
HAL Id: hal-03464488
https://hal.science/hal-03464488v2

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fitting ultracold resonances without a fit
Andrea Simoni

To cite this version:
Andrea Simoni. Fitting ultracold resonances without a fit. New Journal of Physics, 2021, 23 (11),
pp.113023. �10.1088/1367-2630/ac3442�. �hal-03464488v2�

https://hal.science/hal-03464488v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


            

PAPER • OPEN ACCESS

Fitting ultracold resonances without a fit
To cite this article: A Simoni 2021 New J. Phys. 23 113023

 

View the article online for updates and enhancements.

You may also like
Corrigendum: Radiative 10Be(n, )11Be
capture at thermal and astrophysical
energies (2016 J. Phys. G: Nucl. Part.
Phys. 43 095201)
S B Dubovichenko and A V Dzhazairov-
Kakhramanov

-

Discovery of ASKAP J173608.2–321635
as a Highly Polarized Transient Point
Source with the Australian SKA Pathfinder
Ziteng Wang, David L. Kaplan, Tara
Murphy et al.

-

A Large Catalog of Accurate Distances to
Local Molecular Clouds: The Gaia DR2
Edition
Catherine Zucker, Joshua S. Speagle,
Edward F. Schlafly et al.

-

This content was downloaded from IP address 129.20.30.58 on 03/12/2021 at 10:40

https://doi.org/10.1088/1367-2630/ac3442
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
/article/10.1088/1361-6471/aa778d
https://doi.org/10.1088/0954-3899/43/9/095201
https://doi.org/10.1088/0954-3899/43/9/095201
/article/10.1088/1361-6471/aa778d
/article/10.3847/1538-4357/ac2360
/article/10.3847/1538-4357/ac2360
/article/10.3847/1538-4357/ac2360
/article/10.3847/1538-4357/ab2388
/article/10.3847/1538-4357/ab2388
/article/10.3847/1538-4357/ab2388
/article/10.3847/1538-4357/ab2388
/article/10.3847/1538-4357/ab2388
/article/10.3847/1538-4357/ab2388


New J. Phys. 23 (2021) 113023 https://doi.org/10.1088/1367-2630/ac3442

OPEN ACCESS

RECEIVED

9 August 2021

REVISED

22 October 2021

ACCEPTED FOR PUBLICATION

28 October 2021

PUBLISHED

17 November 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Fitting ultracold resonances without a fit

A Simoni∗

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, F-35000 Rennes, France
∗ Author to whom any correspondence should be addressed.

E-mail: andrea.simoni@univ-rennes1.fr

Keywords: ultracold collisions, Feshbach resonances, resonance line shape, overlapping inelastic resonances

Abstract
We present a numerical procedure allowing one to extract Feshbach resonance parameters from
numerical calculations without relying on approximate fitting procedures. Our approach is based
on a simple decomposition of the reactance matrix in terms of poles and residual background
contribution, and can be applied to the general situation of inelastic overlapping resonances. A
simple lineshape for overlapping inelastic resonances, equivalent to known results in the particular
cases of isolated and overlapping elastic features, is also rigorously derived.

1. Introduction

Feshbach resonances are an ubiquitous phenomenon taking place when the energy of colliding particles is
nearly degenerate with a quasi-bound level of the system. Resonances are traditionally observed as a
function of collision energy or also by varying applied electromagnetic fields. In ultracold gases, it has been
long realized that resonances occurring at extremely low energies can be induced by tuning an external
magnetic field [1], allowing one to vary in a controlled way the effective interatomic interaction. The
possibility to control the interaction using resonances is at the hearth of a series of groundbreaking
experiments in the field of ultracold gases; see e.g. [2].

Feshbach resonances have been studied both theoretically and experimentally in a number of ultracold
atomic systems [3]. Theory usually conveys information extracted from numerical models in a small
number of lineshape parameters, namely position, width and the non-resonant (or background)
contribution, extracted by fitting the numerical result to an analytical form. A celebrated example is the case
of an isolated elastic resonance [1] where the s-wave scattering length diverges both positively and negatively
as a function of the magnetic field B across the center B0:

a(B) = abg

(
1 − Δ

B − B0

)
. (1)

Here Δ represents the magnetic width and the background scattering length abg is the off-resonance value
of a(B).

A more general lineshape describing a pair and an arbitrary number of elastic overlapping resonances
has been derived using formal scattering theory and quantum defect analysis in the supplemental material
of [4] and in [5], respectively. In this case, the scattering length is still a purely real quantity showing a pair
or a series of nearby divergences.

Isolated resonances in the presence of inelastic processes have been discussed in [6] and studied in
greater detail in [7, 8]. The main influence of inelastic loss channels is to make the scattering length a
complex quantity and to suppress the pole in its real part, that no longer diverges [7, 9]. In the presence of
inelastic processes both the lineshape and the extraction of related resonance parameters become more
involved. A relatively elaborate fitting strategy based on a three-points iterative procedure has been
developed in [10]. However, like any other approach relying on fitting the lineshape to an analytical
expression, the latter procedure presents few intrinsic drawbacks.

First, the precise value of the fitting parameters depends on the chosen fitting interval and bears an error
bar. Second, the analytical lineshape can be a poor approximation to the fitted data, even to the extent that
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the fitting procedures may not converge [10]. Even if the least square iterations do converge, the physical
meaning of the fitting parameters will become unclear if the analytical lineshape poorly describes the data.
For instance, if the background scattering length presents an unusually rapid variation, defining such
quantity as the off-resonance value of a(B) is not a well defined prescription. Finally, the analytical
lineshape for overlapping resonances in the presence of inelastic processes is not yet available. This situation
which indeed occurs frequently for collisions in excited states [11] is still missing a systematic procedure
allowing one to summarize the numerical data in few theoretical parameters. A simple approach consisting
in presenting graphics of the numerical results without accompanying tables of resonance parameters is not
fully satisfactory, since reading quantitative information from a plot without having access to the rough data
can be difficult or impossible.

