
HAL Id: hal-03464483
https://hal.science/hal-03464483v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Receivers Field-of-Views in Multi-User
VLC Networks: A Bio-inspired Approach

M W Eltokhey, Mohammad Ali Khalighi, Zabih Ghassemlooy

To cite this version:
M W Eltokhey, Mohammad Ali Khalighi, Zabih Ghassemlooy. Optimization of Receivers Field-of-
Views in Multi-User VLC Networks: A Bio-inspired Approach. IEEE Wireless Communications, 2021.
�hal-03464483�

https://hal.science/hal-03464483v1
https://hal.archives-ouvertes.fr


1

Optimization of Receivers Field-of-Views in
Multi-User VLC Networks: A Bio-inspired

Approach
M. W. Eltokhey, Member, IEEE, M. A. Khalighi, Senior Member, IEEE, Z. Ghassemlooy, Senior Member, IEEE

Abstract—Visible-light communication is a well known emerg-
ing technology, which enables high data rate wireless access in
indoor environments, by making dual-use of light-emitting diode
luminaires for providing lighting and communication. Managing
the multiple access and addressing the users’ mobility are among
the current challenges of this technology. To manage the multiple-
access interference arising from non-intended received signals of
the other users, different approaches have been proposed so far,
including zero-forcing pre-coding and broadcasting of the users’
signals. However, by this approach, the network performance is
sensitive to the users’ locations, since they affect the correlation
properties of the network channel matrix; a higher correlation
(e.g., for the case of users getting closer together) results in a
performance degradation. To mitigate this, we propose a novel
approach of optimizing the receivers’ field-of-views based on the
bio-inspired particle swarm optimization, in order to adapt to
the users’ locations, and hence improve the network robustness.
The efficiency of the proposed method is demonstrated through
numerical simulations.

Index Terms—Visible light communications; multiple-access
interference; particle swarm optimization; ZF pre-coding; field-
of-view optimization.

I. MULTI-USER VISIBLE-LIGHT COMMUNICATION
NETWORKS

The ever-increasing bandwidth requirements to support the
growing demand for high-speed data transmission in indoor
scenarios, is overwhelming the radio frequency (RF) spectrum,
which is already under a huge pressure. Subsequently, there
has been a growing interest in the visible-light communication
(VLC) technology during the past two decades, as a solution
for broadband indoor communications. This has been driven
by numerous advantages of this technology, such as utilizing
the light-emitting-diode (LED) -based lighting infrastructure,
operating at an unregulated frequency band, being unaffected
by RF interference, and providing inherent security due to light
confinement in most of the indoor environments [1].

One important requirement in VLC systems is ensuring
coverage in large-space indoor environments. This can be
realized through the use of multi-cell architectures, in the
same way it is done in wireless RF cellular networks. This
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way, several LED luminaires will serve as access points (APs),
which handle users within their respective illumination areas
(cells). In such multi-cell VLC networks, which potentially
should handle multiple users, each equipped with a receiver
(Rx) that uses a photo-detector (PD), an important issue is to
manage the multiple-access interference (MAI). In fact, MAI
can arise from inter-user interference (IUI) or/and inter-cell
interference (ICI), i.e., the received non-intended signals of the
users in the same cell or/and in the other cells, respectively
[2]. There has been a significant amount of research on the
development of efficient multiple-access (MA) techniques for
VLC networks so far [3]. The most popular solutions proposed
include orthogonal frequency-division MA (OFDMA), non-
orthogonal MA (NOMA), and pre-coded multi-user multiple-
input single-output (MU-MISO) [4], [5]. Here, we focus on
the third technique, i.e., pre-coded MU-MISO due to its
implementation simplicity, suggesting it as a practical solution.
There, a common approach is to use linear zero-forcing pre-
coding (ZFPC) due to its simplicity and its good performance
at relatively high signal-to-noise ratios (SNRs), which is
mostly the case in indoor VLC networks, because of the short
link distance in the case of unblocked line-of-sight (LOS) [6],
[7].

