilibrium one-equation model is similar to Eq. 44 and that the two eective thermal dispersion tensors (two-equation asymp-totic behaviour and one-equation non-equilibrium closure) are equal if the heat exchange coecient is the one from the closure provided by Eqs. (40). To be clear enough, the use of other estimates (see [START_REF] Landereau | Quasi-steady two-equation models for diusive transport in fractured porous media: Large-scale properties for densely fractured systems[END_REF]) may lead to erroneous eective thermal conductivity.

Other non-equilibrium one-equation models have been proposed in the literature. For instance, it has been shown in [START_REF] Wang | Equivalence between dual-phase-lagging and two-phase-system heat conduction processes[END_REF] that the twoequation model is equivalent under certain conditions to a dual-phase-lagging heat conduction model. Similarly, it must be noticed that other types of equations may potentially reproduce some of the features of local non-equilibrium situations, for instance equations with fractional derivatives which have already been used for dealing with some problems of dispersion in porous media [START_REF] Sabatier | Advances in fractional calculus: theoretical developments and applications in physics and engineering[END_REF]).

Discussion

At this point, one already has at hand several models for the same initial porescale problem! The reader is referred to [START_REF] Davit | Equivalence between volume averaging and moments matching techniques for mass transport models in porous media[END_REF] (see in particular Fig. 8) for an exploration of their domain of validity for a typical boundary value problem. It is also of a fundamental importance to recognize that transitions between these various models may arise for the same Initial Boundary

Value Problem as has been shown in [START_REF] Davarzani | Theoretical predictions of the eective thermodiusion coecients in porous media[END_REF] (this problem is also revisited in [START_REF] Davit | Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF]). Fig. 2 reproduces the averaged temperature elds obtained from direct pore-scale numerical simulations (symbols) over an array of cylinders (injection from the left at constant temperature, Dirichlet condition at the exit) and the one-equation local equilibrium solution.

One sees that:

• at early stages the solution calls for a local non-equilibrium treatment,

• the asymptotic behavior is later observed, characterized by a larger thermal conductivity (larger spreading of the thermal plume) than the oneequation equilibrium model,

• because of the boundary condition at the exit, one observes that the conditions revert to local equilibrium! Hence an error would be made if one would attempt to predict this nal temperature eld with the asymptotic thermal conductivity value.

From this discussion and the proposed example, it is important to understand that one has to be careful when recommending the exclusive use of such and such model, as is sometimes the case in the literature. The proposed model may be acceptable during a time interval and may fail after. This is particular true for the asymptotic model since specic conditions are needed to reach the asymptotic limit. Any event that would recondition the temperature elds may lead to its failure. It must be acknowledged that, while it cannot recover all the characteristic times involved in a given thermal process, the two-equation model has the ability to reproduce several regimes since it includes the asymptotic model and the local equilibrium model. This robustness may be used to assess, at the expense of some limited additional complexity, whether the particular process of interest may be aected by local non-equilibrium eects or not.

The limitations of the two-equation model with a single linear or rst-order exchange term have been already emphasized, i.e., it has only a single characteristic time for describing the uid-solid temperature relaxation! This drawback may in principle be overcome through the use of the full model with convolution products. However, convolution products are not handy for numerical t=200s t=1000s t=49000s

x temperature 0 0.05 0 0.12 0.94 0.96 implementations. Alternate models have been designed to incorporate more characteristic times in the macro-scale equations. One class of models is called multi-rate models, see [START_REF] Haggerty | Multiple-rate mass transfer for modelling diusion and surface reactions in media with pore-scale heterogeneity[END_REF] for an introduction. In general, they may be derived by a splitting of the temperature elds into several sub-phases, either dened by geometrical considerations (for instance grains of big diameters and grains of small diameters) or through a more sophisticated mathematical point of view, for instance using the properties of the eigenvalue spectrum for the diusion process into the solid phase. This in general leads to N-equation models, which may reproduce the expected several characteristic time behavior without the inconvenience of convolution products.
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A nal class of model, called mixed or hydrid models, is based on the following approximation: if the solid phase thermal diusivity is two order of magnitude or more smaller than the uid thermal conductivity, i.e., k σ ∼ 2 k β , then Eq. ( 30) may be approximated by

T β β + Tβ O( l β L T β β ) = T σ ⇒ T β β macro-scale = T σ micro-scale (48) 
The nal model combines a micro-scale diusion equation coupled through Eq.

