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(2): Univ. Paris-Saclay, CentraleSupélec, CVN, Inria, Gif-sur-Yvette, France

Keywords: Cone Beam CT, projection, backprojection, B-splines, magnification-driven
interpolation, homography

Abstract

Purpose: Discretizing tomographic forward and backward operations is a crucial step
in the design of model-based reconstruction algorithms. Standard projectors rely on
linear interpolation, whose adjoint introduces discretization errors during backprojec-
tion. More advanced techniques are obtained through geometric footprint models that
may present a high computational cost and an inner logic that is not suitable for im-
plementation on massively parallel computing architectures. In this work, we take
a fresh look at the discretization of resampling transforms and focus on the issue of
magnification-induced local sampling variations by introducing a new magnification-
driven interpolation approach for tomography.
Methods: Starting from the existing literature on spline interpolation for mag-
nification purposes, we provide a mathematical formulation for discretizing a one-
dimensional homography. We then extend our approach to two-dimensional represen-
tations in order to account for the geometry of cone-beam computed tomography with
a flat panel detector. Our new method relies on the decomposition of signals onto a
space generated by non-uniform B-splines so as to capture the spatially varying mag-
nification that locally affects sampling. We propose various degrees of approximations
for a rapid implementation of the proposed approach. Our framework allows us to de-
fine a novel family of projector/backprojector pairs parameterized by the order of the
employed B-splines. The state-of-the-art distance-driven interpolation appears to fit
into this family thus providing new computational layout for this scheme. The question
of data resampling at the detector level is handled and integrated with reconstruction
in a single framework
Results: Results on both synthetic data and real data using a quality assurance
phantom, were performed to validate our approach. We show experimentally that our
approximate implementations are associated with reduced complexity while achieving
a near-optimal performance. In contrast with linear interpolation, B-splines guaran-
tee full usage of all data samples, and thus the X-ray dose, leading to more uniform
noise properties. In addition, higher order B-splines allow analytical and iterative re-
construction to reach higher resolution. These benefits appear more significant when
downsampling frames acquired by X-ray flat-panel detectors with small pixels.

1Corresponding author. Contact: marion.savanier@ge.com
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Conclusions: Magnification-driven B-spline interpolation is shown to provide high-
accuracy projection operators with good quality adjoints for iterative reconstruction.
It equally applies to backprojection for analytical reconstruction and detector data
downsampling.

I. Introduction

Flat-panel based C-arm systems are the most common imaging tools for image-guidance in

interventional radiology and surgery. Live 2D imaging and cone-beam computed tomogra-

phy (CBCT) allow planning, guidance, and control of minimally invasive procedures. C-arm

CBCT data differ from that of diagnostic CT. They offer a higher resolution thanks to X-

ray flat-panel small pixel pitch. However, the detector low frame rate is a source of angular

undersampling when a comparatively high rotation speed is used to minimize the likelihood

of patient motion or the amount of injected contrast used to opacify the vessels. The acqui-

sition is largely restricted to the circular orbit, which is another source of undersampling,

yielding cone-beam artifacts. Analytical reconstruction is very sensitive to such sampling

issues and does not provide as much flexibility to reduce their impact as model-based itera-

tive reconstruction approaches. These approaches are based on a discrete forward projector

that captures the geometry of the system to simulate the data formation for any given input

volume. This model is then embedded into a cost function, which encodes the statistical

properties of the noise affecting the measured data, typically either Poisson or Gaussian.

Tomographic reconstruction is an ill-posed problem per se, aggravated by the noise and un-

dersampling in real acquisition systems. A penalization strategy is thus required for better

stability, accounting for a priori knowledge about the volume, such as smoothness, edge spar-

sity, or range constraints. In particular, penalized least squares models have proven useful

in CBCT, for instance for tackling noise non-uniformity1 or undersampling2.

Powerful algorithms are now available for minimizing penalized least squares cost functions,

for a large variety of smooth and nonsmooth convex penalties3,4,5,6,7. Most of these algo-

rithms require performing backprojection that matches with the adjoint (i.e., the transpose)

the forward projector.

At a first glance, backprojection in model-based iterative reconstruction (MBIR) and back-

projection in standard filtered backprojection (FBP) or in the Feldkamp-David-Kress (FDK)

method are the same operation. However, when coming to their practical implementation
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and discretization, divergent priorities emerge: with FBP, the backprojection operator per-

forms a one-pass operation that must neither introduce artifact nor increase noise nor degrade

resolution, and, ideally, be as fast as possible. In contrast, the projector within MBIR aims

at describing the data formation precisely. The quality of interpolation increases with re-

dundancy. Convolution by the detector response function degrades resolution, that is then

deconvolved during reconstruction. Therefore, backprojection constructed as the transpose

of such projector model may neither satisfy the aforementioned FBP constraint, to get the

right image in one pass, nor to be quick to compute. To our knowledge, these divergent needs

are not satisfied by a single solution in X-ray CT. Linear interpolation for backprojection

cannot be ignored, but its transpose appears to underperform as a forward projector. Many

different approaches are thus available for the projector. Since X-ray detector bins (or cells)

are small surfaces over which the X-ray energy is integrated, and since the volume is recon-

structed on a Cartesian grid, state-of-the-art approaches share a geometrical perspective:

given a cubic shape for the voxel of the volume, the projective anisotropic footprint of the

shape over the detector, and its relation to the detector bin surface, are modeled with respect

to the rotation of the system. An important driver for selecting a projector is the model

separability. Among all separable footprint models, the distance-driven (DD) offers one of

the best compromises between computation cost and image quality for diagnostic CT8 9.

Time is limited in clinical practice, so a rapid approximate convergence of the early itera-

tions might be more practical than waiting for full convergence, when resorting to MBIR

approaches. In this context, there is empirical evidence of models where unmatched pro-

jector and backprojector pairs provide significant computation savings at negligible image

quality cost with respect to their matched counterparts10,11,13. This may come from the fact

that the symmetry required by a proper least-squares formulation ensures convergence to a

well characterized minimum, but may no longer be optimal in an early stopping scenario:

choosing unmatched pairs indeed introduces an additional degree of flexibility since the ad-

joint only replicates the information included in the forward model. Recently convergence

guarantees were recovered in14 for unmatched pairs in the context of the proximal gradient

algorithm.

One essential aspect of the footprint approach is to make explicit assumptions regarding the

shape, and therefore size and sampling, of both the volume voxels and the detector bins.

These assumptions apply equally to forward or backward projection, yielding symmetry.
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This property contrasts with that of models based on linear interpolation, which specify the

sampling on either the volume or the detector, but cannot handle both. We advocate here

that it is not necessary to use the viewpoint of geometrical discretization to model varying

sampling levels: a seminal image resizing algorithm based on the convolution of polynomial

B-splines displays this key feature and provides an optimal approximation 15 in terms of

L2-norm. This optimality is valid for all B-splines orders, hence even for orders 0 and 1,

corresponding to the orders of nearest neighbor and linear interpolations.

As a first contribution, we thus propose a magnification-driven approach to the discretiza-

tion of cone-beam projection onto a plane based upon projection matrices and extensions

of the aforementioned resizing algorithm to homographies. The geometrical assumptions of

cubic voxels and square bins are replaced by a continuous model of the sampling variations

discretized over the Cartesian grid so that footprints result in one-dimensional convolutions

of B-splines. Depending on the order of the B-splines, magnification-driven interpolation

provides novel pairs of forward and backward projectors balancing precision and complex-

ity. Our second contribution is to show that the simplest form of such models is actually

equivalent to the DD model. This provides new insights on why the DD fits well in X-

ray image reconstruction. It also suggests an alternative computation layout that might

be better suited to modern highly-parallel processor units. Finally, data resizing, a com-

mon step within a detector, prior to performing reconstruction, naturally comes as part of

our magnification-driven modeling. Hence our third contribution is to provide alternative

computation pipelines for preserving resolution and noise properties at a potentially lower

computational cost, for both FBP and MBIR. Our approach is dedicated to the Cartesian

grid, for which the sampling rate is not constant by rotation. The proposed magnification-

driven interpolation aims to capture all the changes of sampling rates that happen in a tomo-

graphic reconstruction. Our approach therefore differs from previous works that introduced

smoother isotropic basis functions such as spherically symmetric blobs or multi-dimensional

B-splines to reduce or avoid the anisotropy of the sampling16,17.

The paper is organized as follows. Section II. recalls cone-beam projection on a plane and the

B-spline based algorithm for image resizing from which we derive a resampling scheme for

tomographic homographies, yielding new discrete projection and backprojection operators

based on the convolution of B-splines for either FBP or MBIR. Furthermore, we highlight the

relation between state-of-the-art discretizations and our approach. The Section is concluded
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with the connection between these pairs and existing pre-processing of the data in clinical

practice. Experiments on simulated data are presented in Section III. and commented in

Section IV. for analytical and iterative reconstruction. An illustration of FDK reconstruc-

tion with several interpolation options on a real data case is finally provided. In Section

V. we discuss how magnification-driven interpolation sheds light on the current advantages

and limitations of standard clinical interpolations and when and how it might better answer

specific usage of flat-panel based CBCT.

II. Method

II.A. Flat-panel cone-beam geometry

Figure 1: Cone-beam geometry. (O, x, y, z) is the volume coordinate system; (Sm, x
′, y′, z′)

is the source coordinate system ; (u, v) is the detector plane. Ideal acquisition: z, v and y′

are aligned.

The projective geometry defines the relationship between voxel coordinates (x, y, z) ∈ R3

and the coordinates of the projected pixels (u, v) ∈ R2. In X-ray cone beam computed

tomography with a flat-panel detector, the data acquisition is characterized by a set of

M ∈ N∗ projection matrices (Pm)1≤m≤M of size 3 × 4, that is one projection matrix per

position of the pair X-ray source / detector. For a given projection matrix Pm, coordinates

(u, v) of the projection of point (x, y, z) onto the detection plane Πm for the position Sm of

the source can be written with homogeneous coordinates (su, sv, s)18 as

(
su, sv, s

)>
= Pm

(
x, y, z, 1

)>
. (1)
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Coordinate s = 0 is at the focus point Sm and lies on the so-called optical axis, which is

orthogonal to the detector and crosses Sm. Point O is the center of the volume and the

center of rotation. Projection matrices can be measured very accurately. They provide a

precise, compact and indeed powerful way of capturing cone-beam geometry in a continuous

space. Axes orientations are shown on Figure 1 as well as an additional intermediate 3D

coordinate system (Sm, x
′, y′, z′) attached to Sm.