In this paper, we present a formalism designed to overcome all of the above difficulties. Our approach
allows one to define and extract in an algorithmically well defined way resonance parameters even in cases
where the lineshape cannot be modeled by a simple expression. For the sake of better physical insight and
clarity, our discussion is based on Feshbach resonance theory [12]. However, at a fundamental level the
present strategy is based on a general pole approximation that could be taken as starting point in a similar
fashion as scattering resonances can be defined as scattering-matrix poles [13]. Special attention is granted
to stable ways to implement such pole decomposition, a numerically non trivial task in the presence of
naturally diverging quantities such as the scattering length on resonance. As a by-product of the formalism,
we also demonstrate that the complex scattering length can always be parametrized in a simple and intuitive
way in terms of complex magnetic field locations and magnetic widths.

The paper is organized as follows. In section 2 we introduce the formalism building on Feshbach
resonance theory.

Section 3 proves that the present approach reduces under suitable conditions to results previously
appeared in the literature.

In section 4 we present an application to two situations of physical interest for 39K, the case of
overlapping and inelastic s-wave resonances and of finite-energy p-wave resonances.

A short conclusion ends this work.

2. Formalism

2.1. Basic ideas for single channel scattering
The main idea can be illustrated with reference to the simple single channel resonant expression of the
s-wave scattering length in the presence of an isolated resonance. Here we consider the most common case
that the scattering length is tuned via an external magnetic field B, but the formalism applies equally well to
a general external field or variation of any physical parameter in the Hamiltonian capable of inducing
resonances. In the case of a magnetic field, recalling (1), one can write:

a(B) = abg

(
1 − Δ

B − B0

)
≡ abg +

p

B − B0
, (2)

where we have defined p = −abgΔ the field-independent pole strength. Any variation of a with B beyond the
pole contribution is included in the background term, which will therefore be considered a function of B.

The pole strength can be extracted from a theoretical calculation of a as

p = lim
B→B0

[a(B)(B − B0)] . (3)

It will be shown below how this limit can be performed in a numerically stable way; see equation (16). Once
the p parameter is determined, one can compute the on-resonance value of the background scattering length
according to

abg(B0) = lim
B→B0

[
a(B) − p

B − B0

]
. (4)

Again, this limit can be computed in a stable way; see (19). We stress that the usual interpretation of the
background scattering length as the limit value of a far away from resonance may become ambiguous in
cases where abg is not strictly constant or, even worse, is rapidly varying. On the converse, the quantity (4) is
well defined in any case and denotes simply the value of a(B) at the resonance location after subtraction of
the divergent part. We now generalize these ideas to multichannel scattering.

2.2. Pole decomposition for multichannel scattering
Let us consider a general scattering problem with N channels, Nc closed channels, and Nop = (N − Nc)
open channels. We will further partition the Nop open channels into No degenerate (also termed in

2
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scattering theory super-elastic) channels with energy equal to the incoming channel, and Nō inelastic
channels with energy release (or absorption). We use Feshbach theory, that formally partitions channel
space into open and closed channel subspaces P and Q [14]. Scattering in the P subspace is supposed to be
known, and the influence of the Q subspace is taken into account through the introduction of an effective
Hamiltonian. The nature of P and Q subspaces depends on the specific problem at hand and for general
formal manipulations does not even need to be specified [15]. A resonance occurs when the energy of
bound states in Q subspace is quasi-degenerate with the energy of the colliding particles. Under such
conditions the influence of the Q subspace on the total scattering amplitude becomes dramatic.

Feshbach formalism is most often applied to the scattering matrix [14], but also provides a partition of
the reactance matrix [12]. Working with the reactance matrix is convenient since the resulting scattering
matrix is automatically unitary, algebra is real, and the number of fitting parameters is minimal [12].
According to Feshbach theory, the reactance matrix at total energy E can be written

K =
[
sin(ξbg) + cos(ξbg)Kres

] [
cos(ξbg) − sin(ξbg)Kres

]−1
(5)

= cos(ξbg)
[
tan(ξbg) + Kres

] [
1P − tan(ξbg)Kres

]−1
cos (ξbg)−1, (6)

where 1P is the identity in P space and the resonant part of the reactance matrix has the form

Kres = y
(
E1Q − Eb − V

)−1
yt . (7)

Here y is the Nop × Nc matrix formed by half predissociation amplitudes and the operator
(
E1Q − Eb − V

)
acts in the closed channel subspace, the Q-space of Feshbach theory. Zero energy is taken at the energy of
the separated atoms at the given value of the applied field. The diagonal matrix Eb represents the energy
levels of the bare molecular states defining the Q-space. We will make the usual assumption that the
position of such levels depends linearly on the applied field Eb = −μ(B1Q − Br) with μ a diagonal matrix
whose entries μα are the differential magnetic moment of state α with respect to the one of two separated
atoms in the initial channel. The entries Br,α of the diagonal matrix Br represent the bare resonance
magnetic field, i.e. the field at which level α crosses the incoming channel dissociation threshold. The
coupling V contains in general an energy-independent direct coupling U between molecular states as well as
indirect coupling through the continuum via the level shift operator δE at energy E [16, 17]. At this stage it
is not necessary to distinguish the two contributions, only the Hermitic nature of V being of importance.

To proceed further with the derivation, inspired by the single-channel case, we factor out the magnetic
moment in the denominator [1]. To this aim, we define ỹ = μ−1/2y and B = Br + μ−1/2(V − E1Q)μ−1/2.
The resonant reactance matrix is expressed in terms of these redefined quantities as:

Kres = ỹ
(
B1Q −B

)−1
ỹt . (8)

If the magnetic moments all share the same sign the matrix μ1/2 will be either purely real or purely
imaginary. In this case, by its definition B will be real and symmetric, thus with real eigenvalues. If the
magnetic moments present both negative or positive values the matrix B will in general be complex, yet still
symmetric.

We now insert (8) into (6). After some algebra, see proof in appendix A, one can recast the K matrix in
the form

K = tan(ξbg) + cos (ξbg)−1ỹ(B1Q − B̂)−1ỹt cos (ξbg)−1, (9)

where the shifted resonance position matrix B̂ is defined as B̂ = B + ỹt tan(ξbg)ỹ. If there are no inelastic
channels and if threshold collisions are considered (E → 0), all elements of tan(ξbg) as well as of the

predissociation amplitude y tend to zero, hence B̂ → B. The B̂ operator is still complex symmetric, is real if
B is real, but unlike B in general it varies with magnetic field because of the background phase ξbg

appearing in its definition. It can therefore be brought a diagonal form b̂ through a B-dependent complex
orthogonal transformation C such that B̂ = Cb̂Ct and CtC = CCt = 1 [18]. With this transformation,
equation (9) can be rewritten:

K = tan(ξbg) + ŷ(B1Q − b̂)−1ŷt = tan(ξbg) +
∑
α

ŷαŷt
α

B − b̂α
(10)

in terms of a redefined predissociation amplitude ŷ = cos (ξbg)−1ỹCt , which also depends on B.