The performance of ZFPC is largely affected by the loca-
tions of the users, as these determine the correlation between
the users’ channel gains [8]. In fact, a high correlation (e.g.,
due to nearly-located users) results in a degradation of the
overall network performance. Although different Rxs’ parame-
ters can be optimized to improve the performance, one efficient
solution for reducing this correlation is to appropriately tune
the Rxs’ field-of-views (FOVs), as proposed in [9], [10].

This article considers tuning of the Rxs’ FOVs in MU-MISO
ZFPC VLC systems to improve the network performance by
decreasing the correlation in the network channel matrix. The
novelty of the proposed method is that it relies on the “bio-
inspired” algorithm of particle swarm optimization (PSO),
which has been used in solving diverse problems in the area
of optical wireless communications [11], [12]. We illustrate
the advantages of this swarm intelligence technique in terms
of efficiency and computational simplicity, and investigate the
impact of varying the optimization parameters on the system
performance. Also, we propose a solution to further reduce
the computational complexity of the proposed optimization
approach, and show its advantage in the case of user mobility.

In the sequel, we first describe the principles of a ZFPC
VLC network. Next, we provide an overview of PSO and
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the proposed FOV tuning algorithm, before presenting the
performance study of the proposed solution and discussing
its practical implementation issues.

II. GENERAL DESCRIPTION OF ZFPC VLC NETWORKS

For VLC networks, the transmission link from the AP
to the Rx is characterized mainly by the channel gain. We
only account for the LOS path here. In fact, in the case of
existing LOS in VLC networks, the contribution of non-LOS
components is practically negligible [13]. The APs, i.e., the
LED luminaires, are modeled by a Lambertian pattern of order
m [13]. No lens is considered at the Rx, thus, the channel gain
does not depend on the Rx’s FOV.

Figure 1 illustrates the considered VLC network, with the
main system blocks shown in Fig. 1(a). A central control unit
coordinates between the APs for exchanging information (e.g.,
the channel state information, CSI), handling the ZFPC, as
well as FOV optimization. To estimate the CSI at each Rx,
pilot symbols are transmitted by the APs in the downlink. In
the uplink, the estimated CSI are sent back to the APs using
infrared links, for calculating the ZFPC matrix, and for FOV
optimization.

To adjust the Rx’s FOV, a mechanical iris is considered to
be mounted on top of the plan of the PD’s surface, to vary the
maximum angle of reception at the Rx [14]. An illustration
for the considered FOV tuning is presented in Figs. 1(b), 1(c),
and 1(d).

We consider a MU-MISO broadcast VLC system, where Nt

APs cooperate to serve Nr users, assuming Nt ≥ Nr [8], in
order to comply with the ZFPC constraints. To manage the
MAI, for instance, at APi, the desired signal of Rxj , dj , is
multiplied by the pre-coding weight wij . We consider the max-
min fairness criterion in [8] for calculating the ZFPC weights,
due to it simplicity.

III. PARTICLE SWARM OPTIMIZATION

For optimization of the FOVs of the Rxs in the ZFPC
system, we propose to use PSO, which mimics swarms move-
ment [15]. Compared with other metaheuristic optimization
techniques, the advantages of the PSO approach include its
memory effect, in the sense that all particles acquire the knowl-
edge of the good solutions in the solution space, because every
particle shares its information with the others. In addition,
PSO offers the advantages of a simple implementation and
a relatively quick convergence, which are the reasons why
it has received a great deal of attention in a wide range of
applications. Consider a D-dimensional search space, which
involves all possible combinations of the values of the D
variables to be optimized. By PSO, within this search space,
each point is a potential solution: each particle moves between
points to find the optimal solution. The direction and the speed
of the movements in the solution space are decided by the best
solution found by the particle itself (personal best position,
Pbest), and that found by the ensemble of particles (global
best position, Gbest). The quality of these solutions is assessed
using a fitness function designed according to the optimization
goals.