Forward projection with one matrix is independent from the other matrices. In contrast,

backprojection requires the M projected images as it is the sum over m ∈ {1, . . . ,M} of the

backprojection of each single projected image obtained using matrix Pm. For every m, the

only common condition we set, pertaining to tomography, is that the projection matrices

operate on the same coordinate system (O, x, y, z) such that z is an axis of rotation always

aligned with the axis v of the detector. That being said, we can focus the discussion on a

single matrix and drop index m.

Any projection matrix P = (pi,j)1≤i≤3,1≤j≤4 can be decomposed into the product of a matrix

Pi of intrinsic parameters relating (x′, y′, z′) to (u, v) and matrix Pe of extrinsic parameters

relating (x, y, z) to (x′, y′, z′)19. Matrix Pi is defined by

Pi =

α 0 u0

0 −α v0

0 0 1

 (2)

where α is the source-to-detector distance in unit of pixel size and (u0, v0) are the coordinates

of the orthogonal projection of point S over the detector, also called the piercing point where

the optical axis crosses the detector plane. Here again, the unit of length is the pixel size,

which is given with the data at backprojection, while it is a parameter for projection. Matrix

Pe is a 3D rotation and translation operator that, given our specified tomographic conditions,

is given by

Pe =

 cos θ sin θ 0 tx
0 0 −1 ty

− sin θ cos θ 0 tz

 , (3)

where θ is the rotation angle within plane (x, y), (tx, ty) are translations that, when not

equal to 0, capture a centering shift of the detector, and tz is the distance from source S

to origin O which is also set as the center of rotation. The unit of length is the voxel size,

which is a parameter at backprojection, while it is given with the volume at projection. The

optical axis is positioned at angle θ + π in this configuration. It follows that P has two null

II.A. Flat-panel cone-beam geometry
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coefficients:

P = PiPe =

p1,1 p1,2 0 p1,4

p2,1 p2,2 p2,3 p2,4

p3,1 p3,2 0 p3,4

 . (4)

Matrix P provides direct access to key parameters since p3,1 = − sin θ, p3,2 = cos θ, p3,4 = tz,

and p2,3 = α. However, it does not give access to the voxel and pixel units of length, but only

to their ratio given by α/tz, i.e. the magnification factor at the origin O. This ratio is used

as a reference. Projection operations are performed at equivalent sampling for a ratio of 1

(called isosampling). A ratio greater than 1 oversamples the detector side or undersamples

the volume side, and inversely for a ratio lower than 1.

II.B. Forward and backward cone-beam projection based on con-
volved B-splines

II.B.1. Projection as a sum of 2D homographies

Discretization over the Cartesian grid will here mean decomposing the cone-beam projection

of a volume into the weighted sum along one axis of the projection of each volume plane

orthogonal to said axis. Each projection is thus turned into a homography. More precisely,

when | cos θ| > | sin θ|, we use axis y that is closest to the optical axis, otherwise axis x is

used. This ensures that all homographies are invertible. Without loss of generality, we now

consider that tx = ty = 0 as these translations do not change the sampling issues. Let us

consider a summation along axis y: coordinates (u, v) of the projection of any point (x, y0, z)

of the volume coronal plane y = y0 onto the detector plane are given by(
su, sv, s

)>
= P

(
x, y0, z, 1

)>
= Hy0

(
x, z, 1

)>
(5)

with Hy0 =

p1,1 0 p1,2y0 + p1,4

p2,1 p2,3 p2,2y0 + p2,4

p3,1 0 p3,2y0 + p3,4

 =

h1,1 0 h1,3

h2,1 h2,2 h2,3

h3,1 0 h3,3

,

so that 
s(x) = h3,1x+ h3,3

u = h1(x) = h1,1x+h1,3

s(x)

v = h2(x, z) = h2,1x+h2,2z+h2,3

s(x)
.

(6)

The projection of plane y = y0 is thus a resampling by 2D homography Hy0 which, in our

tomographic case, displays a resampling in v that is a 1D magnification between v and z of

factor h2,2/s(x).

II.B. Forward and backward cone-beam projection based on convolved B-splines
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The resampling in u is a 1D homography of x only. This 1D resampling function corresponds

to a flat-detector fan-beam geometry. In the following, we shall thus recast the discretization

of a flat panel fan-beam homographic resampling as a generalization of a 1D resampling

pipeline with constant magnification using the convolution of B-splines.

II.B.2. Resampling algorithm for a constant magnification

Let ∆ > 0 and let a(∆·) be the continuous magnified version of a 1D continuous signal

a : R→ R. The resampling task consists in computing from NI uniformly spaced samples of

a with sampling step 1, NJ samples that are therefore uniformly spaced by ∆. A resampling

step ∆ > 1 thus corresponds to a downsampling (reduction) while a sampling step ∆ < 1 is

an upsampling (enlargement), the magnification factor being equal to 1/∆. We denote I =

{1, . . . , NI} and J = {1, . . . , NJ} the respective sets of indices. In15, the authors proposed a

resampling algorithm to minimize information loss when computing a reduction/enlargement

a∆ on the same axis as a from the vector a ∈ RNJ of known values (a(j))j∈J of a : R → R
using B-splines expansions. The central B-spline of order n ∈ N is denoted by βn : R→ R.

The convolution product is (f ∗ g)(·) =
∫ +∞
−∞ f(t)g(· − t)dt for functions f and g in L2(R),

the Hilbert space of measurable, square-integrable functions from R to R. The convolution

product is also defined for discrete signals a ∈ `2 and b ∈ `1 as, for k ∈ Z, (b ∗ a)(k) =∑
`∈Z b(`)a(k − `) where `2 (resp. `1) is the space of square summable (resp. summable)

sequences. Let us define bn ∈ RZ as the discrete B-spline of order n, obtained by sampling

βn at integer values, i.e. bn(`) = βn(`) for ` ∈ Z.

Given values (a(j))j∈J , we will assume that the continuous signal a can be represented in

the space spanned by {βn(· − j) | j ∈ J} by expansion

a(x) =
∑
j∈J

c(j)βn(x− j), (7)

where c = (c(j))j∈J ∈ RNJ is the associated set of B-spline coefficients of a such that

(∀j ∈ J) a(j) = (bn ∗ c)(j) =
∑
`∈Z

bn(`)c(j − `). (8)

The magnification of the centered B-spline of order n is defined by βn∆ = βn(·/∆) and, most

importantly, is itself a centered B-spline of order n. It provides a representation a∆ onto the

II.B. Forward and backward cone-beam projection based on convolved B-splines
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space spanned by functions {βn∆(· −∆i) | i ∈ I} given by

a∆(x) =
∑
i∈I

c∆(i)βn∆(x−∆i). (9)

The vector of coefficients c∆ = (c∆(i))i∈I ∈ RNI is determined by minimizing the norm

‖a∆ − a‖L2(R) and thus satisfies normal equations21, which are expressed in matrix form as

Tc∆ = Ξc, (10)

where Ξ = (Ξi,j)(i,j)∈I×J ∈ [0,+∞[NI×NJ and T = (Ti,i′)(i,i′)∈I2 ∈ [0,+∞[NI×NI are such

that,2

Ξi,j =

∫ +∞

−∞
βn(x− j)βn∆(x−∆i)dx = ξn,n∆ (j −∆i) (11)

with, for every θ ∈ R,

ξn,n∆ (θ) = (βn ∗ βn∆)(θ) (12)

and, for every (i, i′) ∈ I2,

Ti,i′ =

∫ +∞

−∞
βn∆(x−∆i)βn∆(x−∆i′)dx = β2n+1

∆ ((i− i′)∆) = b2n+1(i− i′). (13)

Ξ is a cross-correlation matrix containing the correlations of functions βn∆ and βn according

to the relative positions of the samples. In our context of projective geometry, these cross-

correlations will be interpreted as “footprints”. Note that the general scaling property of

the convolution of B-splines implies that

(∀θ ∈ R) ξn,n∆ (θ) = ∆ξn,n1
∆

(θ/∆). (14)

Therefore, the magnification of step ∆ and the inverse magnification of step 1/∆ result in

the same footprint, up to a normalization factor.

Matrix T is a Gram matrix, hence symmetric and semi-definite positive, independent of ∆.

It is also Tœplitz so that its inverse can be implemented by means of digital filters. Finally,

a∆ is given by

a∆ = ΛT−1Ξc, (15)

where Λ = (Λi,i′)(i,i′)∈I2 is such that,

(∀(i, i′) ∈ I2) Λi,i′ = bn(i− i′). (16)

2The functions βn with n ∈ N are even.

II.B. Forward and backward cone-beam projection based on convolved B-splines
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The discrete convolution form of (15) is

(∀i ∈ I) an∆(i) =
(
bn ∗ (b2n+1)−1 ∗ (Ξc)

)
(i). (17)

This routine can be directly applied to image magnification by implementing separable mag-

nifications along each direction resulting in successive 1D processing along the rows and the

columns of an image.

In the following, we propose to extend this approach for dealing with general homographies,

by allowing the signal of known samples to be approximated with B-splines of order m,

possibly different from the order n of the output.

II.B.3. Magnification-driven resampling algorithm for a 1D homography

Figure 2: Example of a signal (solid line) and its B-splines approximations in the volume
and in the projections (dashed line).

Figure 3: Construction of p∆(x) from p(u) on the same axis as f(x).

We now consider that one line f(x) of the volume and one line of the projector p(u) are

II.B. Forward and backward cone-beam projection based on convolved B-splines
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related by the 1D homography h such that, for every x ∈ X =]− h3,3/h3,1,+∞[,

u = h(x) =
h1,1x+ h1,3

h3,1x+ h3,3

. (18)

This defines a bijective mapping from X to U = h(X ). Backprojection generates f from p

and projection generates p from f , as shown in Figure 2, according to

p(u) = p ◦ h(x) =
f(x)

|h′(x)|
, (19)

or

f(x) = f ◦ h−1(u) = |h′(h−1(u))|p(u), (20)

where h′ denotes the derivative of h. These relations ensure the expected conservation of

matter density through the integral identity:∫
U
p(u)du =

∫
X
f(x)dx. (21)

Let NI (resp. NJ) be the number of samples along u (resp. x) and let I = {1, . . . , NI} (resp.