(48) to a macro-scale equation in which the eective thermal dispersion tensor is the one provided by Eqs. ( 35) with k σ = 0. The mixed model works better than the two-equation model in that case, however, it does not work as well as the two-equation model for k σ ∼ k β , as emphasized in [START_REF] Debenest | Transport in highly heterogeneous porous media: From direct simulation to macro-scale two-equation models or mixed models[END_REF]. Another type of mixed model may be introduced when sharp thermal fronts are encountered as in [START_REF] Debenest | Smouldering in xed beds of oil shale grains: governing parameters and global regimes[END_REF] in the case of combustion in porous media: they correspond to the use of a micro-scale model in the front matched far from the front with a macro-scale model.

Finally, Fig. 3 summarizes schematically the various models that can be used: direct pore-scale numerical simulation, the various one-equation, 2-equation and N-equation models, as well as mixed models.

4

Extensions and open problems

In this section, some indications are provided about the extension of the previous models to several classes of problems of general practical importance.

Heterogeneous and homogeneous heat sources

Homogeneous or heterogeneous heat sources in the energy equations may be uncoupled to heat transfer, for instance in the case of the cooling of nuclear reactor debris beds where the heat source is produced by radioactivity, or may lead to strongly non-linear coupled problems, for instance in the case of smoldering or combustion in porous media. The uncoupled problem has been studied

in Quintard and Whitaker (2000) two equations, i.e., the two-temperature model becomes

ε β (ρc p ) β ∂ T β β ∂t + (ρc p ) β v β .∇ T β β -u ββ .∇ T β β -u βσ .∇ T σ σ = ∇. K * ββ .∇ T β β + K * βσ .∇ T σ σ -h 2eq T β β -T σ σ + a v ξΩ (49a) ε σ (ρc p ) σ ∂ T σ σ ∂t -u σβ .∇ T β β -u σσ .∇ T σ σ = ∇. K * σβ .∇ T β β + K * σσ .∇ T σ σ -h 2eq T σ σ -T β β + a v (1 -ξ) Ω + ε σ Φ σ (49b)
where ξ is a so-called distribution coecient which can be calculated from the resolution of a fourth closure problem. Numerical calculations of the distribution coecient in Quintard and Whitaker (2000), [START_REF] Davit | Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF] shows that ξ → 0 when k σ /k β → ∞ which leads to the heuristic equation in which all the produced heat is aected to the solid phase [START_REF] Oliveira | Nonequilibrium in the transport of heat and reactants in combustion in porous media[END_REF]). It is interesting to note that this framework has been used to develop a local non-equilibrium model taking into account radiation eects through a generalized radiation transfer equation providing Ω in a coupled manner [START_REF] Leroy | Coupled upscaling approaches for conduction, convection, and radiation in porous media: theoretical developments[END_REF]).

The coupling with mass transfer and reaction is often treated with some sort of decoupling [START_REF] Fatehi | Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion[END_REF], [START_REF] Oliveira | Nonequilibrium in the transport of heat and reactants in combustion in porous media[END_REF]).

Indeed, if one assumes that the mass reaction rate is of the form One understands that highly non-linear reaction terms, such as Arrhenius equations, or the potential existence of sharp combustion fronts may require more complicated closures [START_REF] Fatehi | Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion[END_REF]) or even call for direct numer-ical simulations or mixed models [START_REF] Debenest | Smouldering in xed beds of oil shale grains: governing parameters and global regimes[END_REF]). From an upscaling point of view, these problems remain largely open problems.

r β = (c β , T β ) = c β β , T β β + ∂ ∂c β c β β , T β β cβ + ∂ ∂T β c β β , T β β Tβ + • • • ( 

4.2

Coupling with momentum and mass transport So far, the heat equation upscaling problem has been treated independently of the mass and momentum transport. This required neglecting density and viscosity variations. It has already been emphasized in the above subsection that coupling between the various transport problems may have to be considered.