PSO can be well described by an example of a swarm
of bees (particles) searching in a garden (solution space) for
location with most flowers (optimal solution), over a certain
time (iterations). Bees communicate their experiences in terms
of flowers’ density at their locations to each other (Pbest
and Gbest), to decide the speed and direction of movement
(particles’ velocities) in their next move. The flowers’ density
corresponds to how good the location is (solution’s quality),
where higher flowers’ densities correspond to better solutions.
Figure 2 illustrates the considered PSO algorithm, where as
shown in Figs. 2(a) and 2(b), particles (represented by bees)
wander the 2-variable solution space formed by the axes of
Variable 1 and Variable 2 to search for the optimal solution.
The axis of fitness value represents the evaluation of each
possible solution using the fitness function, where larger fitness
values represent better solutions. In Fig. 2(a) the particles are
distributed in the solution space and exchange information
about the Pbest and Gbest, which illustrates the exploration
behaviour by the particles at the start of the optimization.
Figure 2(b) shows the behavior of the particles at the last
iterations, where they are about to converge to the optimal
solution. A flow chart for the proposed FOV tuning algorithm
using PSO is also shown in Fig. 2(c), where the dashed box
at the right side depicts an example of two particles in a 3-
dimensional solution space, illustrating the influence of the
original velocity, Pbest, and Gbest on the direction and the
velocity of the particles’ movements. Figure 2(d) illustrates
the idea of reducing the correlation in the network channel
matrix by optimization of the FOVs, highlighting the impact
of varying the Rx FOV using PSO on the channel gains
at the Rxs, and subsequently the ZF pre-coding network
performance.

The main parameters of the PSO algorithm include the
maximum number of iterations Nit, the number of particles
Np, and the number of variables D. For updating the velocities
and the positions of the particles, the approach in [11] is
considered. Without loss of generality, for preventing particles
from moving to locations outside the solution space, hard
boundary conditions are considered here, where new positions
(represented by new variables’ values) exceeding the solution
space are clipped, in order to remain at the boundaries.

IV. FOV TUNING USING PSO

Here, we describe the proposed FOV tuning algorithm.
As shown in Fig. 2(c), the algorithm starts with generating
for each particle (i.e., possible solution, represented by a set
of FOVs for all Rxs) random positions (sets of FOVs) and
velocities (rates of varying of the tested sets of FOVs in the
solution space), prior to evaluating in each step (iteration) the
performance of each particle and updating them. To evaluate
the performance of a particle (the quality of the solution
formed by a particular set of FOVs), the corresponding so-
lution is converted from integer values to FOVs, which are
forwarded to the Rxs in the downlink to apply them. Note
that, to generalize the proposed algorithm to the cases where
only discrete non-equally-separated FOV values are possible
(e.g., FOVs ∈ [10◦, 30◦, 40◦]), the possible FOV values are
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(a)

(b) (c) (d)

Fig. 1: FOV tuning in the VLC network. (a): main blocks in the VLC system. (b), (c), (d): Examples of FOV tuning using mechanical iris
for three Rxs, where FOV1 > FOV2 > FOV3.

converted to integer values, and the problem is solved as an
integer programming problem. In particular, the indices of the
FOVs (in ascending order of FOVs) are used as the values
in the solution space, to ensure equal spacing between the
possible FOVs.

The proposed approach is illustrated in Fig. 2(d), where in
the downlink, the central control unit sends to the Rxs (via
the APs) the calculated FOVs, as shown in Fig. 1(a). Next, the
estimated channel gains at the Rxs (i.e., the elements of the
network channel matrix) using these FOVs are sent back in
the uplink to the central control unit to update the FOVs using
PSO. Based on these evaluations, and after updating the posi-
tions and velocities of the particles and the system experience,
i.e., Pbest and Gbest, PSO continues searching new FOVs
that achieve a better performance by exploring possible better
solutions. Once the maximum number of iterations is achieved,
the Gbest is considered as the solution corresponding to
the optimized FOVs. As shown in Fig. 1(a), the additional
overhead only concerns the optimized FOVs in the downlink,
and the SNR performance in the uplink, which remain very
limited. Note that, given the limited users’ mobility in indoor
scenarios, the variations in the network channel matrix are
relatively slow, which relaxes the adaptation requirements, and
the constraints on the delay from the feedback channel.