J = {1, . . . , NJ}) be the associated set of indices. Let (ui)i∈I be the locations of values

(pi)i∈I of discrete signal p = (p(ui))i∈I . Let (xj)j∈J be the locations of the observed values

(fj)j∈J of f , giving rise to the discrete signal f = (f(xj))j∈J . As an extension of (14), let us

define function ξm,n∆ such that

(∀θ ∈ R) ξm,n∆ (θ) = βm ∗ βn∆(θ). (22)

The goal of the projection step is to compute samples (pi)i∈I from samples (fj)j∈J .

We first assume that f belongs to the space spanned by {βm(· − xj) | j ∈ J} i.e.,

f(x) =
∑
j∈J

c(j)βm(x− xj), (23)

where c = (c(j))j∈J is the associated set of B-spline coefficients of f .

Unlike the magnification case, the homography of a centered B-spline is not a B-spline in

general. The magnification-driven approach consists therefore in approximating the homog-

raphy of the centered B-spline by its magnification. We thus use the absolute value |h′(x)| of

the derivative of h at x, that provides the continuous change in sampling rate from x to u in-

duced by h. Furthermore, we note that |(h−1)′(u)| = 1/|h′(x)|. For the approximation to be

valid, coefficient h3,1 must be small enough to make the variation of the magnification factor

II.B. Forward and backward cone-beam projection based on convolved B-splines
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negligible over the support of the B-splines. We have then |(h−1)′(z)| ' 1/|h′(z)| ' h1,1/h3,3.

Let ∆i = 1/|h′(h−1(ui))| be the local sampling step in an open neighborhood V(ui) of ui with

i ∈ I. This defines a vector of resampling parameters ∆ = (∆i)i∈I . Hence, when u ∈ V(ui),

(20) yields

p(u) =
f(h−1(u))

|h′(h−1(u))|
' ∆if(h−1(u)). (24)

Let p∆ be an approximation of p on the same axis as f such that, for every i ∈ I,

p(ui) = ∆i p∆(h−1(ui)) (25)

(see Figure 3). We make the assumption that p∆ can be decomposed onto a family of

nonuniform B-splines of order n ∈ N as

p∆(x) =
∑
i∈I

s∆i
(i) βn∆i

(x− h−1(ui)). (26)

The optimal coefficients s∗∆ = (s∆i
(i))i∈I satisfy the normal equations according to

Gs∗∆ = Fc, (27)

where F = (Fi,j)(i,j)∈I×J ∈ [0,+∞[NI×NJ and G = (Gi,l)(i,l)∈I2 ∈ [0,+∞[NI×NI are such that,

for every (i, l) ∈ I2 and j ∈ J ,

Fi,j =

∫ +∞

−∞
βm(x− xj)βn∆i

(x− h−1(ui))dx = ξm,n∆i
(xj − h−1(ui)) (28)

and

Gi,l =

∫ +∞

−∞
βn∆l

(x− h−1(ul))β
n
∆i

(x− h−1(ui))dx = βn∆l
∗ βn∆i

(h−1(ul)− h−1(ui))

= ∆iξ
n,n
∆l/∆i

(
h−1(ul)− h−1(ui)

∆i

)
= ∆lξ

n,n
∆i/∆l

(
h−1(ui)− h−1(ul)

∆l

)
. (29)

F contains the footprints of functions (βn∆i
(· − h−1(ui)))i∈I and (resp. over) (βm(· − xj))j∈J

(see Figure 4). Note that the Gram matrix G is not Tœplitz anymore and that its diagonal

elements are

(∀i ∈ I) Gi,i = ∆iξ
n,n
1 (0) = ∆ib

2n+1(0). (30)

Finally the expression of vector p is derived from (25):

p = Diag(∆)Λ̃s∗∆ (31)

II.B. Forward and backward cone-beam projection based on convolved B-splines
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where Diag(∆) is the diagonal matrix whose diagonal is equal to vector ∆ and Λ̃ =

(Λ̃i,l)(i,l)∈I2 ∈ [0,+∞[NI×NI is such that,

Λ̃i,l = βn∆i

(
h−1(ul)− h−1(ui)

)
. (32)

By combining (27) and (31), we have

p = Diag(∆)Λ̃G−1Fc, (33)

where G−1 denotes the pseudo-inverse of G. Note that the above equality holds exactly

provided that model (23)-(26) is perfectly satisfied, which is obviously an approximation in

practice.

Figure 4: Least-square resampling of f(x) on a basis of non-uniform B-splines centered on
(h−1(ui))i∈I .

Let us now see how to retrieve f from p in the backprojection stage. Symmetrically, we

assume that the continuous projection p can be decomposed as

p(u) =
∑
i∈I

c′(i)βn(u− ui), (34)

where c′ = (c′(i))i∈I is the associated set of B-spline coefficients. A new vector of resampling

parameters ∆′ = (∆′j)j∈J is defined such that ∆′j = |h′(xj)|, the sampling step in V(xj), an

open neighborhood of xj. Thus,

f(xj) = |h′(xj)|p(h(xj)) = ∆′j p(h(xj)). (35)

Let f∆′ be an approximation of f on the same axis as p and such that, for every j ∈ J ,

f(xj) = ∆′jf∆′(h(xj)). (36)

We now assume that f∆′ is the projection of p onto the vector space generated by {βm∆j
(· −

h(xj)) | j ∈ J}, which leads to the following relation:

f = Diag(∆′)Λ̃
′
(G′)−1F′c′, (37)

II.B. Forward and backward cone-beam projection based on convolved B-splines
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where matrices F′ ∈ [0,+∞[NJ×NI , G′ ∈ [0,+∞[NJ×NJ , and Λ̃
′ ∈ [0,+∞[NJ×NJ are such

that, for every (j, l) ∈ J2 and i ∈ I,

F ′j,i = ξn,m∆′j
(ui − h(xj)), G′j,l = ∆′jξ

m,m
∆′l/∆

′
j

(
h(xl)− h(xj)

∆′j

)
, Λ̃′j,l = βm∆′l (h(xl)− h(xj)) .

(38)

Remark 1 For every (n,m) ∈ N2, the support of βn∆ is ] − (n + 1)∆/2, (n + 1)∆/2[ and,

for every ∆ > 0 the support of function ξm,n∆ is thus equal to ]− (m+ 1 + (n+ 1)∆)/2, (m+

1 + (n+ 1)∆)/2[. This implies that most elements of matrices G, F, Λ̃, G′, F′, and Λ̃
′

are

zero, giving them a band structure. For example, according to (29), for every (i, l) ∈ I2, if

|h−1(ul)− h−1(ui)| ≥ (n+ 1)
∆i + ∆l

2
, (39)

then Gi,l = 0 and, if

|h−1(ul)− h−1(ui)| ≥ (n+ 1)
∆i

2
, (40)

then Λ̃i,l = 0.

Approximation for low-order splines: In order to reduce the computation burden

related to the inversion of matrix G, we propose to approximate this matrix by a surrogate

matrix G̃ ∈ RNI×NI in (33).

For every (i, l) ∈ I2 for which (39) is not satisfied, we will make the assumption that

h−1(ul) ' h−1(ui) +
1

h′(h−1(ui))
(ul − ui) = h−1(ui)±∆i(l − i). (41)

Based on these approximations, (29), and Remark 1, we will define G̃ = (G̃i,l)(i,l)∈I2 as

follows:

• if |ul − ui| ≤ n, then

G̃i,l =
√

∆i∆lξ
n,n
1 (l − i) =

√
∆i∆lb

2n+1(l − i), (42)

• otherwise G̃i,l = 0.

In particular, G̃i,i = Gi,i and we can write G̃ = Diag(∆)1/2Tn Diag(∆)1/2 where Tn is the

Tœplitz matrix previously encountered for the magnification case with B-splines of order n.

The resulting approximate vector of B-spline coefficients then reads as

s̃∗∆ = Diag(∆)−1/2T−1
n Diag(∆)−1/2Fc. (43)

II.B. Forward and backward cone-beam projection based on convolved B-splines
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Remark 2 i) Since multiplication by a Tœplitz matrix is equivalent to discrete convolu-

tion with suitable boundary conditions, the components (s̃∗∆,i)i∈I of vector s̃∗∆ are given

by

(∀i ∈ I) s̃∗∆,i =
1√
∆i

NI∑
l=1

1√
∆l

(Fc)l (b
2n+1)−1(i− l), (44)

where

(∀l ∈ I) (Fc)l =

NJ∑
j=1

c(j) ξm,n∆i
(h−1(ul)− xj). (45)

ii) Applying (41) for every couple (i, l) ∈ I2 that does not satisfy (39) and using (32),

leads to a rougher approximation where Λ̃ is replaced by Λ, which was also introduced

in the magnification case with B-splines of order n. Here again, Λi,i = Λ̃i,i.

Then, the components of vector p in (33) are approximated by the following discrete

convolution

(∀i ∈ I) p̃i = ∆i (b
n ∗ s̃∗∆)(i). (46)

The same simplifications apply for backprojection: we define surrogate matrix G̃′ ∈
RNJ×NJ such that, for (j, l) ∈ J2 such that |xl − xj| ≤ m,

G̃′j,l =
√

∆′j∆
′
l b

2m+1(l − j). (47)

As above, vector f in (37) can be approximated by

f̃ = Diag(∆′)Λ̃
′
Diag(∆′)−1/2T−1

m Diag(∆′)−1/2F′c′, (48)

where the inversion performed by T−1
m can be implemented by filtering with (b2m+1)−1.