The reactance matrix clearly diverges at the solutions, say bα, of the nonlinear equation B − b̂α(B) = 0.
The following manipulations will turn out to be simpler if one isolates pole contributions with a
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field-independent pole residue. To this aim, let us define the constant amplitude vector ŷ(0)
α = ŷα(bα) and

rewrite (10)

K = tan(ξ̃bg) + ŷ(0)(B1Q − b)−1ŷ(0)t = tan(ξ̃bg) +
∑
α

ŷ(0)
α ŷ(0)t

α

B − bα
, (11)

where the modified background

tan(ξ̃bg) = tan(ξbg) − ŷ(0)(B1Q − b)−1ŷ(0)t + ŷ(B1Q − b̂)−1ŷt . (12)

is still regular at the poles and reduces to tan(ξbg) if ξbg is strictly constant.
According to the remark below (8) only real values of bα are possible if all entries in matrix μ have the

same sign. If this is not the case, it can be shown that solutions bα are either real or occur in pairs of
complex conjugate quantities. On a physical ground, such complex solutions arise when a pair of molecular
levels with opposite slopes avoid each other exactly at the collision threshold, such that neither level crosses
the latter. For purely elastic scattering, this unlikely case will result in a scattering length that may have a
rapid variation, but will not diverge as B varies on the real axis. We will not consider this situation as a
resonance condition and will henceforth assume that bα is always real, with the implicit assumption that the
contribution from complex solutions bα, if any, is included in the background.

Since we are mainly interested in scattering near a collision threshold, it is convenient to factor out the
low-energy limit behavior of the reactance matrix for channels with orbital angular momentum � as follows
[19]:

K̄ = q−(�+1/2)Kq−(�+1/2). (13)

The diagonal normalization matrix q−(�+1/2) has by definition elements q−(�i+1/2)
i for all channels

degenerate with the incoming one, and to 1 for inelastic ones. The resulting normalized K-matrix is thus
finite at threshold and is the main quantity needed to compute zero-energy scattering lengths. Performing
such channel normalization and introducing the background scattering length matrix
A = q−(�+1/2) tan(ξ̃bg)q−(�+1/2) as well as the resonance amplitude ȳ = q−(�+1/2)ŷ(0), equation (11)
transforms into

K̄ = A + ȳ(B1Q − b)−1ȳt = A +
∑
α

ȳαȳt
α

B − bα
. (14)

Note that according to the Wigner laws [20], by construction both A and ȳ are finite at threshold.
With the assumption above, the matrix K̄ diverges at the real magnetic field locations bα. This should be

contrasted with the behavior of the complex scattering length, that even in the presence of a pole in K̄ on
the real axis can in some cases present barely no structure. In order to locate the poles numerically, we find
it more convenient to consider the inverse reactance matrix M = K̄−1 and to search for the zeros in the
determinant det M. We first bracket zeros by a coarse search, then quickly refine their position using
Ridder’s method. Such nonlinear root-finding algorithm has as main advantages a superlinear convergence
and that of keeping the root bracketed [21].

We now show that the residue as well as the background contribution at the pole position (recall that A
will, in general, have a dependence on B) can be accurately determined. Concerning the residue, by
definition:

ȳαȳt
α = lim

B→bα
(B − bα)K̄(B). (15)

In order to evaluate the indeterminate 0 · ∞ product, we write K̄ = M−1 = adj M/ det M and use l’Hôpital
rule. Keeping into account continuity of the adjugate, one promptly obtains

ȳαȳt
α =

adj M(bα)

det′ M(bα)
. (16)

Equation (16) gives a numerically stable way to evaluate the residue in terms of M. The needed derivatives
of the determinant can be evaluated using Jacobi’s formula:

det′M(B) = tr
(
adj(M(B))M′) . (17)

The local background at the pole is defined by subtracting the divergent contribution from the global
reactance matrix:

Aloc(bα) = lim
B→bα

(
K̄(B) − ȳαȳt

α

B − bα

)
. (18)

Note that Aloc contains contributions from the global background A as well as from all resonances but the
αth one. The lhs presents itself in a ∞–∞ form. In order to evaluate the limit, we write again K̄ in terms of

4
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the adjugate and determinant of M. After bringing to common denominator and Taylor expanding to
second order one obtains

Aloc(bα) =
2 det′(M(bα))adj′(M(bα)) − det′′ M(bα)adj (M(bα)

2
[
det′ M(bα)

]2 . (19)

One proceeds similarly for the first derivative, which will also be needed. One starts from the definition

A′
loc(bα) = lim

b→bα

(
K̄′(B) +

ȳαȳt
α

(B − bα)2

)
(20)

and evaluates the indeterminate limit using Taylor expansion to get

A′
loc(bα) =

2(det′′ M(bα))2adj (M(bα) − 2 det′(M(bα))det′′(M(bα))adj′(M(bα)) + 2(det′ M(bα))2adj′′(M(bα))
−det′(M(bα))det′′′(M(bα))adj(M(bα)) − det′(M(bα))det′′(M(bα))adj′′(M(bα))

2(det′ M(bα))3 .

(21)
The required derivatives of the adjugate can be evaluated keeping into account that elements of the

adjugate are in turn determinants of minors, and using again (17). Higher order derivatives of a
determinant (and thus of the adjugate) follow by successive differentiation of (17). For instance, the second
derivative can be calculated as

det′′ M(B) = tr
(
adj′(M(B))M′ + adj(M(B))M′′) . (22)

Once the local background matrix (which includes contributions from nearby resonances) has been
determined, the usually smooth global background and its derivative are respectively given by

A(bα) = Aloc(bα) −
∑
β �=α

ȳβ ȳt
β

bα − bβ
(23)

and

A′(bα) = A′
loc(bα) +

∑
β �=α

ȳβ ȳt
β

(bα − bβ)2
. (24)

In practice, it is clear that in these expansions one will not need to include all poles of K. One rather
focuses on resonances occurring in a predefined magnetic field region and includes all poles such that the
addition of additional ones has negligible influence on the parameters of the resonances of interest. In
simpler terms, only resonances significantly overlapping with the ones under investigation must be taken
into account. It is also clear that without a stable and accurate algorithm to compute the M matrix and its
derivatives the present formalism would be of little practical use. Our numerical approach for computing
such derivatives is the subject of the following subsection.