A mechanical iris is used at the top of each PD to tune the

corresponding Rx’s FOV. To consider a practical design, we
assume that the FOVs can be only tuned to discrete values,
ranging between 10◦ and 80◦, with a step of 5◦. Note that
the speed of variation of the FOV highly depends on the
parameters of the mechanical iris, as well as on the tools
used for controlling it, which is beyond the scope of this
optimization study. Note that, the relatively slow changes of
the channel in indoor scenarios would justify the neglected
delay in the adjustment of the parameters of the mechanical
iris. To evaluate the solution of PSO for FOV tuning, we
propose to consider the following fitness function:

Fitness = F1 ×
Nr∑
j=1

Rj − F2 × cond(H)− (F3 ×N0), (1)

where cond(H) refers to the 2-norm condition number of
the network channel matrix H , Rj denotes the data-rate of
the user j, and N0 is defined as the number of users with
no existing LOS link with any AP. Also, F1, F2, and F3 are
the weights given to the 1st, 2nd, and 3rd terms of the fitness
function, respectively. In fact, the 1st term ensures promoting
solutions with higher sum-rates (i.e., the total achievable net-
work throughput), the 2nd term downgrades solutions resulting
in high condition number for network channel matrix, and
the 3rd term guarantees that the solutions resulting in users
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(a) (b)

(c)

(d)

Fig. 2: PSO algorithm description. (a), (b): Illustrations of particles at the first (exploring the solution space while exchanging information)
and last (about to converge to the optimal solution) iterations, respectively. (c): Flow chart of the algorithm for an example of optimizing
the FOVs of 3 Rxs, indices ` and q refer to the iteration number and the particle number, respectively, “Int.” stands for integer. Dashed
box at the left side shows how the variable values (FOVs) are extracted from integers during the optimization to solve the problem as
integer programming problem, for a generalized solution in cases of having non-uniform steps between the possible FOVs. Dashed box at
the right side illustrates an example of behavior of 2 particles, under the influence of original velocity, Pbest, and Gbest. (d): Illustration
of the proposed FOV optimization for the case of two APs and two Rxs: By tuning the FOVs, the entries of the network channel matrix are
controlled; hij denotes the channel gain of the communication link between APi and Rxj .



5

with LOS blockage are excluded. This is done by giving
F3 a large value, so that for any value of the sum-rate and
condition number achieved by a solution, having a user with
no LOS results in a bad evaluation of the solution. This point
is explained in more detail in the next section. Note that,
due to the non-linear nature of the considered problem, any
variation in the Rxs’ locations requires re-adapting the model
to have FOVs that satisfy LOS coverage. This makes PSO
more suitable compared to other techniques which require
training data to update the model adaptively depending on
the actual LOS coverage conditions.

V. PERFORMANCE ANALYSIS

This section presents numerical results, for comparing the
network performance for the cases of non-optimized FOVs
and optimized FOVs using PSO. Consider four Rxs in the
VLC network, handled by ZFPC. All Rxs are assumed to point
up to the ceiling. Four LED luminaires (APs) are assumed,
connected to a central control unit. The indoor environment is
considered of dimension (7 × 7 × 3) m3, while the APs are
located at (x, y, z) positions (2.25, 2.25, 2.5), (2.25, 4.75, 2.5),
(4.75, 2.25, 2.5), and (4.75, 4.75, 2.5). The number of LED
chips per luminaire is 36, the current per luminaire is 3.6A, the
Lambertian order m of each LED is 1, and the LED conversion
efficiency S is 0.44 W/A [2]. The noise power spectral density
is fixed to 10−21 A2/Hz, and the considered PD responsivity
and area are 0.4A/W and 1 cm2, respectively [2].