Remark 3

i) When comparing Equations (33) and (37), we note that the main modeling difference

lies in the set of magnification factors. Given the scaling property

(∀θ ∈ R) (1/∆)ξm,n∆ (θ) = ξn,m1/∆(θ/∆), (49)

we remark that

F ′i,j = ξn,m∆′j
(h(xj)− ui) = ∆′jξ

m,n
1/∆′j

((h(xj)− ui)/∆′j). (50)
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If ui ' h(xj) with j ∈ J (with NJ ≤ NI), then

∆′j '
1

∆i

. (51)

This means that one could use the sampling steps ∆−1 = (1/∆j)j∈J instead of ∆′ and

thus, according to (49), (28), and (38),

F ′j,i =
1

∆i

ξm,n∆i

(
∆i(h(xj)− ui)

)
' 1

∆i

ξm,n∆i

(
∆i h

′(h−1(ui)) (xj − h−1(ui)
)

' 1

∆i

ξm,n∆i
(xj − h−1(ui)) =

1

∆i

Fi,j. (52)

In this case, the projection and backprojection step would share the same interpolation

model. The sampling steps may be close but are different since they cannot be defined

at the same locations (i.e., there exists no bijection between the set of locations (xj)j∈J

and the set of locations (ui)i∈I).

ii) For the projection step, the sampling steps (∆i)i∈I are the derivative of h−1 at the

sampling points (ui)i∈I . When n = m = 0, piecewise constant approximations are

performed for each signal which matches the description made by geometric models

that compute the footprints between pixel and detector bins based on the locations of

their edges. It is straightforward to compute sampling steps δi from these edge locations.

We define the set of segments of center h−1(ui) and width δi by setting

δ1 = δ2 = h−1(u2)− h−1(u1) (53)

and, for every i ∈ {2, . . . , NI − 1},

h−1(ui+1)− h−1(ui) =
δi+1 + δi

2
. (54)

In this way, given that (h−1(ui+1)− h−1(ui))1≤i≤NI−1 is a sequence of increasing steps,

the interval [h−1(u1), h−1(uNI
)] is partitioned in intervals [h−1(u1), h−1(u1) + δ1/2],

(]h−1(ui) − δi/2, h
−1(ui) + δi/2])2≤i≤NI−1, and ]h−1(uNI

) − δI/2, h
−1(uNI

)]. By con-

struction when l > i

h−1(ul)− h−1(ui)

δl
=

1 + δi/δl
2

+

∑l−1
k=i+1 δk

δl
≥ 1

2
(1 +

δi
δl

) ≥ 1

2
. (55)

When δi is substituted for ∆i in (24), it follows from Remark 1, that G = Diag(∆),

Λ̃ = bn(0)IdNI
, where IdNI

denotes the identity matrix of size NI×NI1 and (33) leads

to

p = bn(0)Fc. (56)
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This provides an alternative way of setting the magnification factors.

II.B.4. Low order B-splines characteristics

In our context, low order splines corresponding to (n,m) ∈ {0, 1}2 and s = m + n + 1 ∈
{1, 2, 3} are used. Order 0 indeed provides a good model of the sampling process performed at

the physical detector level, while order 1 corresponds to the most common linear interpolation

used in signal/image processing. In the following, we give the expression of the quantities

which are involved in the proposed spline interpolation procedure. First, we recall the

formula of the B-splines of order 0 and 1:

(∀τ ∈ R) β0(τ) =

{
1 if |τ | < 1

2

0 otherwise,
, β1(τ) =

{
1− |τ | if |τ | < 1

0 otherwise.
(57)

In the implementation, the three main practical aspects are the explicit evaluation of the

sampling kernel ξm,n∆ , and the multiplication by the inverse of the Gram matrix (i.e., G̃ for

projection). No prefiltering is needed to compute the B-spline coefficients which are equal

to the pixel values.

We derive from (22) explicit formulas for correlation functions ξ0,0
∆ , ξ1,0

∆ (ξ0,1
∆ being deduced

by using (49)), and ξ1,1
∆ :

• Case 1

(∀θ ∈ R) ξ0,0
∆ (θ) =


min(1,∆) if |θ| < a1

a2 − |θ| if a1 ≤ |θ| < a2

0 if |θ| ≥ a2

(58)

with a1 = |∆−1|
2

, and a2 = ∆+1
2

.

• Case 2

(∀θ ∈ R) ξ1,0
∆ (θ) =


ck,0 + ck,1|θ|+ ck,2|θ|2 for |θ| ∈ [ak−1, ak[

and k ∈ {1, 2}
0 otherwise

(59)

with a0 = 0, a1 = |∆
2
− 1|, a2 = ∆

2
+ 1, and expressions for (ck,0, ck,1, ck,2) given in

Table 1. Calculation details can be found in the Appendix.
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Interval ck,0 ck,1 ck,2

|θ| < a1

if ∆ ≤ 2 and |θ| < ∆/2

if ∆ ≤ 2 and |θ| ≥ ∆/2

if ∆ > 2

∆−∆2/4

∆

1

0

−∆

0

−1

0

0

a1 ≤ |θ| < a2

if |θ| ≥ ∆/2

if |θ| < ∆/2

(∆2 + 4∆ + 4)/8

(−∆2 + 4∆ + 4)/8

−1−∆/2

−1 + ∆/2

1/2

−1/2

Table 1: B-spline correlation function parameters for case 2

• Case 3 The expression of ξ1,1
∆ (θ) is given in Table II. in15.

Figure 5 displays the 1D kernels. Their width increases with both ∆ and the approxima-

tion order. By design, our method makes use of all sampling points therefore the computation

cost is proportional to the total number of samples NI +NJ . On the contrary, destination-

driven interpolation skips samples when ∆ > 1. Thanks to the property (49) of ξm,n∆ , the

footprints can always be computed using ∆ < 1 so that the computation complexity only

depends on the order of the splines. The weighted sums will require between two samples for

s = 1 and four samples when s = 3. The computation of ξ1,1
∆ is complex with several tests

to handle. Efficiency relies on using pre-computed look-up tables, with a trade-off between

the sizes of the tables and the desired numerical precision.

Finally, when numerical simplifications presented in Remark 2 are implemented, multiplica-

tion by Λ and by G̃−1 reduces to applying the identity except when n = 1 where G̃−1 is the

direct cubic filter (b3)−1. Its complexity is proportional to the number of output samples NJ ,

hence it is faster at downsampling. This filter is classically applied according to20,23 but one

can resort to more efficient implementations, for instance on GPU26 or using FIR filters27,28.

II.B.5. Resampling with a 2D representation

Given that axis v is aligned with axis z, any cut f(x, y0, z) of the volume along the plane

y = y0 and its projection p(u, v) are related by the homography matrix Hy0 with form (5)

satisfying Property (6) i.e., with two null elements, inducing that u does not depend on
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Figure 5: Normalized spline correlation kernels when ∆ ∈ [0.5, 2]. From left to right: 1
∆
ξ0,0

∆ ,
1
∆
ξ0,1

∆ , 1
∆
ξ1,0

∆ , 1
∆
ξ1,1

∆ . For ∆ = 1, the kernels reduce to B-splines of order 2 (second and third),
B-splines of order 1 (first) and B-splines of order 3 (fourth) plotted in dashed lines.

z. The presented optimal resampling for 1D magnifications and homographies is sufficient

to perform the resampling associated to Hy0 . We now investigate the potential of a 2D

approach of the problem. We require the following conservation of 2D integrals:∫
U×V

p(u, v)dudv =

∫
X×Z

f(x, z)dxdz, (60)

where U × V and X × Z are suitable domains of integration. It follows from (6) that

(∀(u, v) ∈ U × V) p(u, v) = f
(
h−1

1 (u), h−1
2 (u, v)

)
| det JH−1

y0
(u, v)|, (61)

and the Jacobian JH−1
y0

(u, v) is given by

JH−1
y0

(u, v) =

(
∂h−1

1 (u)

∂u
0

∂h−1
2 (u,v)

∂u

∂h−1
2 (u,v)

∂v

)
, (62)

so that | det JH−1
y0

(u, v)| = |∂h
−1
1 (u)

∂u

∂h−1
2 (u,v)

∂v
|.

We now assume that p and f can be decomposed in 2D. Let NI1 and NI2 (resp. NJ1 and

NJ2) be the number of samples along u and v (resp. x and z) and let I1 = {1, . . . , NI1},
I2 = {1, . . . , NI2} (resp. J1 = {1, . . . , NJ1}, J2 = {1, . . . , NJ2}) be the associated set of indices

leading to sets of coordinates (xj1 , zj2)j1∈J1,j2∈J2 and (ui1 , vi2)i1∈I1,i2∈I2 . For the projection

task, f is decomposed as follows:

f(x, z) =
∑
j2∈J2

∑
j1∈J1

c(j1, j2) βm(x− xj1)βm(z − zj2). (63)

The two-dimensional representation p∆ of the resampling of p is defined by

p∆(x, z) =
∑
i1∈I1

∑
i2∈I2

s∆(i1, i2) βn∆1,i1
(x− h−1

1 (ui1))βn∆2,i1
(z − h−1

2 (ui1 , vi2)) (64)

where ∆ = (∆1,i1∆2,i1)i1∈I1 is the vector whose components are the products of the diagonal

elements of the Jacobian matrix which describes the continuous change of sample rate in x
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(resp. z) along u (resp. v), i.e. ∆1,i1 = |h−1
1
′
(ui1)| and ∆2,i1 =

∂h−1
2 (ui1 ,vi2 )

∂v
. We thus use the

same values that would appear with successive 1D processing, while verifying

p(ui1 , vi2) = | det JH−1
y0

(ui1 , vi2)|p∆(h−1
1 (ui1), h−1

2 (ui1 , vi2)). (65)

Let us define the vector c = (c(j1, j2))j1∈J1,j2∈J2 (resp. s∆ = (s∆(i1, i2))i1∈I1,i2∈I2) whose

components have been indexed according to (j1 − 1)NJ2 + j2 (resp. (i1 − 1)NI1 + i2).

The normal equations in 2D are expressed in matrix form as

Gs∆ = Fc, (66)

where F ∈ [0,+∞[NI1
NI2
×NJ1

NJ2 and G ∈ [0,+∞[NI1
NI2
×NI1

NI2 are such that, for every

i = (i1 − 1)NI2 + i2, j = (j1 − 1)NJ2 + j2 and l = (l1 − 1)NI2 + l2 with (i1, l1) ∈ I2
1 ,

(i2, l2) ∈ I2
2 , j1 ∈ J1, and j2 ∈ J2,

Fi,j =

∫ +∞

−∞

∫ +∞

−∞
βm(x− xj1)βn∆1,i1

(x− h−1
1 (ui1))βm(z − zj2)βn∆2,i1

(z − h−1
2 (ui1 , vi2))dxdz

= ξm,n∆1,i1
(xj1 − h−1

1 (ui1))ξm,n∆2,i1
(zj2 − h−1

2 (ui1 , vi2)) (67)

and

Gj,l =
(
βn∆2,l1

∗ βn∆2,i1
(h2(ui1 , vi2)− h2(ul1 , vl2))

)(
βn∆1,l1

∗ βn∆1,i1
(h−1

1 (ui1)− h−1
1 (ul1))

)
= ∆2,i1∆1,i1ξ

n,n
∆2,l1

/∆2,i1

(
h−1

2 (ui1 , vi2)− h−1
2 (ul1 , vl2)

∆2,j1

)
ξn,n∆1,l1

/∆1,i1

(
h−1

1 (ui1)− h−1
1 (ul1)

∆1,i1

)
.