2.3. Computing the derivatives
On a general ground, a basis representation of the wavefunction is particularly suited to compute
derivatives of any order, since the latter can then be obtained in an essentially analytical fashion. In fact,
while propagation algorithms also can be adapted for obtaining derivatives (see e.g. [22]), algorithmic
complexity and computational cost both increase with the derivative order. In this work we exploit the
pseudospectral representation termed spectral element method, a spatial grid representation presented for
instance in [23] and references therein. In the present work we impose asymptotic R-matrix boundary
conditions, but one could equally well work with log-derivative or scattering boundary conditions. In the
discrete spatial grid representation, the time-independent multichannel Schrödinger equation reads:

[E1 − H(B)]Ψ(B) = c, (25)

where the constant vector c on the rhs equal to zero everywhere but at last grid point rmax, where it equals
the unit matrix of dimension the total number of channels [23]. Elements of the Hamiltonian matrix in the
spectral element representation can be found in [23]. By definition, the multichannel wavefunction Ψ at
rmax equals the R-matrix R.

Once Ψ has been determined from equation (25), first derivative of the matrix wavefunction is obtained
from differentiating (25) with respect to parameter B, and solving the resulting linear system:

H(B)
∂Ψ

∂B
+

∂H

∂B
Ψ(B) = 0. (26)

5
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Again, the derivative of the R-matrix with respect to B corresponds to the computed ∂Ψ/∂B at rmax.
The K-matrix is ordinarily computed by imposing the asymptotic form of the wavefunction Ψ ∼ f − gK

in terms of regular and irregular solutions f and g for the free particle problem. Since in our algorithm K is
not needed, we rather determine directly its inverse M by matching to Ψ ∼ fM − g. The linear matching
equations for M simply follow from equation (25) of [23] and read:

(f − Rf ′)M = (g − Rg′) (27)

the prime denotes the spatial derivative and all spatial arguments are tacitly taken at last point of the
discretization grid. The first derivative of M with respect to the field is solution to the linear system
obtained taking the derivative of (27)

(f − Rf′)
∂M

∂B
+

∂(f − Rf′)

∂B
M =

∂g

∂B
− R

∂g′

∂B
− ∂R

∂B
g′ (28)

in which M, R, and ∂R
∂B are known. Derivatives of the reference functions with respect to the field are

transformed into derivatives with respect to energy using chain rule and the known behavior of asymptotic
channel energies with respect to B. The latter are calculated using a stable formula for both open and closed
channels from [22], equations (11) and (12).

Formal generalization to the nth derivative of Ψ is straightforward. One differentiates n times the
Schrödinger equation, and solves for the highest order derivatives of the wavefunction

∑
k

(n

k

) ∂kH

∂Bk

∂n−kΨ

∂Bn−k
= 0 (29)

knowing the derivatives of Ψ up to order n − 1. Similarly, to determine ∂nM/∂Bn one differentiates n times
the matching condition (27)

∑
k

(n

k

) ∂k(f − Rf′)

∂Bk

∂n−kM

∂Bn−k
=

∂ng

∂Bn
−
∑

k

(n

k

) ∂kR

∂Bk

∂n−kg′

∂Bn−k
(30)

and solves for the highest order derivative knowing the derivatives of M up to order n − 1 as well as the
derivatives of R up to order n. Higher order derivatives of reference functions with respect to B are obtained
by successive differentiation of equations (11) and (12) in [22].

2.4. Observables: the energy-dependent scattering length
We now turn to the calculation of observable quantities. The scattering cross-sections at arbitrary energy
can be expressed exactly as a function of the so-called energy-dependent scattering length [24]. Its
definition for a single channel in terms of the diagonal scattering matrix element Sjj is:

a(B) = q−(2�i+1)
o

1 − Sjj

i(1 + Sjj)
, (31)

where qo is the channel wavevector.
We consider here the general situation of a number No of degenerate channels occurring for example

when several partial waves contribute to the scattering process or in the presence of magnetic Zeeman
sublevels in a vanishing magnetic fields. Hence we define a square complex scattering length matrix

a(B) = qo
−(�i+1/2) 1oo − Soo

i (1oo + Soo)
qo

−(�i+1/2). (32)

The off-diagonal elements of a are particularly relevant to parametrize anisotropic pseudopotentials [25] or
in the context of spinor Bose–Einstein condensates [26].

We now write the relevant square matrices X = K, A, 1 as well as the generally non-square
predissociation amplitudes y in blocked form for open degenerate and non-degenerate channels:

(33)

With this decomposition and applying the projection technique of [19] one can express the middle matrix
ratio on the rhs of (32) as a function of the blocks of the reactance matrix

1oo − Soo

i(1oo + Soo)
= −Koo − iKōo(1ō̄o − iKō̄o)−1Kōo. (34)

6
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Transforming to the normalized quantities according to (13)

a(B) = −K̄oo − iK̄ōo

(
1ōō − iK̄ō̄o

)−1
K̄ōo (35)

and with the help of (14) we obtain:

a(B) = −Aoo − ȳo

(
B1Q − b

)−1
ȳt

o

− i
(

Aōo + ȳo

(
B1Q − b

)−1
ȳt

ō

)(
1ō̄o − iAōō − iȳō

(
B1Q − b

)−1
ȳt

ō

)−1

×
(

Aōo + ȳo

(
B1Q − b

)−1
ȳt

ō

)
. (36)

Making use of the Woodbury matrix identity [27] one can further write:

(
1ōō − iAō̄o − iȳō

(
B1Q − b

)−1
ȳt

ō

)−1
= (1ōō − iAō̄o)−1

+ i(1ō̄o − iAō̄o)−1ȳō

(
B1Q − b − iȳt

ō(1ōō − Aō̄o)−1ȳō

)−1
ȳt

ō(1ōō − iAō̄o)−1. (37)