Often, weak coupling can be treated following the ideas leading to Eq. ( 51),

i.e., density, viscosity, thermal diusion or mass diusion are supposed to be constant (to make it simple) over the averaging volume at the intrinsic averaged temperature, pressure, concentration, etc. As a consequence, the closure problems have these averaged values as parameters and the resulting eective parameters will depend non-linearly on c β β , T β β .

Another class of coupled problems may be treated relatively easily: one-sided coupling. This is the case, for instance, when dealing with thermodiusion and when Soret eect is only taken into account. Assuming constant uid and solid characteristics, the thermal upscaling problem may be treated independently of the species transport problem which is dened by

∂c β ∂t + ∇. (c β v β ) = ∇. (D β ∇c β + D T β ∇T β ) (52) B.C.1 n βσ . (D β ∇c β + D T β ∇T β ) = 0 at A βσ (53) 
Because of this one-side coupling, the temperature deviations can be estimated from the various closures presented in this paper, i.e., Eqs. ( 34) or (39). In turn, it can be introduced in the mapping expression for the concentration deviation. For instance, the local equilibrium closure would lead to [START_REF] Davarzani | Theoretical predictions of the eective thermodiusion coecients in porous media[END_REF])

cβ = b Cβ .∇ c β β + b Sβ .∇ T (54) 
The closure problems for b Cβ is the classical problem leading to the dispersion tensor [START_REF] Brenner | Dispersion resulting from ow through spatially periodic porous media[END_REF], [START_REF] Carbonell | Dispersion in pulsed systems ii: Theoretical developments for passive dispersion in porous media[END_REF]) while the closure problem for b Sβ is coupled with the closure problem for b β described by Eqs. ( 35).

One has

v β .∇b Sβ = D β ∇ 2 b Sβ + D T β ∇ 2 b β (55a) B.C. -n βσ . (D β ∇b Sβ + D T β ∇b β ) = n βσ .D T β at A βσ (55b) b Sβ (r + l i ) = b Sβ (r) , i = 1, 2, 3 and b Sβ β = 0 (55c)
and the resulting macro-scale dispersion equation is

∂ε β c β β ∂t + ∇. ε β v β β c β β = ∇. ε β D * β .∇ c β β + ε β D * T β .∇ T (56) 
where the eective thermal dispersion tensor is given by 2010)), (ii) eect of pore-scale convection is complex and may lead to macro-scale thermodiusion eects of sign opposite to the molecular value as shown in [START_REF] Davarzani | Theoretical predictions of the eective thermodiusion coecients in porous media[END_REF].

D * T β = D β    1 V β Âβσ n βσ b Sβ dA    + D T β   I + 1 V β Âβσ n βσ b T β dA    -ṽβ b Sβ β ( 
Most of the time, however, there is a strong coupling and it is dicult to nd a complete closure. This, of course, leaves the door open for the use of heuristic or semi-heuristic models, which is in fact the status of many models used in porous media physics. To illustrate this kind of problem, let us consider transport in porous media with intense phase change, like boiling occurring when cooling hot debris bed of nuclear reactor after a loss-of-coolant accident (Loca). So far, closures have been proposed in which the momentum transport is treated independently. Practical models make use of generalized Darcy's laws, or Forchheimer extensions [START_REF] Hardee | Natural convection in porous media with heat generation.[lmfbr][END_REF], [START_REF] Catton | Two-phase ow in porous media with phase change steam injection and post-dryout heat transfer[END_REF], [START_REF] Fichot | The impact of thermal non-equilibrium and large-scale 2d/3d eects on debris bed reooding and coolability[END_REF]). These models remain largely heuristic and are not entirely supported by the classical two-phase upscaling developments (Whitaker (1986b), [START_REF] Auriault | Nonsaturated deformable porous media: quasistatics[END_REF], [START_REF] Hassanizadeh | Toward an improved description of the physics of two-phase ow[END_REF], [START_REF] Panlov | Phenomenological meniscus model for two-phase ows in porous media[END_REF]), which do not take into account the specics of the phase repartition when boiling occurs in the porous medium. The need for non-equilibrium heat transfer model for Loca modeling has been recognized long ago [START_REF] Amarasooriya | Premixing of steam explosions: A threeuid model[END_REF], [START_REF] Berthoud | Development of a multidimensional model for the premixing phase of a fuel-coolant interaction[END_REF]).