(68)

Since h−1
1 does not depend on v, separability of F is achieved as

F =

 (F1)1,1F
1
2 . . . (F1)NI1

,1F
NI1
2

... . . .
...

(F1)1,NJ1
F1

2 . . . (F1)NI1
,NJ1

F
NI1
2

 =
[
(F1)1,∗ ⊗ F1

2 . . . (F1)NI1
,∗ ⊗ F

NI1
2

]
, (69)

where ⊗ denotes the Kronecker product. Matrix F1 ∈ [0,+∞[NI1
×NJ1 is such that, for every

i1 ∈ I1 and j1 ∈ J1,

(F1)i1,j1 = ξm,n∆1,i1
(xj1 − h−1

1 (ui1)). (70)

For every i1 ∈ I1, (F1)i1,∗ denotes the i1-th row of F1 and matrix Fi1
2 ∈ [0,+∞[NI2

×NJ2 is

such that, for every i2 ∈ I2 and j2 ∈ J2,

(F2
i1)i2,j2 = ξm,n∆2,i1

(zj2 − h−1
2 (ui1 , vi2)). (71)

II.B. Forward and backward cone-beam projection based on convolved B-splines



page 20 Savanier et al.

Then, vector p = (p(ui1 , vi2))i1∈I1,i2∈I2 ∈ RNI1
NI2 (whose components are indexed according

to (i1 − 1)NI2 + i2) is expressed as

p = (Diag(∆)⊗ IdNI2
)Λ̃G−1Fc, (72)

where matrix Λ̃ ∈ [0,+∞[NI1
NI2
×NI1

NI2 is such that, for every i = (i1 − 1)NI2 + i2 and

l = (l1 − 1)NI2 + l2, with (i1, l1) ∈ I2
1 , (i2, l2) ∈ I2

2 ,

Λ̃i,l = βn∆1,l1

(
h−1

1 (ui1)− h−1
1 (ul1)

)
βn∆2,l1

(
h−1

2 (ui1 , vi2)− h−1
2 (ul1 , vl2)

)
. (73)

Since we use the same low order B-splines, for every (i1, l1) ∈ I2
1 for which

|h−1
1 (ui1)− h−1

1 (ul1)| ≤ (n+ 1)
∆1,i1 + ∆1,l1

2
, (74)

we can again assume that ui1 and ul1 are close enough so that
∂h−1

2

∂v
(ui1 , vi2) ' ∂h−1

2

∂v
(ul1 , vl2),

leading to

∆2,i1ξ
n,n
∆2,l1

/∆2,i1

(
h−1

2 (ui1 , vi2)− h−1
2 (ul1 , vl2)

∆2,i1

)
'
√

∆2,i1∆2,l1β
2n+1 (vi2 − vl2) . (75)

In matrix form, this translates to the following approximation:

G ' G1 ⊗ G̃2, (76)

where the elements of G1 ∈ [0,+∞[NI1
×NI1 and G̃2 ∈ [0,+∞[NI2

×NI2 are, for every

(i1, l1) ∈ I2
1 ,

(G1)i1,l1 = ∆1,i1

√
∆2,i1∆2,l1ξ

n,n
∆1,l1

/∆1,i1

(
h−1

1 (ui1)− h−1
1 (ul1)

∆1,i1

)
(77)

and, for every (i2, l2) ∈ I2
2 ,

(G̃2)i2,l2 = β2n+1 (vi2 − vl2) . (78)

It can be noticed that both G1 and G̃2 are symmetric matrices. Likewise Λ̃ can be approx-

imated as

Λ̃ ' Λ̃1 ⊗Λ2, (79)

where the elements of Λ̃1 ∈ [0,+∞[NI1
×NI1 , Λ2 ∈ [0,+∞[NI2

×NI2 are, for every (i1, l1) ∈ I2
1

and (i2, l2) ∈ I2
2 ,

(Λ̃1)i1,l1 = βn∆1,l1

(
h−1

1 (ui1)− h−1
1 (ul1)

)
, (Λ2)i2,l2 = βn1 (vi2 − vl2). (80)

II.B. Forward and backward cone-beam projection based on convolved B-splines



Magnification-driven models for CBCT page 21

Finally, p can be derived as

p ' (Diag(∆)⊗ IdNI2
)(Λ̃1 ⊗Λ2)(G−1

1 ⊗ G̃−1
2 )Fc

=
(
(Diag(∆)Λ̃1G

−1
1 )⊗ (Λ2G̃

−1
2 )
)
Fc. (81)

As long as the magnification of the B-splines provides a good enough approximation of the

change of sampling rates induced by the homography, the 2D solution is separable into 1D

computations. Note that (81) shares the same footprint as would be obtained by applying

our 1D resampling approach separately on each row and column.

The backprojection task uses the reverse geometric transforms{
u = h1(x)

v = h2(x, z).
(82)

The magnification factors are then chosen equal to ∆′1,j1 = |h′1(xj1)| and ∆′2,j1 =
∂h2(xj1 ,zj2 )

∂z
=

h22/s(xj1) where j1 ∈ J1 and j2 ∈ J2. Hereafter, we will denote Hs the discretized homo-

graphic transform involved in backprojection implemented as (81) and H̃−1
s the discretized

homographic transform involved in projection for s = m + n + 1. Let L be the number

of voxels in the volume and K be the number of detector cell measurements acquired in a

conic geometry with a flat panel detector. Applying this pipeline to all homographies Hs

and H̃−1
s deduced from projection matrix P gives rise to backprojection matrix Bs ∈ RL×K

for analytic reconstruction and forward projection matrix Rs for MBIR.

II.C. Special cases

Within our formalism, several conventional projection models can be revisited and their

limitations highlighted.

II.C.1. Destination-driven interpolation

Destination-driven backprojection with homography matrices H is straightforward: from

arbitrary “destination” location (xj1 , zj2), the corresponding coordinates onto the detector

(u, v) are computed according to (5). Then interpolation takes place in the projection space.

Likewise, destination-driven forward projection based on H−1 is straightforward: it steps

through destination locations i.e. every bin center (ui1 , vi2) and finds the corresponding set

II.C. Special cases



page 22 Savanier et al.

of voxels in the volume that map into the output. Setting (ui1 , vi2) into (5) yields the equation

of the line that goes from location (ui1 , vi2) to the focal point S. Numerical integration of

volume f is then performed over this line (or ray) by means of interpolation in the volume

space. The most common instance of this approach consists in using bilinear interpolation.

For 1D projection, this amounts to plugging h−1(ui) in (23) with m = 1. Our framework

offers an alternative interpretation of this approach. In (33) if we set n = m = 0 and define

set ∆ with constant sampling step 1 in the normal equations (27), then the destination-driven

projection footprint matrix F is such that, for every i ∈ I and j ∈ J ,

Fi,j = ξ0,0
1 (xj − h−1(ui)) = β1(xj − h−1(ui)) (83)

while the destination-driven backprojection footprint matrix F′ in (37) is

F ′j,i = ξ0,0
1 (ui − h(xj)) = β1(ui − h(xj)). (84)

Even though both F and F′ use β1, they rely on different representations so that they are far

from being the transpose of each other. This teases out the “magnification-agnostic” nature

of such projection and backprojection models, thus explaining their limitations in terms of

adjoint and noise handling as we will show further on in our numerical experiments.

II.C.2. Distance-driven interpolation

The DD model has been proposed as an alternative to bilinear interpolation. Similar to our

approach, the model captures both sides of the sampling process, at the voxel and detector

bin levels, but from the perspective of a geometrical discretization, which is not specific to

flat panel detector and therefore not relying on projection matrices and homographies. For

planar parallel or fan-beam geometry, or when separability holds, the 1D version is used as

follows: voxels and bins are located by their edges on their respective axis. These locations

are mapped according to the system geometry onto a common axis. Interpolation between

one voxel and one bin is computed as the length of the overlapping segment footprints

of the voxel and the bin over this axis as shown in Figure 2 of9. Under this choice, the

scheme is neither destination nor source driven, rendering it equally adequate for projection

and backprojection. This results in a matched pair (up to normalization factors) for this

particular axis.

II.C. Special cases
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Remarkably, for projection, for every i ∈ I and j ∈ J ,

ξ0,0
∆i

(h−1(ui)− xj) =

∫ +∞

−∞
β0

1(τ)β0
∆i

(h−1(ui)− xj − τ)dτ =

∫ xj+ 1
2

xj− 1
2

β0
∆i

(h−1(ui)− τ)dτ.

(85)

The above integral is equal to the intersection of the support of β0
1 centered at xj and of

length 1, with that of β0
∆i

centered at h−1(ui) and of length ∆i, which is the quantity at

the core of the DD scheme. Function β0
∆i

(h−1(ui) − ·) can be viewed as the projection of

the detector bin centered at ui, that is a segment centered at h−1(ui) with length ∆i. As

a result, in the context of flat panel cone beam geometry, the DD scheme can be expressed

in our framework with n = m = 0 with a slightly different set of magnification factors ∆DD

as described in Remark 3ii. In particular, our choice of setting ∆DD = ∆′ corresponds to

the case when the intermediary axis is chosen as the detector axis, while setting ∆DD = ∆

corresponds to magnifications at the voxel axis. In the following, we shall not discuss this

degree of freedom of the method, we will instead consider the DD with any intermediate axis

and associated set of magnifications as being an instance of our approach when n = m = 0.