The network sum-rate (corresponding to the 1st term in (1))
is calculated for a system bandwidth of 10 MHz, assuming
DC-biased optical-orthogonal frequency-division multiplexing
(DCO-OFDM) signal modulation. Also, the 2-norm condition
numbers in the considered random user positions (correspond-
ing to the 2nd term in (1)) reached orders of 103. Following
the discussions at the end of the previous section, we hence
set the constants F1, F2, and F3 in (1) to 1, 105, and 1010,
respectively, to guarantee that the 3rd term in (1) is always
dominating, and to further ensure that the solutions with very
large 2-norm condition numbers are downgraded. In addition,
to further downgrade the solutions with LOS blockage, we set
the corresponding network sum-rates to zero.

A. Performance over different optimization parameters

To choose the best combination of particles and iterations
for a given total number of evaluations of Np × Nit, Table I
compares the average network sum-rate and the number of
LOS blockage cases for different values of Np and Nit, for
1000 random user positions with random Rxs’ heights ZRx

between 0.85 and 1.35m. The 1000 random positions are
picked from 1250 random positions, with random elevation
and azimuth angles for the Rxs’ within the range of (0◦-45◦)
and (0◦-180◦), respectively, such that they guarantee LOS cov-
erage at the Rxs’ FOVs of 80◦. This ensures the feasibility of
using the proposed optimization in finding optimized solutions,
given that each of the optimized FOVs has a maximum value
of 80◦. The sum-rate is averaged over all users’ positions
corresponding to LOS coverage occurrence. Note that, LOS
blockage refers to the cases where one or more Rxs have no

TABLE I: Comparison between different combinations of number
of particles (Np) and iterations (Nit) over average sum-rate and
LOS blockage performance, for cases of random Rx heights in 4
Rx scenarios.

Combination Av. sum-rate (bps) ×107 LOS blockage
Np = 5, Nit = 10 4.19 25
Np = 10, Nit = 5 4.27 3
Np = 10, Nit = 10 4.42 2
Np = 10, Nit = 20 4.50 0
Np = 20, Nit = 10 4.60 0

LOS path with any AP. Obviously, a lower LOS blockage
indicates a better LOS coverage probability. A LOS blockage
of 0 indicates that there has been no LOS blockage over the
considered random scenarios, which is generally the case due
to a better exploration of the solution space.

Given the considered 15 possible FOVs for the Rxs, the
number of evaluations required for a “parameter sweep” (i.e.,
trying all possible combinations of FOVs for finding optimum
values, without using an optimization algorithm) for scenarios
with 2, 3, and 4 Rxs, are 225, 3375, and 50625, respectively.
Obviously, the considered numbers of evaluations Np × Nit

in Table I are much smaller than those needed for a parameter
sweep.

As can be seen, increasing the number of evaluations from
50 to 100, and from 100 to 200, results in an improved
performance in terms of average sum-rate and LOS blockage,
as expected. In addition, it is noted from the cases with 50 or
200 evaluations that, having a larger number of particles than
iterations (for the same number of evaluations) results in a
better average sum-rate, and a lower LOS blockage (in case of
50 evaluations). This can be explained by the better exploration
of the solution space before converging to the optimal solution.

B. Case study of optimized and non-optimized FOVs
To show in more detail how the FOVs and the sum-rate

performance vary over iterations throughout the proposed
optimization, we consider in Fig. 3 the performance of a
certain scenario, where 4 Rxs with height of 0.85m are located
at (x, y) of (4.58, 0.32), (5.08, 4.03), (3.63, 5.47), and (1.49,
1.58). Figure 3(b) shows the fitness function calculated using
(1) at each iteration. In the blue boxes, are indicated the FOVs,
the sum-rates, and the condition numbers of H at every change
of the fitness value, representing the most optimal performance
achieved at that iteration. Also, the red boxes indicate the sum-
rates achieved in cases of fixed FOVs of 50◦, 70◦, and 90◦.
The plot shows an improvement in the quality of the solution
due to the further exploration of the solution space, where
PSO converges to the optimal solution at iteration 6.