Substituting (37) into (36), defining a new predissociation matrix uō = (1ō̄o − iAōō)−1ȳō and the
complex resonance position Bc = b + iȳt

ō(1ō̄o − Aō̄o)−1ȳō, equation (36) can be recast in the more compact
form

a(B) = −Aoo − ȳo

(
B1Q − b

)−1
ȳt

o

− i
(

Aōo + ȳo(B1Q − b)−1ȳt
ō

) (
(1ō̄o − iAōō)−1 + iuō(B1Q − Bc)−1ut

ō

)
×
(

Aōo + ȳō(B1Q − b)−1ȳt
o

)
. (38)

With some additional algebra and the definition ūo = iAōouō + ȳo it is possible to put (38) in a form that
clearly exhibits the divergence of the complex scattering length at the complex eigenvalues of the matrix Bc:

a(B) = −Aoo − iAōo(1ōō − iAō̄o)−1Aōo − ūo(B1Q − Bc)−1ūt
o. (39)

It should be noted that the matrix function Bc and therefore its eigenvalues Bc,i depend on the magnetic
field B through the dependence of Bc on Aōō, which in general varies with B. In order to carry out the pole
expansion one can proceed in a similar way as it has been done for the K-matrix. First one writes

(B1Q − Bc)−1 =
adj(B1Q − Bc)

det(B1Q − Bc)
≡ C(B)

det(B1Q − Bc)
, (40)

where the determinant can be expressed as the product of the eigenvalues of its matrix argument

det(B1Q − Bc) =
∏
α

(B − Bc,α(B)). (41)

Hence, it is clear that poles occur at complex magnetic field locations B = bc,α such that
bc,α − Bc,α(bc,α) = 0. The complex poles bc,α in (39) can equivalently be defined as the solutions of the
nonlinear eigenvalue problem Bc(B)|Ωα(B)〉 = B|Ωα(B)〉. In practice the dependence on B is usually weak
and such nonlinear problem can be solved in a few iterations with excellent starting point the eigenvalues
and eigenvectors of the linear problem with constant A = A(bα).

Using regularity of the adjugate and omitting for notational simplicity the common energy dependence,
the residue at the pole can be extracted as the limit

pα = Res(a, bc,α) = lim
B→bc,α

(B − bc,α)a(B) = − ūo(bc,α)adj
(
bc,α1Q − Bc(bc,α)

)
ūt

o(bc,α)

(1 − B′
c,α(bc,α))

∏
β �=α

(bc,α − Bc,β(bc,α))

= − ūo(bc,α)C(bc,α)ūt
o(bc,α)

(1 − B′
c,α(bc,α))Dα(bc,α)

, (42)

where we have defined Dα(B) =
∏

β �=α(B − Bc,β(B)).
The local complex background at the pole bc,α is defined by subtracting the contribution of pole α from

the full complex scattering length:

abgl,α = lim
B→bc,α

[
a(B) − pα

B − bc,α

]
. (43)
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Substituting (42) for the pole strength, bringing to common denominator and applying l’Hôpital’s rule
twice, one obtains

abgl,α = −Aoo(bc,α) − iAōo(bc,α)
(

1ōō − iAō̄o(bc,α)
)−1

Aōo(bc,α) − B′′
c,α(bc,α)ūo(bc,α)C(bc,α)ūt

o(bc,α)

2(1 − B′
c,α(bc,α))2Dα(bc,α)

− (ūoCūt
o)′(bc,α)

(1 − B′
c,α(bc,α))Dα(bc,α)

+
D′

α(bc,α)ūo(bc,α)C(bc,α)ūt
o(bc,α)

(1 − B′
c,α(bc,α))D2

α(bc,α)
. (44)

This quantity contains contributions from all poles but αth one. The global complex background at the
pole bc,α is defined by subtracting all other pole contributions:

abg,α = abgl,α −
∑
β �=α

pβ

bc,α − bc,β
(45)

resulting in

abg,α = −Aoo(bc,α) − iAōo(bc,α)
(

1ō̄o − iAō̄o(bc,α)
)−1

Aōo(bc,α) − B′′
c,α(bc,α)ūo(bc,α)C(bc,α)ūt

o(bc,α)

2(1 − B′
c,α(bc,α))2Dα(bc,α)

− (ūoCūt
o)′(bc,α)

(1 − B′
c,α(bc,α))Dα(bc,α)

+
D′

α(bc,α)ūo(bc,α)C(bc,α)ūt
o(bc,α)

(1 − B′
c,α(bc,α))D2

α(bc,α)
−

∑
β �=α

pβ

bc,α − bc,β
. (46)

Several quantities need to be computed in order to evaluate the rhs of this equation. The derivatives B′
c,α

and B′′
c,α are obtained by first writing, for B near bc,α, Bc(B) ≈ Bc(bc,α) + B′

c(bc,α)η with η = (B − bc,α) and
the derivative B′

c promptly computed from the definition of Bc in terms of Aō̄o and of A′
ō̄o. Next, we apply

perturbation theory with small parameter η to the eigenvalue problem Bc(B)|Ωα(B)〉 = Bc,α(B)|Ωα(B)〉 as
(

Bc(bc,α) + B′
c(bc,α)η

)
(|Ω(0)

α + |Ω(1)
α 〉η + · · · ) = (bc,α + b(1)

c,αη + b(2)
c,αη

2 + · · · )(|Ω(0)
α 〉+ |Ω(1)

α 〉η + · · · ),
(47)

where the superscript (k) denotes perturbation terms of order k on eigenvalues and eigenfunctions.
Equating η powers order by order, one can compute terms up to perturbative order k = 2 in the
eigenvalues, and identify B′

c,α(bc,α) = b(1)
c,α and 2B′′

c,α(bc,α) = b(2)
c,α.