II.D. Data rebinning and rectification

If one were allowed infinite computing resources, with a potentially considerable amount

of oversampling, any interpolation scheme would be equally satisfying. But the clinical

constraints of fast reconstruction, simple workflow, and limited storage capability require

downsampling, which induces a loss of information and forces optimizing image and data

representations, even for analytical reconstruction. In current medical practice, the recon-

structed slices are of size 512 × 512 while X-ray flat panels with pitch of 200µ can deliver

many more samples, yielding a small ratio α/tz in (2) and (3), i.e. a large downsampling.

In that case, destination-driven backprojection will miss samples and will not make use of

the full X-ray dose. To circumvent this issue, a prior rebinning of the data to larger pixels

trades resolution loss for noise and aliasing reduction. The term “rebinning” refers to using

constant magnifications of integer factors at the detector level. Our model embeds the mag-

nifications factors, hence alleviating the need for rebinning. Another resampling transform

that may be used for reconstruction is “rectification”24. Rectification relies on the observa-

tion that, for any paired homographies (Hy0 , Hy1) derived from projection matrix P, each

one can be deduced from the other by a magnification. The decomposition of the projection

II.D. Data rebinning and rectification
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into a composition of homographies can thus be simplified into computing a single “rectifi-

cation” homography derived from, e.g. Hy0 , to which 2D magnification Hy1H
−1
y0

is applied

to obtain Hy1 . As magnifications present a better computation layout than homographies,

rectification has been introduced to get faster projector-backprojector pairs for both FBP

and MBIR. Resampling based on the convolution of B-splines is an obvious candidate for

both steps. A model of order n = 0 for the detector data perfectly matches the acquisition

process, that is an integration over a surface. In contrast, the resampled signal at an opti-

mized sampling step ∆ or through rectification becomes the data of a virtual detector that

may be described by a higher order basis function.

In the case of MBIR, the ratio of K, the number of known values, over L, the number of

unknowns, strongly influences the conditioning of matrix Rs. Using smaller voxels increases

L and degrades the conditioning of Rs because the angular sampling becomes insufficient.

Since it is not possible to oversample the data in the angular direction, downsampling of

the data is again part of the problem. One important advantage of MBIR is to allow for

accurate noise modeling in the observation model. Noise models are simple and accurate,

when directly modeling the detector statistically-independent bin measurements. To preserve

the noise model and comply with computation constraints, rebinning by block-averaging is

sometimes used. Resizing with a non-necessarily integer factor is less restrictive, but bilinear

interpolation modifies the noise properties by introducing correlations. One expected out-

come of using convolutions of B-splines is to provide less alteration of the noise properties to

allow one to keep a simple noise model after data resampling, whether after a magnification

by a real factor or a rectification homography. Together with a better noise handling, MBIR

allows for improved resolution. Note again that a B-spline of order 0 at the detector level is a

faithful resolution degradation model, but a large cubic voxel model may not be appropriate

for representing a higher resolution volume. Our approach shows how to introduce a higher

level of precision for the solution.

Another benefit of MBIR is to reduce the undersampling artifacts appearing for instance in

CBCT with a circular orbit or with a limited number of projections2. Missing projections

is obviously independent of the interpolation scheme within a projection; in that case an

accurate model is one that minimizes interpolation errors17. This is easier to achieve using

a virtual rectified detector with 2D magnifications where the order of the B-spline sets the

compromise between speed and precision.

II.D. Data rebinning and rectification
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We see that there is no one-fit-for-all discretization, but B-splines adapt remarkably well to

one’s various needs.

II.D.1. Rotated cone-beam geometry

Up to now, the cone-beam geometry has been assumed to have axis v aligned with axis z.

When a 2D rotation within the detector plane can make the axes parallel again, it can be

computed within the same framework of centered B-splines and separable 1D processing25

and can be merged with the steps of rebinning or rectification.

Otherwise, in the practical case of the vibrations of a C-arm system, the rotations that

break the parallelism at each angle are small. They cannot be ignored without degrading

the resolution, but they can be neglected in the definition of the set of magnifications. We

therefore now assume that the null elements, h3,2 and h1,2 of Hy0 in (5) are replaced by

small nonzero values. In this case
∂h−1

1

∂v
no longer vanishes. We use the diagonal elements

of the Jacobian, considered as a sufficient description of the local magnifications, while

keeping the correct projection matrix to compute the sampling points locations. This yields

magnification factors (∆1,i1,i2 ,∆2,i1,i2)i1∈I1,i2∈I2 . In this case, the elements of F are

Fi,j = ξm,n∆1,i1,i2
(xj1 − h−1

1 (ui1 , vi2))ξm,n∆2,i1,i2
(zj2 − h−1

2 (ui1 , vi2)) (86)

and (Diag(∆) ⊗ IdNI2
) has to be replaced by the diagonal matrix whose i-th diagonal

elements for i = (i1− 1)NI2 + i2 with i1 ∈ I1 and i2 ∈ I2 is equal to | det JH−1
y0

(ui1 , vi2)|. Note

that separability of F and the scaling diagonal matrix no longer holds. We can neglect h3,2

for matrices G and Λ̃ to resort to the same surrogate matrices as in the ideal case. Assuming

small rotations, the gradient
∂h−1

1

∂v
is small and using such model is expected to outperform

linear interpolation that ignores magnifications.

III. Experiments

We tested our magnification-driven interpolation scheme for cone-beam projection using

orders (n,m) ∈ {0, 1}2 with m ≥ n. The discrete forward projector and the discrete back-

projector based on linear interpolation taken as a reference, are denoted by Rr and Br. The

corresponding homographic transforms are denoted by H̃−1
r and Hr. In the previous sections,

we proposed various simplified implementations of forward projectors and backprojectors.
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Henceforth, we will use a label a, b, or c to specify the chosen implementation. For backpro-

jection, implementation a consists in computing p according to (81) using inversion of tridiag-

onal matrices12,22. Implementation b consists in substituting Diag(∆)−1/2T−1
n Diag(∆)−1/2

for G−1
1 in (81). Based on implementation b, implementation c consists in further replacing

Λ̃1 by Λ1. It can be noticed that, given the range values of (n,m), (81) then becomes

p =
(
(Diag(∆)1/2T−1

n Diag(∆)−1/2)⊗ G̃−1
2

)
Fc. (87)

Note that with c, post-filtering through operator G̃−1
2 in (87) is completely independent from

the homography step. By linearity, it can thus be performed in a single global pass, after

summation of each transformed planes, on the resulting projections (or on the volume for

backprojection).

III.A. Simulation scenarios

An ideal cone-beam geometry is considered, made of 600 projections matrices covering a

360◦ circular acquisition. By ideal, we mean that the trajectory of the source point is

strictly planar and that the optical axis always crosses the center of rotation and hits the

center of the detector which gives tx = ty = u0 = v0 = 0. All projection matrices are thus of

the form

P =

α cos θ α sin θ 0 0
0 0 α 0

− sin θ cos θ 0 tz

 . (88)

The detector size is such that the data is never truncated. Iso-sampling is defined as tz =

α = 1500 voxels. The set of magnification factors for approximating the homographies is

defined at the destination level, namely at the detector level for Rs and at the volume level

for Bs. Recall that these operators rely on the repeated use of operators Hs and H̃−1
s for

various matrices H. We also considered forward and backward projector Vs corresponding

to the discretization of the associated rectified virtual geometry made of magnifications only.

The latter case serves as a baseline since it is known that magnification-driven interpolation

fulfills optimality conditions for magnifications15.

III.A. Simulation scenarios
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III.B. Tasks

Projection for the whole orbit involves a mix of homographies, from simple magnification

when the detector is aligned with the volume to the worst case for a Cartesian grid at π/4.

The impact of such homographies is over coronal and sagittal slices. Therefore, we first

tested our different implementations of Hs and H̃−1
s for the matrix H deduced from θ = π/4

and y = 0 as

H =

 α α sin π/4 0
0 α 0

− sin π/4 0 tz

 . (89)

We tested resampling steps δH = α/tz ∈ {1, 2, 3.5}, where δH = 1 means isosampling and

δH > 1 means that the voxel size is chosen δH times bigger than isosampling, that is a

downsampling by factor δH is performed.

Projectors and backprojectors themselves were evaluated through tasks of analytical and

iterative reconstructions. For analytical reconstruction, each model Rr and Rs was succes-

sively used to simulate the projection of a vertical edge at isosampling followed by FDK

reconstruction with the corresponding operator Br or Bs. At backprojection, all projection

matrices were rotated by angle atan(1/16) to yield a slanted edge in the reconstructed image

so that the edge is sampled with 16 sub-voxel shifts. For iterative reconstruction, the pair

(Rs,R
>
s ) is employed. For a given forward model Rs, MBIR was the result of minimizing

the following objective function:

Ψ(f) =
1

2
‖Rsf − p‖2

2 +
β

2
‖f‖2

2. (90)

Parameter β, set to 2× 10−2, ensures the strong convexity of the cost function Ψ, and thus

the uniqueness of the minimizer. The initial value for volume f was set to the zero vector.

The minimization problem was solved by simple gradient descent. Vector p is the projection

of the 512× 512 image displayed in Figure 6 (right) with Rr using an 8 times oversampling

followed by an 8× 8 bin averaging.

III.C. Image quality metrics

We compared the models in terms of bias (accounting for the loss of spatial resolution

or presence of artifacts) and noise propagation. For visual assessment of bias, we used two

III.B. Tasks
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(a) (b)

Figure 6: Reference images. Left: resolution image. Right: phantom for iterative recon-
struction (axial slice).

simulated images (Figure 6): a ”wire” image made of cylinders of varying diameters and fixed

intensity set to 100, and a phantom containing sharp geometrical shapes (two cylinders, one

rectangles, six wires and one line pair pattern). Spatial resolution was assessed by computing

the modulation transfer functions (MTF) of the FDK-reconstructed slanted edge. Bias was

evaluated for MBIR as the root mean square error (RMSE) with respect to the ground truth

over uniform ROIs.

For noise propagation, we used ensemble statistics: for two different operations (homography

Hs and backprojection Bs), N statistical replicates of noise were processed by the same

operation so that mean, standard deviation (STD), and signal-to-noise ratio (SNR), taken

as the ratio of mean to standard deviation, can be computed at each pixel of the output after

processing. The 2D Noise Power Spectrum (NPS) over a circular region-of-interest can also

be computed and averaged radially. The noise, added on each operation input, was always

independent and identically distributed, zero-mean and Gaussian with variance set to 1 for

each test of Hs and to 103 for tasks involving Bs.