The macro-scale model has usually the form of a three-temperature model. A limited closure can be found for such a model assuming a quasi-static gas-liquid interface [START_REF] Duval | A local thermal non-equilibrium model for two-phase ows with phase-change in porous media[END_REF]). In this context, calculations of the eective properties suggested a signicant dierence between the values for a wet solid surface, so-called slg conguration, which would occur when boiling is not important, compared to a sgl conguration with a vapour lm near the solid surface. Moreover, pore-scale nucleate boiling does not certainly t with a quasi-static interface assumption! Therefore, it is expected that both two-phase and energy models should be impacted by the phase change process taking place within the pores. Experimental evidence interpreted through a three-temperature model [START_REF] Bachrata | Quench front progression in a superheated porous medium: experimental analysis and model development[END_REF]) suggests that there is indeed an impact of the two-phase conguration on the eective properties and that, at least for the heat exchange coecients, Nukiyama curves [START_REF] Nukiyama | The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure[END_REF]) specic to porous media congurations should be introduced.

It is important to understand at this point that intense boiling implies rapidly varying phase conguration with time. Therefore, the use of specic porous media Nukiyama's curves means precisely that the macro-scale equations are in fact spatially and time averaged.

The question of upscaling transport equations with a spatial and time averaging is still an open problem. It has mainly received some attention in the case of turbulent ows in porous media, while it is certainly of utmost importance in the case of multi-phase ow, not only for boiling as emphasized above but also for non quasi-static ows. Mathematically speaking, the spatial and time latter parameter is obtained through a closure problem that involves the local velocity eld v β . Therefore, it is non-linear and depends upon the average velocity in a complex manner, not necessarily linear or cubic [START_REF] Lasseux | On the stationary macroscopic inertial eects for one phase ow in ordered and disordered porous media[END_REF]. Indeed, such a generalized Forchheimer equation is useful to describe strong inertia eects [START_REF] Chauveteau | Régimes d'écoulement en milieu poreux et limite de la loi de darcy[END_REF], [START_REF] Skjetne | High-velocity laminar and turbulent ow in porous media[END_REF]) which may obey power law pressure drops. This model is also useful in the case of unit-cell localized or periodic turbulence, has shown theoretically in [START_REF] Skjetne | High-velocity laminar and turbulent ow in porous media[END_REF], [START_REF] Soulaine | On the use of a darcyforchheimer like model for a macro-scale description of turbulence in porous media and its application to structured packings[END_REF]. Turbulence is not always of a unit cell periodic type and several attempts have been made

to develop macro-scale turbulence models. Two sequential schemes have been discussed in the literature, as illustrated below

I. v β → v β → v β (60) II. v β → v β (RAN S, ...) → v β (61) 
Scheme I, favored by [START_REF] Antohe | A general two-equation macroscopic turbulence model for incompressible ow in porous media[END_REF], [START_REF] Getachew | A modied form of the κ ε model for turbulent ows of an incompressible uid in porous media[END_REF] among others, involves a rst spatial averaging. It is assumed that the closed macroscale equations are of a generalized Forchheimer type, an assumption which is dicult to assess. This is followed by a time averaging procedure. Most researchers follow scheme II. In this case, it is assumed that the Navier-Stokes equations may be time averaged and the resulting equations are subsequently spatially averaged [START_REF] Nakayama | A macroscopic turbulence model for ow in a porous medium[END_REF], Pedras and de Lemos 