The only difference with the standard procedure is that matrix Bc is complex symmetric rather than
self-adjoint such that a generalization of perturbation theory to non-Hermitian operators must be
employed in order to calculate b(1)

c,α and b(2)
c,α. It should be stressed that the only approximation involved in

this procedure is the neglect of the second derivative in the Taylor expansion of Bc(B) near bc,α. This is
justified since this term is usually small and it could in principle be included if needed, even if at the
expenses of significant added computational complexity to obtain A′′

ō̄o. Further, derivatives of the adjugate C
are evaluated as explained below equation (21). The terms ū′

o are obtained based on the definition of ūo and
from the knowledge of A and A′. Also note the useful formula

D′
α

Dα
= log′(Dα) =

∑
β �=α

log′(B − Bc,β) =
∑
β �=α

(1 − B′
c,β)

B − Bc,β
(48)

allowing the ratio in last but one term on the rhs of (46) to be easily determined.
Once the pole strength pα known for each resonance, one can cast the energy-dependent complex

scattering length (39) in the intuitive form

a(B) = abg(B) +
∑
α

pα

B − bc,α
(49)

with
abg(B) = −Aoo − iAōo(1ō̄o − iAōō)−1Aōo − ūo(B1Q − Bc)−1ūt

o −
∑
α

pα

B − bc,α
(50)

a quantity by construction regular at the poles. If A is strictly constant, it is clear that last two terms exactly
cancel and the background reduces to

abg(B) = −Aoo − iAōo(1ō̄o − iAōō)−1Aōo. (51)

Generalizing the usual definition from the single-channel case [1], we define the partial magnetic widths
associated to pole α via the equation

Δα = −a−1/2
bg (bc,α)pαa−1/2

bg (bc,α). (52)
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In the absence of inelastic channels, the matrix Δα is real, its imaginary part arises from inelastic processes.
As a final note, we have undertaken the approach to collect all degenerate channels in the same

open-channel manifold, which led us naturally to introduce matrices of scattering lengths and of magnetic
widths. This description is most useful in the presence of degenerate partial waves or in equilibrium
situations where all degenerate internal states are equally populated. In other experiments one is more
interested in polarizing the atoms in a single quantum state and in either monitoring the evolution of the
population or studying the collective behavior of the gas in such specific state. In this case, it will be more
useful to identify the open channel manifold with the unique state of interest, and to treat super-elastic
channels on the same footing as the inelastic ones. All derivation above holds, the main difference being
that the complex scattering length will not be real even in the absence of inelastic channels, since the initial
quantum state will in general decay to degenerate channels.

3. Comparison with other approaches

The simplest case of an isolated elastic resonance in an elastic channel is trivially recovered from
equation (49) by dropping the α index, putting p = −abgΔ and realizing that the resonance center bc is a
real quantity.

For the case of several overlapping resonances in an elastic channel, simplicity of equation (49) may
seem at first sight surprising as compared to equation (26) of Jachymski and Julienne [5]. In order to show
that the present approach reduces to the quantum defect analysis presented in the latter work, we give a
brief alternative derivation of their result starting from the present standard scattering theory. To this aim,
let us specialize (5) to the case of a single open channel and consider by the sake of simplicity the
low-energy limit:

K = cos(ξbg)
[
tan(ξbg) + Kres

] [
1P − tan(ξbg)Kres

]−1
cos (ξbg)−1 →

E→0
tan(ξbg) + Kres. (53)

In the approach of Jachymski and Julienne, one first factors the energy dependence out of the
predissociation amplitude y using the energy-dependent quantum defect amplitude C as y = C−1ȳ. Then
one recognizes that the shift matrix in the denominator of Kres contains an energy-dependent part
proportional to ȳȳt via the quantum defect function tan(λ) [28]. This leads to:

K = tan(ξbg) + C−2ȳt
(

D − tan(λ)ȳȳt
)−1

ȳ, E → 0, (54)

where D contains the Zeeman shift −μ
(
B1Q − Br

)
and all energy-independent couplings between channels

in Q space. Making use of Woodbory’s matrix identity to express the inverse, equation (54) is seen to be
equivalent to

K = tan(ξbg) + C−2 ȳtD−1ȳ

1 − tan(λ)ȳtD−1ȳ
, E → 0. (55)

Assuming absence of coupling between molecular states near threshold, matrix D takes the simple diagonal
form D = −μ

(
B1Q − Br

)
. Replacing in (55) leads after simple manipulations to equation (26) of [5].

Note that in the present work one first diagonalizes the denominator of Kres at each value of the
magnetic field. Therefore, our equation (49) can be considered in a sense the adiabatic version of
equation (26) of Jachymski and Julienne. Note however that equation (49) in the present work has a
somewhat broader domain of applicability, since it does not rely on the assumption that the molecular
states are uncoupled near threshold.

We now consider an inelastic isolated resonance. With reference to the notation of equation (1) in [6]
their lineshape is recovered by first writing our complex pole p in the form p = −Δabg, then by expressing
the complex width Δ in polar form as e2iΦRΔel. Finally, one identifies abg with a∞ and the complex

magnetic field location bc in the denominator of (49) with the term B0 − iΔinel
2 in [6].

Barring from the choice of the notation, it is also easy to verify the equivalence of the lineshapes in [6, 7]
and thus in the present work.

4. Applications

4.1. Overlapping inelastic s-wave resonances
As a first application, let us consider collisions of ultracold 39K atoms, a system whose scattering properties
have been determined very precisely first based on photoassociation then on magnetic Feshbach resonance
spectroscopy [29]. We perform numerical calculations using the scattering model and values of the collision
parameters from [29]. We consider here the case of s-wave collisions for atoms in Zeeman sublevels

9
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Figure 1. The real and the imaginary part of the complex scattering length for collisions of two 39K atoms in hyperfine states
|11〉 and |1 − 1〉. Full curves represent results of a close-coupled numerical calculation, the dots the pole approximation of
equation (49) evaluated on a regular magnetic-field grid.

Figure 2. Trajectory in the complex plane of the complex scattering length when the magnetic field spans the features of figure 1.
The inset shows a smaller loop described near the origin by a(B) as the magnetic field varies across the weaker of the two features.
Note the largely different scales on the axes of the main figure and the inset.

correlating in zero magnetic field with hyperfine quantum numbers (F = 1, M = 1) and (F = 1, M = −1),
respectively. This combination is not stable under spin-exchange collisions, since it can decay to a pair of
(F = 1, M = 0) atoms.