III.D. C-arm CBCT data

An exemplary real-data case is also studied. A CBCT acquisition of a quality assurance

phantom containing a resolution section with bar patterns was obtained on a GE Healthcare

C-arm system with a circular orbit of 200◦ sampled by 607 projections. The detector bin

size was 0.2 mm. The distance from the focal spot to the detector is 1295 mm which yields

α = 1295/0.2 = 6475. The distance from the focal spot to the center of rotation is 820 mm.

The voxel size at isosampling is 0.127 mm (tz = 820/0.127 = 6456). A 512× 512 image with

this voxel size yields a field of view of 65 mm only. We therefore compared the performance

III.D. C-arm CBCT data
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of interpolation for the voxel size at isosampling and for a four times bigger field of view by

increasing the voxel size to 0.508 mm. For the latter case, we compared FDK reconstructions

with the following three options: i) direct backprojection of the original data (α = 1295/0.2,

tz = 820/0.508), ii) rectification of the original data (α = 1295/0.200, tz = 820/0.127)

followed by backprojection in rectified geometry (α = 820/0.127, tz = 820/0.508) and iii)

bin averaging by a factor 4, designated by operator A, followed by direct backprojection

(α = 1295/0.800, tz = 820/0.508). We compared the reconstruction of the bar-pattern of

8 line pairs per mm on an axial slice 7.62 mm away from the central slice. This pattern is

perfectly resolved by the system when the voxel size is equal to 0.127 mm, but it is degraded

for a voxel size of 0.508 mm. The amount of degradation induced by the large voxel size

depends on the interpolation only, not on the system. In such real-data conditions, Equation

(6) is not rigorously satisfied, hence we fall in the situation described in Section II.D.1..

IV. Experimental results

IV.A. Homography

H1 H2 H3 H̃−1
1 H̃−1

2 H̃−1
3

b c b c b c b c b c b c
δH = 1 0 0 5.2 22 4.6 20 53 53 49 56 46 53
δH = 2 0 0 37 54 35 52 10 10 27 31 26 30
δH = 3.5 0.1 0.1 25 25 24 25 1.8 1.8 0.2 2.9 0.2 2.4

Table 2: Comparison of implementations b and c with respect to implementation a in terms
of RMSE (×10−3)

Table 2 reports measures of RMSE associated to implementations b and c with respect

to implementation a after applying either homography H̃−1
s or Hs with our splines of order

s = m+n+ 1 on the wire image degraded by noise. First, for all models, the errors are very

low. For δH > 1, Hs corresponds to a downsampling while H̃−1
s performs an upsampling.

We see that almost no error is made when performing a downsampling with our lowest order

model. Moreover, implementations b and c are on average 1.15 and 1.4 times faster than

implementation a for the considered homographies. Based on these facts, we now focus on

implementation c and drop the corresponding index.

Figure 7 (top) shows the wire images obtained after performing a homography with δH = 3.5

followed by the inverse homography. One can notice that the image obtained with linear
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interpolation i.e. H̃−1
r Hr lacks some wires as indicated by the arrow on Figure 7 (bottom

left). This highlights the issue of nonstationarity with linear interpolation. With the pro-

posed magnification-driven interpolation, all wires are visible. The images obtained with

H̃−1
1 H1 have a patchy look typical of 0-order B-spline models. The highest order B-spline

model gives the images with the least distortion at the price of small undershoots. These

differences between models are less apparent for lower downsampling factors as illustrated

for δH = 1 by Figure 7 (bottom right) showing the profile through the three bottom right

wires (solid box) on the bottom left Figure. The profiles with H̃−1
2 H2 and H̃−1

3 H3 show

higher resolution than H̃−1
r Hr and H̃−1

1 H1.

(a)

(b) (c)

Figure 7: Assessment of resolution for direct and inverse homography. Top: output wire
slice using δH = 3.5 ; from left to right: H̃−1

r Hr, H̃−1
1 H1, H̃−1

2 H2, H̃−1
3 H3. Bottom left:

input resolution image. Bottom right: plots through three wires (solid box in the bottom
left Figure) using δH = 1.

Figure 8 shows the SNR images obtained from N = 200 replicate homographies H̃−1
s Hs and

H̃−1
r Hr for δH = 2.025. The window widths (WW) and window levels (WL) are set indepen-

dently for each image. We see that noise correlations appear along the columns where the

homography is a magnification, while along the rows, the varying local magnification factor

IV.A. Homography
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Figure 8: SNR images using δH = 2. From left to right: H̃−1
r Hr, H̃−1

1 H1, H̃−1
2 H2, H̃−1

3 H3.

H̃−1
r Hr H̃−1

1 H1 H̃−1
2 H2 H̃−1

3 H3

δH = 1 29 ± 7.8 28 ± 7.9 25 ± 4.5 21 ± 3.7
δH = 2 29 ± 7.8 33 ± 8.5 27 ± 6.5 23 ± 6.8
δH = 3.5 29 ± 7.8 48 ± 13 42 ± 12 40 ± 13

Table 3: Mean ± standard deviation of the SNR image generated by H̃−1
s Hs

of the homography induces a complex pattern. These correlations vanish as the B-spline or-

der grows. The mean and standard deviation of these SNR images are reported in Table 3.

First of all, linear interpolation has the same mean SNR no matter the change in sampling

step, as two samples only are always taken into account. In contrast, with magnification-

driven models, the mean SNR grows with the downsampling factor as more samples get

involved. Model H̃−1
1 H1 gives a higher mean SNR than linear interpolation when δH > 1

and an equivalent mean SNR for smaller δH . Models H̃−1
3 H3 and H̃−1

2 H2 display higher

mean SNR than linear interpolation for large downsampling factors and lower ones for lower

downsampling factors. Understandably, the reduction presented above of the image distor-

tions for s > 1 is associated with noisier images. The noise is compensated by a superior

resolution resulting in SNR increases.

Regarding the evaluation of the adjoint scheme, Figure 9 compares the interpolation models

for operation H>s Hs and (H̃−1
s )>H̃−1

s with δH = 2. On the top Figure, one can see that,

since linear interpolation always uses two samples no matter the magnification factor, ap-

plying H>r Hr or (H̃−1
r )>H̃−1

r to a constant image results in artificial high frequency patterns

that are eliminated with our models. The model order has no impact for a constant image.

Regarding noise propagation, (H̃−1
r )>H̃−1

r yields a higher SNR (25 ± 4.8) than (H̃−1
s )>H̃−1

s

(20± 4.5 for s = 1, 20± 3.5 for s = 2, 19± 3.6 for s = 3). In all scenarios, for higher order

models, the SNR images however display reduced correlation patterns. The bottom right

and left Figures show two profiles taken at large wires of the resolution image for H>s Hs and

(H̃−1
s )>H̃−1

s . Oscillations patterns are mostly visible with schemes based on linear interpo-

lation and are more pronounced with H>r Hr. Small overshoots are noticeable at the border

IV.A. Homography
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of the wires with H>2 H2 and H>3 H3 that do not appear using any model (H̃−1
s )>H̃−1

s .

(a)

(b) (c)

Figure 9: Evaluation of direct and adjoint homography with δH = 2. Top: uniformity
(Grayscale: 0-50). From left to right: (H̃−1

r )>H̃−1
r , H>r Hr, others ((H̃−1

s )>H̃−1
s and H>s Hs).

Bottom left: plots through two large wires (dotted box of bottom left Figure 7) with
(H̃−1

s )>H̃−1
s . Bottom right: plots through two large wires (dotted box of bottom left Figure

7) with H>s Hs.

IV.B. Projector and backprojector

Figure 10 displays the MTF curves obtained for FDK reconstruction at iso-sampling and

with tz = 2α for the direct geometry. All curves were normalized to 1 at zero frequency.

At iso-sampling, the MTF curves for Br and B1 are superimposed. Just above, one can

see the curves obtained with B2 and B3 that are also superimposed. When tz = 2α, model

B3 outperforms B2 while the MTF for linear interpolation is slightly higher than that of

B1. For the rectified geometry, Vs provides the same MTF as their counterparts Bs (curves

not shown). Figure 11 displays the radial NPS curves obtained from the replicate FDK

reconstructions at iso-sampling. The positive slope of these curves results from the ramp

filtering. Models Br and B1 behave similarly and correlate more the noise than higher-order

models.

IV.B. Projector and backprojector
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Figure 10: MTF curves obtained with tz = α (solid lines) and with tz = 2α (dashed lines).

Figure 11: 1D radial NPS obtained with tz = α.

Figure 12 shows the SNR images obtained from N = 200 replicate FDK reconstructions of

a uniform cylinder with Br and Bs at iso-sampling. The window level was chosen as the

mean value of each cylinder image (i.e., each mean SNR) while the window width was kept

constant. Uniform SNR images are expected. We see that models Br and B1 have similar

mean SNR and display a small streak pattern, which is reduced with models B2 and B3.

Model B3 appears as the best compromise between a uniform SNR and a high global SNR

level.

IV.B. Projector and backprojector
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Figure 12: SNR images after FDK reconstruction of a uniform cylinder. From left to
right: Br (WL=128, WW=18), B1 (WL=122, WW=18), B2 (WL=63, WW=18) and B3

(WL=100, WW=18).

(a)

(b) (c)

Figure 13: Iterative reconstruction of the simulated geometric phantom after 300 iterations.
Top: error images between reconstructions and phantom (WL=0.15, WW=0.30) ; from left
to right: Rr, R1, R2, R3. Bottom left: phantom with three ROIs. Bottom right: profiles
through the six wires pointed by the arrow of the bottom left Figure.

Figure 13 (top) shows a zoom on the error images between the ground truth and MBIR

after 300 iterations for the central slice using projectors Rs and Rr. Edge distortions and

aliasing patterns are visible in all images. However they are more pronounced with Rr. The

strength of these artifacts was quantified as the mean RMSE over a union of three ROIs

IV.B. Projector and backprojector
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where they have the strongest effect. The RMSE errors are 0.74%, 0.59%, 0.56% and 0.53%

of the background for projectors Rr, R1, R2, and R3 respectively. Projector Rr yielded the

highest error while projector R3 led to the lowest one. Plots of the horizontal profiles along

the central wire are presented in Figure 13 (bottom right). Peaks have a greater intensity

for Rr, R1 and R2 than the ground truth intensity (equal to 20) while for R3 the intensity is

correct. The iterative process inverts the discretization errors of the projector, which yields

a stronger unwanted deconvolution. The profiles thus show that higher-order projectors

induce less deconvolution biases, relying on a more accurate representation of the signal.