We note from the data provided in the red boxes that
decreasing the FOV in general should improve the perfor-
mance, however, this remains dependent on the correlation
of the network channel matrix. This can be verified from the
slight decrease in the 2-norm condition number and the small
increase in the network sum-rate by increasing the FOV from
70◦ to 90◦. This elucidates the complexity of the problem, and
the fact that the sum-rate performance is not always improved
by simply decreasing the FOVs.
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Fig. 3: Comparison between optimized and non-optimized FOVs for a 4 Rx - 4 AP scenario. (a): Top view for the locations of the Rxs and
the APs with heights of 0.85m and 2.5m, respectively. (b): Fitness value versus optimization’s iterations. The dashed blue boxes represent
the optimized FOVs over changes in fitness and their corresponding sum-rates. The dashed red boxes correspond to the non-optimized FOVs
(50◦, 70◦, and 90◦).

C. Performance over random Rx locations

Using the best combination of Np and Nit from Table I (i.e.,
Np = 20 and Nit = 10), we compare in Table II the LOS
blockage occurrence and the average sum-rate for the cases of
non-optimized and optimized FOVs for 4 Rxs. Comparison is
carried out over 1000 random scenarios. Non-optimized FOV
values of 50◦, 60◦, 70◦, 80◦, and 90◦ are considered, however,
the results of LOS blockage for FOVs of 80◦ and 90◦ were
excluded from the table as all Rxs have LOS coverage over all
scenarios. For the same reason of LOS blockage, the average
sum-rate results for FOVs of 50◦, 60◦, and 70◦ were excluded.

It is observed that increasing the FOV decreases the risk of
LOS blockage. However, in general, this comes at the expense
of increased homogeneity between users’ channel gains, thus a
performance degradation due to higher probability of increased
correlation in the network channel matrix (which is apparent
only for the highly constrained case of random Rxs’ orienta-
tions for the large FOVs of 80◦ and 90◦). Also, considering
random Rxs’ orientations in addition to random Rxs’ heights
led to a degraded sum-rate performance, due to lower number
of solutions that satisfy LOS coverage. Moreover, increasing
the Rx’s height (i.e., decreasing the path length between the
Tx and the Rx) increases the probability of LOS blockage, due
to the decrease in the area covered on the AP plane by the
Rx’s FOV. On the other hand, irrespective of the considered
Rxs’ heights, the proposed FOV optimization shows a robust
performance, with very limited LOS blockage occurrence. It
is worth mentioning that, even by decreasing the number of
evaluations to 50 (see Table I), the achieved performance with
PSO was still better than the cases with non-optimized FOVs.

Similar observations can be made by considering the net-
work average sum-rate, where the proposed approach outper-
forms the case of non-optimized FOVs. This advantage results
from the adaptation of every Rx to users’ positions to decrease

TABLE II: Number of scenarios with at least 1 Rx with no LOS
coverage and average sum-rate performance for optimized (Opt.) and
non-optimized fixed FOVs, for fixed and random ZRx between 0.85
and 1.35m, and random Rxs’ orientations.

LOS blockage
FOV ZRx = 0.85m ZRx = 1.15m Random Random

ZRx orientations
50◦ 668 873 840 786
60◦ 30 268 257 491
70◦ 0 0 0 194
Opt. 0 0 0 15

Average sum-rate (bps) ×107

80◦ 3.24 3.06 3.10 3.06
90◦ 3.24 3.06 3.10 2.88
Opt. 5.18 4.50 4.60 4.46

the correlation in the network channel matrix. Increasing
the Rxs’ heights results in an average sum-rate degradation,
because of higher correlation between users’ channel gains, as
a result of shorter transmission path lengths.

D. Performance in the case of user mobility

To further decrease the number of evaluations in the case
of changing users’ positions, we propose to forward the most
recent optimized FOVs as initial positions for PSO, for a
faster convergence. To prevent particles from converging to
sub-optimal solutions because of insufficient exploration of
the solution space, we propose to vary these initial values by
a random factor between 0 and 50% for each particle, in order
to increase the spread of the particles in the solution space. We
refer to this approach as “memory-assisted” optimization. The
efficiency of this approach was investigated on 1000 scenarios
generated by the random way-point model, simulating the
mobility of 4 Rxs with velocities varying between 0.1 and
0.5 m/sec, and a time interval of 5 sec between two successive
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TABLE III: LOS blockage and average sum-rate performance for different cases of optimized and non-optimized FOVs for 1000 generated
positions of 4 Rxs reflecting user mobility according to random way-point model.