The complex scattering length shows two features, which have been reported before [30]. Based on the
much stronger variation of the real part of a near 475 G than near 500 G, the authors of [30] concluded that
only one feature is of resonant origin. A closer analysis of figure 1 shows however that the real part of a does
not diverge near either feature, as expected on a general ground in the presence of inelastic processes. While
the feature at higher field is indeed significantly more pronounced, one may still suspect the presence of two
quasi-bound states underlying the observed structure.

A complementary picture is provided by the trajectory of a(B) in the complex scattering-length plane as
a function of the real parameter B; see figure 2. It is easy to verify that in the ideal case of an isolated
resonance with strictly constant background such trajectory is a circle [7]. One can actually observe in the
figure one large circle associated with the strong resonance, whereas closer inspection near the origin (see
inset) highlights the presence of a second deformed loop described as the magnetic field crosses the weak
feature, suggesting again the presence of a resonance pair. One can also observe that the global trajectory
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Figure 3. The elements of the normalized matrix K̄, namely K̄11 (full line), K̄12 (dashed line) and K̄22 (dash-dotted line) for
collisions of 39K atoms in hyperfine states |11〉 and |1 − 1〉. Vertical dotted lines indicate the location of two neighboring poles.
Indices 1 and 2 denote the two-body collisions channels |10〉 ⊗ |10〉 and |11〉 ⊗ |1 − 1〉, respectively.

Table 1. Complex lineshape parameters (see text for definitions) appearing in lineshape (49), with powers of tens
indicated in brackets. Sample resonance parameters for ultracold collisions of K atoms in hyperfine states and partial
wave specified in the first column are reported. For comparison, calculations with and without the spin–spin interaction
are reported for p-wave scattering.

Channel abg(a�+1
0 ) bc (G) pα(a�+1

0 G) Δα (G)

K(|11〉) + K(|1 − 1〉) s-wave 29.1 + 5.37[−2]i 472.67 + 9.45i −639 + 26.9i 21.9–0.965i
29.3 + 4.97[−2]i 501.34 + 1.70[−3]i −897 + 5.91i 30.6–0.253i

K(|11〉) + K(|10〉) p-wave (with spin–spin) −9.28[4] 379.1 −4.00[6] −43.1
−9.60[4] 400.7 −1.27[6] −1.32
−1.16[5] 720.3 −3.80[2] −3.26[−3]
−1.17[5] 757.8 −2.38[3] −2.03[−2]
−1.17[5] 762.3 −3.20[4] −0.272

K(|11〉) + K(|10〉) p-wave (w/o spin–spin) 2.81[5] 379.2 −4.01[6] 14.3
2.81[5] 400.6 −1.27[6] 0.451
2.87[5] 758.0 −2.38[3] 8.30[−3]
2.87[5] 762.6 −3.21[4] 0.111

does not exactly close, since the values of the background scattering length away from resonance are not
identical on the left and right resonance sides.

Conclusive evidence about the nature of this feature is obtained by inspecting the elements of the full
K-matrix depicted in figure 3. In agreement with equation (11), all elements of the reactance matrix diverge
on resonance at the same location. Two poles are clearly observed, confirming that the relevant Q subspace
contains two bare bound states coupled to the incoming channel. Following the numerical procedure
outlined in section 2, it is now easy to extract well defined lineshape parameters without resorting to a fit.
Resulting numerical values for the complex background scattering length, field location and magnetic width
can be found in table 1.

It is also interesting to compare graphically the exact numerical result with the pole approximation (49)
represented by the dots in figure 1. Note from the numerical values in the table that the background is
nearly constant and can be represented locally by an interpolating linear function. As expected, the
agreement with the non trivial behavior of the full numerical calculation is excellent, confirming that all
elements of the theory have been computed and integrated properly.

4.2. Energy-dependent p-wave scattering volume
As a further example, let us consider collisions in higher-order partial waves. Specifically, we consider
p-wave collisions between a pair of 39K atoms prepared respectively in states |11〉 and |10〉 at a finite
collision energy of E/kB = 1 μK. We consider the projection M = 2 of the total axial angular momentum,
corresponding to a pair of atoms with initial axial mechanical angular momentum m = 1. In this symmetry
block, if p waves only are included, scattering is purely elastic. The energy-dependent scattering volume is
defined according to the standard definition (32). It should be remarked that such quantity is not finite in
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Figure 4. Energy dependent scattering volume for collisions of two 39K atoms in hyperfine states |11〉 and |10〉 (full line). The
dashed line represents the background scattering volume (see text). The inset shows the detail of a triplet of resonances above
700 G, of which two overlapping.

Figure 5. Same as figure 4, but with the spin–spin interaction set artificially to zero.

the zero-energy limit in the presence of long-range dipolar interactions that modify the standard form of
the Wigner threshold laws. However, at any finite energy the scattering volume is always well defined and
represents an exact parametrization providing complete information on the scattering process as a function
of the magnetic field.

One can observe in figure 4 two series of overlapping resonances in the range of magnetic fields below
1000 G, a doublet near 400 G and a triplet near 750 G. The largest resonance at 379 G is sufficiently broad
to modify the local background near 750 G. Visually, the background appears to vary in a non trivial way
with the magnetic field, in particular near the origin. The present approach has the advantage that no
modeling is required in order to extract the resonance parameters. It is sufficient to locate precisely the
resonances, extract the corresponding pole residues, and finally the local and global background at the
resonance positions. The corresponding parameters for the present case are reproduced in table 1.

If needed, the field-dependent background scattering length can be extracted by subtracting the pole
contribution from the full scattering volume, i.e. last term on the rhs of (49) from the lhs. In spite of the
fact that such operation involves taking the difference of large numbers and as such is in principle
numerically flawed very close to the poles, we obtain a smooth background that, as anticipated, varies
relatively fast in a non trivial way from negative to positive values.