This means that magnification-driven interpolation can lead to reduced edge artifacts with

respect to linear interpolation.

IV.C. Real data

Figure 14 shows the reconstructions of the bar pattern of 8 line pairs at iso-sampling and

with a downsampling factor of 4. Figure 15 shows the profiles through the resolution bars

according to different options and interpolation models.

All models offer similar performance when reconstructing at iso-sampling. With a down-

sampling of 4, the worst case is the standard approach of detector rebinning followed by

linear interpolation. A first improvement is obtained by substituting the rebinning step with

rectification. The highest resolution is obtained using the native geometry with B2 and B3.

With Br, the issue of non-stationarity from peak to peak is again visible.

Table 4 shows that bin averaging of the data with A prior to backprojecting with linear

interpolation Br achieved the best noise performance, but at the price of a strong loss of

resolution. Linear interpolation without bin averaging Br yielded the highest noise level.

In contrast, model B1, which led to a resolution very close to that provided by Br, was

associated to the second lowest RMSE, that is twice lower than the RMSE obtained with

Br. Using a first rectification homography Hs followed by our spline models in rectified ge-

ometry Vs achieved an intermediate compromise between noise and resolution for a reduced

computational complexity. Using model V3H3 barely decreased spatial resolution compared

to performing a direct reconstruction with B3 while gaining in noise uniformity (RMSE de-

crease of 20 HU).

All these observations show that the behavior of magnification-driven interpolation assessed

IV.C. Real data
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in simulations extends to real data. Moreover, despite a non-ideal geometry, requiring a non-

separable interpolation and approximate local magnifications, our approach still resulted in

improvements over linear interpolation.

Figure 14: C-arm CBCT reconstruction of a quality assurance phantom. Displayed ROI
centered on the bar pattern of 8 lp/cm (WL = 1200, WW = 2000). From left to right: Br

(tz = α), BrA (tz = 4α), Br (tz = 4α), B3 (tz = 4α).

(a) (b)

Figure 15: Profiles through the bar pattern of 8 lp/cm shown in Figure 14. Left: tz = α.
Right: tz = 4α.

Br B1 B2 B3 BrA V1H3 V3H3

151 76 136 129 43 85 110

Table 4: Mean RMSE of the four uniform ROIs

V. Discussion

The modeling of magnification, here performed through optimal expansions over B-splines

of varying widths, provides a new framework for computing homographies found in flat-

panel cone-beam forward and backward projections. The proposed framework generalizes

current separately developed approaches of magnification-agnostic signal resampling on the

one hand and geometric discretization on the other. The first approach works well-enough

for common image processing tasks especially when using high-order polynomial interpola-

tion. However, in the practice of X-ray clinical imaging, nearest neighbor (for rebinning)
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and linear interpolations are preferred for analytical reconstruction. The reasons are related

to limited computation and storage resources and the constraint of full X-ray dose utiliza-

tion, so that spatial resolution is sacrificed to noise reduction through the use of large or

rebinned acquisition pixels. We here provide an array of interpolation kernels to fully benefit

from small acquisition pixels with improved data resizing or rectification steps and improved

projection inner steps. Our method displays reasonably simple computations through inter-

polation kernels of order up to 3, and enhanced noise uniformity.

We do not claim that resolution can be improved and noise decreased simultaneously: the

proposed kernels may either keep the noise or blur the signal, but they do not randomly lose

information, as may happen when using downsampling with a magnification-agnostic lin-

ear interpolation. At iso-sampling, the current state-of-the-art linear and DD interpolations

have similar performances.

The shortcomings for the adjoint of the destination-driven projector are induced by the lack

of magnification modeling in the interpolation process. The alternative approach of geomet-

rical discretization has been introduced to overcome this issue. Again, dose and computation

constraints have made the DD model a better tool for model-based iterative reconstruction

than alternative classical tools of image processing. Put into our framework, we get several

advantages. First, the DD appears to oscillate between linear interpolation and nearest-

neighbor interpolation depending on the magnification factor, so that its preferential use is

at iso-sampling. Second, its computation can be simplified through the use of the convolution

of 0-order B-splines with respect to the complex logic of sorting the edges of the voxels and

pixels on an intermediate axis. Third, it can be improved by slightly higher order kernels,

and it can be associated to rebinning and rectification within a single modeling framework.

Improvement on clinical systems are expected from our framework. First, the increase in

resolution achieved on a real acquisition of a quality assurance phantom will translate to

clinical exams for linear analytical reconstruction. Secondly, regarding MBIR, let us recall

that working with finer voxels than that of iso-sampling increases the computation load.

Instead, a higher-order model for the volume side allows the compression of the information

held by many small pixels on the detector side. We consider it an important contribution to

provide an optimized link between a 0-order acquisition sampling model and a higher-order

reconstruction model through either resizing or rectification, to perform reconstruction at

iso-sampling. Accordingly, through the use of operators with increased symmetry, possibly
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based on virtual detectors where the resampled data can still be modeled as uncorrelated,

our method displays features necessary for faster convergence and computation, much desir-

able in clinical practice.

Let us acknowledge some limitations of this work and open a few perspectives. First of all, we

worked exclusively with centered B-splines of low orders, but alternative basis functions can

provide additional flexibility between precision and computation load. Our results illustrate

that the most straightforward choices work well in our context of C-arm CBCT. We focused

on homographic transforms because they perfectly describe flat-panel detectors and have an

analytical description. These transforms do not apply to the native geometry of diagnostic

CT with curved detector. As we showed for the DD model, the local sampling steps can

be estimated from a geometrical description and the magnification-driven interpolation is

applicable. Let us add that a cone-beam geometry with a very large source to detector dis-

tance is close to parallel geometry. One should not consider that the issue of magnification

vanishes in that case. This only happens when the detector is parallel to the volume. But

as soon as the detector plane is not aligned with the Cartesian grid, subsampling arises and

our framework is of interest to handle it.

VI. Conclusion

A new magnification-driven interpolation framework is introduced for tomography. It lever-

ages a resizing algorithm based on families of B-splines of varying widths to account for

the magnifications introduced by the homographies found in flat-panel cone-beam projec-

tion. The magnifications are shown to be a key ingredient to improve the modeling of

a cone-beam projector and its adjoint. A set of interpolation kernels is derived that al-

lows novel forward and backward projection pairs. These kernels balance spatial resolution

versus noise and yield better noise uniformity. The benefits with respect to linear inter-

polation appear more significant when downsampling frames acquired by the small pixels

of X-ray flat-panel detectors: full dose usage is guaranteed, while linear interpolation ran-

domly misses data. Magnification-driven interpolation is perfectly adapted to downsampling

high-resolution data at the detector level, either through simple magnification, or through

rectification that further provides simpler and faster computations. In our experiments, the

tested kernels were of order up to 3. Such a choice results in reasonable computations which,
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by taking advantage of separability, translate well to highly-parallel computing architectures.

The lowest order model turns out to reduce to the distance-driven interpolation, for which

we provide new insight and computational scheme.
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Appendix

Let θ ∈ R. We have

ξ1,0
∆ (θ) =

∫ +∞

−∞
β0

∆(τ)β1
1(θ − τ)dτ =

∫ ∆/2

−∆/2

β1
1(θ − τ)dτ. (91)

• Case I : For θ ∈
[
|∆

2
− 1|, ∆

2
+ 1
]
, i.e., ∆

2
≥ θ − 1, −∆

2
≤ θ − 1 and ∆

2
≤ θ + 1,

ξ1,0
∆ (θ) =

∫ ∆/2

θ−1

(1− |θ − τ |)dτ

=

∫ 1

θ−∆
2

(1− |τ |)dτ. (92)
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If θ ≥ ∆
2

then

ξ1,0
∆ (θ) = 1− 1

2
−
(
θ − ∆

2

)
+

1

2

(
θ − ∆

2

)2

=
1

2
− θ +

∆

2
+
θ2

2
+

∆2

8
− ∆

2
θ

=
1

8
(∆2 − 4∆θ + 4∆ + 4θ2 − 8θ + 4). (93)

If θ ≤ ∆
2

then

ξ1,0
∆ (θ) =

∫ 0

θ−∆
2

(1 + τ)dτ +

∫ 1

0

(1− τ)dτ

=
∆

2
− θ − 1

2
(θ − ∆

2
)2 + 1− 1

2

=
1

8
(−∆2 + 4∆θ + 4∆− 4θ2 − 8θ + 4). (94)

• Case II : For θ ∈
[
−1− ∆

2
,−|∆

2
− 1|

]
, since ξ1,0

∆ is an even function, its expression is

deduced from Case I.

• Case III : For θ ∈ [1− ∆
2
, ∆

2
− 1], ∆

2
> 1,

ξ1,0
∆ (θ) =

∫ 1

−1

(1− |τ |)dτ = 1. (95)

• Case IV : For θ ∈ [∆
2
− 1, 1− ∆

2
], ∆

2
< 1,

ξ1,0
∆ (θ) =

∫ θ+ ∆
2

θ−∆
2

(1− |τ |)dτ. (96)

If θ + ∆
2
≤ 0 then

ξ1,0
∆ (θ) =

∫ θ+ ∆
2

θ−∆
2

(1 + τ)dτ

= ∆ +
1

2
((θ +

∆

2
)2 − (θ − ∆

2
)2)

= ∆(1 + θ). (97)

If θ − ∆
2
≤ 0 and θ + ∆

2
≥ 0 then

ξ1,0
∆ (θ) =

∫ 0

θ−∆
2

(1 + τ)dτ +

∫ θ+ ∆
2

0

(1− τ)dτ

=
∆

2
− θ − 1

2
(θ − ∆

2
)2 + θ +

∆

2
− 1

2
(θ +

∆

2
)2

= ∆− ∆2

4
− θ2. (98)

If θ − ∆
2
≥ 0 then, by symmetry, we deduce the expression of ξ1,0

∆ from (97).
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