Non-optimized Memory-assisted PSO (Np = 10) Conventional PSO (Np = 10)
ZRx FOV = 80◦ Nit = 5 Nit = 10 Nit = 5 Nit = 10

LOS blockage
0.85m 0 0 0 1 0
1.15m 0 0 0 3 2

Average sum-rate (bps) ×107

0.85m 2.92 4.20 4.36 4.43 4.58
1.15m 2.76 3.74 3.86 3.84 3.97

positions. The comparison is carried out over Rxs’ heights of
0.85m and 1.15m, and for different numbers of particles and
iterations.

Table III shows a comparison of the average sum-rate and
the LOS blockage performance between the cases of conven-
tional and memory-assisted PSO-based FOVs’ optimization, as
well as the case of fixed FOV of 80◦. This latter corresponds
to the best performance for non-optimized FOVs, as seen
in Table II. The results show a quite robust LOS blockage
performance for the memory-assisted approach, compared
with the conventional optimization. As before, for the case of
conventional optimization, LOS blockage occurrence improves
with increasing the number of evaluations from 50 to 100 or
by decreasing the Rxs’ heights. For the average sum-rate, both
conventional and memory-assisted optimizations outperform
the non-optimized case, while decreasing the Rxs’ heights or
increasing the number of evaluations results in an improved
performance. However, we notice that the conventional op-
timization provides a better average sum-rate performance,
which can be explained by a more constrained exploration
of the solution space in the case of memory-assisted opti-
mization. Indeed, the initial values are not distributed over
the entire solution space as it is the case for conventional
optimization. Lastly, concerning the computational complexity,
for each particle and at each iteration, the proposed PSO-based
optimization needs to (i) update the velocities, calculate the
fitness function, and enforce the boundary conditions; and (ii)
calculate the ZFPC solution.

VI. CONCLUSIONS

We proposed in this article the optimization of the Rxs’
FOVs based on PSO, for ZFPC MU-MISO VLC networks.
Firstly, we highlighted the trade-off between the solution
quality and the number of evaluations, and showed that using
a sufficient number of particles is essential for an adequate
exploration of the solution space. In general, decreasing the
FOV improves the average sum-rate but it also increases the
risk of LOS blockage. The proposed optimized FOV tuning
approach offers the best trade-off between a good throughput
performance and a robust LOS coverage. The performance of
optimized and non-optimized FOVs were also compared in the
case of user mobility, where it was shown that by using the last
optimized FOVs as initial values for the PSO, a better LOS
blockage performance is achieved using a smaller number of
evaluations. However, this comes at the expense of a slightly
lower average sum-rate, due to the constrained exploration

of the solution space. Nevertheless, the robust performance
achieved with a limited number of evaluations, makes this
approach suitable for the cases of limited computational re-
sources or relatively high user mobility. For scenarios with still
more constrained computational resources, the optimization
of FOVs can be carried out only in cases where the channel
correlation exceeds a certain threshold.

Given the promises of the proposed scheme in improving
the network performance, future research could investigate the
merits of this approach while taking into account the practical
constraints.

This includes, for instance: investigation of other pre-coding
schemes (i.e., other than ZF pre-coding); consideration of the
user mobility, random tilting of the Rxs, and parameters of the
mechanical iris used for controlling the FOVs including the
required delay for FOV tuning; optimization of the FOV with
the lowest possible number of changes to ensure minimum
delay; and improvement of the proposed memory-assisted
optimization to increase the solution quality by controlling
the impact of the most recent optimized FOVs.

Note that the proposed approach for FOV optimization
can be applied to other areas in the field of wireless com-
munications that require real-time adaptation to changing
network configuration, where the presented study, in particular,
concerning the consideration of the constraints on the possible
values in the solution space, the trade-off between the PSO
parameters, and the design of the fitness function, can be quite
insightful.
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