Without performing a detailed analysis that is not the aim of the present methodological work, it is
interesting to stress the effect of the spin–spin dipolar interaction. To this extent we set artificially to zero
the dipolar coupling constant and perform the same steps as above. In the absence of anisotropic
interactions, not only M but also Mf = Ma + Mb is a good quantum number. This implies that resonances
associated with molecular states with Mf different from the one of the incoming atoms are completely
uncoupled, i.e. have zero width. Indeed, one can remark in figure 5 the absence of very narrow resonances
observed in figure 4. The remaining relatively broad resonances occur in blocks with given Mf and are
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induced by the interplay of spin-exchange and spin–spin interactions. In the present case, spin-exchange is
found to largely dominate over dipolar interactions, as demonstrated by the fact that the pole strength p in
the presence and in the absence of spin–spin couplings (see table) differ by no more than 1%. Similarly, the
spin–spin interaction only weakly shifts (below 300 mG) the resonance position. On the other side, the
background scattering volume (and a fortiori the magnetic width), has a significantly stronger variation
with magnetic field in the presence of the dipolar interaction, highlighting the strong influence of the
spin–spin interaction on the incoming wavefunction.

5. Conclusions

We have presented a formalism allowing resonance parameters to be extracted from a numerical calculation
in a well determined algorithmic way. In our opinion the present approach fully solves a longstanding
difficulty in the analysis of resonance spectra involving multiple overlapping features or a non trivial
behavior of background scattering. Our results also provide a simple and intuitive lineshape for inelastic
overlapping resonances that has been demonstrated starting from first principles. The machinery presented
in this work can be incorporated in existing computer packages, provided that the underlying algorithm to
solve the Schrödinger equation allows the wavefunction derivatives to be easily evaluated. As a
complementary step to the present paper that focuses on the lineshape parameters, it could be interesting to
analyze the wavefunction at the poles of the reactance matrix in order to gain information on the nature of
the resonant states.
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Appendix A. Proof of various equations

Proof of equation (9) goes as follows. Substituting (8) into (5), using Woodbury matrix identity and the
definition of B̂, one gets

K = cos(ξbg)
[
tan(ξbg) + ỹ

(
B1Q −B

)−1
ỹt
] [

1P − tan(ξbg)ỹ
(
B1Q −B

)−1
ỹt
]−1

cos (ξbg)−1

= cos(ξbg)
[
tan(ξbg) + ỹ

(
B1Q −B

)−1
ỹt
] [

1P + tan(ξbg)ỹ
(
B1Q −B − ỹt tan(ξbg)ỹ

)−1
ỹt
]

cos (ξbg)−1

= cos(ξbg)
[
tan(ξbg) + ỹ

(
B1Q −B

)−1
ỹt
] [

1P + tan(ξbg)ỹ
(

B1Q − B̂
)−1

ỹt

]
cos (ξbg)−1. (A1)

Carrying out the inner product, replacing the term ỹt tan(ξbg)ỹ by (B̂ −B) in the numerator and
factoring by grouping

K = cos(ξbg)
{

tan(ξbg) + ỹ
[

(B1Q −B)−1 + (B1Q −B)−1(B̂ −B)(B1Q − B̂)−1
]

ỹt
}

cos (ξbg)−1

+ cos(ξbg)tan2(ξbg)ỹ(B1Q − B̂)−1ỹt . (A2)

Finally noticing that
[

(B1Q −B)−1 + (B1Q −B)−1(B̂ −B)(B1Q − B̂)−1
]
= (B1Q −B)−1

[
B1Q − B̂ + B̂ −B

]
(B1Q − B̂)−1

= B1Q − B̂, (A3)

substituting in (A2) and using simple trigonometric identities, equation (9) easily follows.
To prove (39), we start by expanding (38) as

a(B) = −Aoo − iAōo(1ōō − iAō̄o)−1Aōo + Aōouō(B1Q − Bc)−1ut
ōAōo − ȳo(B1Q − b)−1ȳt

ō
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+ ȳo(B1Q − b)−1ȳt
ōuō(B1Q − Bc)−1ut

ōȳō(B1Q − b)−1ȳt
o

− iȳo(B1Q − b)−1ȳt
ō(1ō̄o − iAō̄o)−1ȳō(B1Q − b)−1ȳt

o − iAōo(1ō̄o − iAō̄o)−1ȳō(B1Q − b)−1ȳt
o

+ Aōouō(B1Q − Bc)−1ut
ōȳō(B1Q − b)−1ȳt

o − iȳo(B1Q − b)−1ȳt
ō(1ōō − iAō̄o)−1Aōo

+ Aōouō(B1Q − b)−1ut
ōȳō(B1Q − Bc)−1ȳt

o. (A4)

Let us now transform second line. Using definitions of Bc and uō, one can replace the terms ȳt
ōuō, ut

ōȳō,
and ȳt

ō(1ōō − iAō̄o)−1ȳō by (Bc − b)/i. Regrouping and simplifying, second line transforms into:

− ȳo(B1Q − b)−1
[
(Bc − b)(B1Q − Bc)−1(Bc − b) + (Bc − b)

]
(B1Q − b)−1ȳt

o

= −ȳo(B1Q − b)−1(B1Q − Bc)−1(B1Q − b)−1ȳt
o. (A5)

Adding last term in first line of (A4) to result (A5) yields after simple matrix algebra similar to the
manipulations in (A3)

− ȳo(B1Q − b)−1(B1Q − Bc)−1(B1Q − b)−1ȳt
o − ȳo

(
B1Q − b

)−1
ȳt

o

= −ȳo(B1Q − Bc)−1ȳt
o. (A6)

Along the same lines, one can simplify third and last line in (A4). For instance, for the third line one has

− iAōo(1ō̄o − iAō̄o)−1ȳō(B1Q − b)−1ȳt
o + Aōouō(B1Q − Bc)−1ut

ōȳō(B1Q − b)−1ȳt
o

= −iAōouō

[
(B1Q − b)−1 + (B1Q − Bc)−1(Bc − b)(B1Q − b)−1

]
ȳt

o

= −iAōouō(B1Q − Bc)−1ȳt
o (A7)

where first equality follows upon using the definition of uō and using again ȳt
ōuō = −i(Bc − b), and

collecting common terms. Second equality results from simple matrix algebra. Finally, last line in (A4) can
be expressed as

− iȳo(B1Q − b)−1ȳt
ō(1ōō − iAō̄o)−1Aōo + Aōouō(B1Q − b)−1ut

ōȳō(B1Q − Bc)−1ȳt
o

= −iȳo(B1Q − Bc)−1ut
ōAōo. (A8)

Substituting equations (A5), (A7) and (A8) into (A4), collecting terms with common factor (B1Q − Bc)−1

and defining, according to the main text, ūo = iAōouō + ȳo, (39) promptly follows.
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