Conclusions

The problem of heat transfer in porous media leads to several dierent classes of problems with more or less coupling between the mass, momentum and energy balance equations. Hence, the association of this diversity with the multi-scale aspect leads to various types of models, one to N-equations models of various mathematical forms, mixed or hybrid models. This multi-scale aspect has been the focus of this paper and these questions have been reviewed based on a classical heat transfer problem. It must be emphasized that strong non-linear coupled problems remain largely open questions and deserve further research.

It also must be remembered that several problems of paramount importance have not been addressed in this paper, in particular numerical modeling or the development of appropriate experimental techniques. Developments of new techniques in these area may oer new opportunities to understand and solve more and more of these multi-scale complex problems.
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 2 Figure 2: Transient evolution of macro-scale models (adapted from Davarzani et al. (2010))
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 3 Figure 3: Multiple-scale description of a porous medium.

  57)Many interesting features may be obtained from this analysis: (i) in the diusive regime one obtains the important result that D ,Davarzani et al. (

(

  2001)). In both cases, the possibility of a decoupled closure for both types of averages is dicult to justify. The result is some sort of eective RANS macroscale model. A complete validation either through experiments or through numerical modeling is still an open problem. The need for such model is also a matter of evaluation. It is interesting to notice that it has been observed, based on direct numerical simulations, that turbulence generated in a uid layer or at the interface between uid and porous layers, may indeed penetrates several unit cells into the porous domain and that in this area a porous medium turbulence model is needed[START_REF] Chandesris | Direct numerical simulation of turbulent heat transfer in a uid-porous domain[END_REF]). The coupling of turbulence eects with mass and heat transport is clearly an open problem which is the focus of current research.

averaging operators commute as is discussed in de [START_REF] De Lemos | Turbulence in porous media : Modelling and Applications[END_REF]. However, if one attempts to develop a closure, it seems that a sequential approach is the most practical. Since closure involves approximations, the resulting schemes do not necessarily commute. Which sequential averaging is the best? This is a dicult question that has received various answers in the literature. Before discussing this question, let us review the upscaling of the momentum equation when increasing the Reynolds number, Re, which quanties the importance of inertia eects versus viscous diusion, and, eventually, the appearance of turbulence. In the limit Re → 0, upscaling methods give the traditional Darcy's law as already discussed. Increasing Re leads rst to a weak inertia regime with a cubic dependence of the pressure loss as shown theoretically in [START_REF] Wodié | Correction non linéaire de la loi de Darcy[END_REF], [START_REF] Mei | The eect of weak inertia on ow through a porous medium[END_REF], and many other contributions. This weak inertia regime does not often produce a signicant departure from Darcy's law, but it may be observed if accurate measurements are made or when solving numerically Navier-Stokes equations [START_REF] Firdaouss | Nonlinear corrections to darcy's law at low reynolds numbers[END_REF], [START_REF] Lasseux | On the stationary macroscopic inertial eects for one phase ow in ordered and disordered porous media[END_REF]).

Rapidly, when increasing the Reynolds number, a strong inertia regime occurs, which is often modeled in practice with a Forchheimer equation [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF]). The classical Forchheimer equation has a quadratic dependence which provides in most cases a satisfactory representation of actual head losses (see discussion in [START_REF] Ergun | Fluid ow through packed columns[END_REF] for chemical engineering applications, see [START_REF] Lasseux | On the stationary macroscopic inertial eects for one phase ow in ordered and disordered porous media[END_REF] for a literature review and a discussion of the applicability of the quadratic equation). A generalized Forchheimer equation may be derived through upscaling techniques, as shown in [START_REF] Whitaker | The forchheimer equation: A theoretical development[END_REF] and it has the following form

where K is the intrinsic permeability tensor and F the correction tensor. This