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Abstract

Class Incremental Learning (CIL) consists in training a model iteratively with limited
amount of data from few classes that will never be seen again, resulting in catastrophic
forgetting and lack of diversity. In this paper, we address these phenomena by assum-
ing that, during incremental learning, additional unlabeled data are continually available,
and propose a Pseudo-Labeling approach for class incremental learning (PLCiL) that
makes use of a new adapted loss. We demonstrate that our method achieves better perfor-
mance than supervised or other semi-supervised methods on standard class incremental
benchmarks (CIFAR-100 and ImageNet-100) even when a self-supervised pre-training
step using a large set of data is used as initialization. We also illustrate the advantages
of our method in a more complex context with fewer labels. The code is available at
https://github.com/alechat/PLCiL.

1 Introduction

Natural vision systems learn in a continuous way, benefiting from their constant interaction
with the environment. Their skills are dynamically updated and accumulated throughout
their life. While artificial models such as Deep Neural Networks (DNNs) have now achieved
similar or even better performance in several perceptual tasks, their learning process is fun-
damentally different and relies mainly on supervised batch training which requires a large
amount of annotated data.

Incrementally training artificial DNNs from an incoming data stream suffers from catas-
trophic forgetting [11, 13]: previously learned skills tend to be less accurate when new ones
are integrated in the system. Continual Learning (CL) explores solutions to alleviate this
phenomenon. It can be seen as finding a way to solve a plasticity-stability dilemma [29]:
the model should be flexible enough to dynamically expand its knowledge (plasticity) while
ensuring the integrity of previously accumulated knowledge (stability).

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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In this work, we focus on the Class Incremental Learning (CIL) scenario applied to
image recognition: new classes gradually appear from the data stream and the total number
of categories is not known beforehand. Many studies emulate a data stream by splitting a
classification dataset into disjoint batches of several classes [7, 33]. Using this definition,
we can see class incremental as analogous to a succession of small-scale supervised batch
sessions, with each one learning a small subset of disjoint classes.

There is a large consensus that learning good visual representations is crucial to compet-
itive classification performance [2]. Optimizing a feature extractor via representation learn-
ing or pre-training with an auxiliary task becomes mandatory when working with datasets
of limited size. In particular, self-supervised visual representation learning [4, 8, 38] now
achieves performance close to fully supervised methods while requiring less labeled data.

In a CL setting, however, methods struggle to learn good representations: this is es-
pecially true at the beginning of the learning process, since only a fraction of the data is
available at each session. Training a DNN from scratch in a continuous framework requires
the feature extractor to be constantly adjusted, resulting in unstable representations. This ex-
plains why some authors have taken the easier option of having a large number of classes at
the beginning (e.g. 50 classes out of a total of 100) in order to consolidate the representations
even before starting the incremental learning of the remaining classes [10, 18, 30].

In this paper, we aim to learn a model truly from scratch, using a semi-supervised rep-
resentation learning mechanism, assuming that unlabeled data is available throughout the
learning process. Note that the idea of using unlabeled data in this context has already been
considered in [25, 45].

The underlying intuition behind this proposition is that, with an ideal representation
space, the solution to class incremental reduces to allocating unassigned regions in the repre-
sentation space to the new classes without needing to strongly modify the previous regions.
While the advantages expressed in the representation learning literature directly transfer
to CL, we also study how semi-supervision provides an answer to the plasticity-stability
dilemma. We propose to exploit a process based on pseudo-labeling as a way to combine
self-supervision with CIL.

Our contributions are threefold: i) We introduce a mechanism of Pseudo-Labeling for
Class incremental Learning (PLCiL) and show its benefit in an original learning scheme
adapted to semi-supervised CIL that combines 3 losses: a supervised loss, a self-supervised
loss using pseudo-labels and a new distillation loss that ensures prediction consistency dur-
ing CIL sessions. ii) Using PLCiL, we demonstrate that a self-supervision provides regular-
ization against catastrophic forgetting, reaching state-of-the-art performance on class incre-
mental benchmarks. iii) We propose a new class incremental evaluation protocol with even
fewer labeled images. We show that our method can still learn the continual task thanks
to the semi-supervision while fully supervised CL approaches can hardly compete on such
data-scarce problems.

2 Related Work

Our proposed method borrows ideas from two different areas of the literature: that of con-
tinual learning and that of representation learning with self-supervision.

Continual Learning [29] refers to different settings [19, 39] such as CIL, which is the
focus of this paper, or Task Incremental (TI) learning. The big challenge of CIL is to pro-
pose methods that are as insensitive to catastrophic forgetting during learning. The main
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Figure 1: Overview of the proposed incremental training process. The upper part (blue box)
represents the pseudo-labeling process dedicated to the automatic generation of a label for
an unlabeled u image. The lower part (green box) is a standard supervised forward/backward
process, including a 3-term loss function: i) standard supervised cross-entropy, ii) regular-
ization between sessions by distillation, iii) regularization by self-supervision.

approaches are described in the following.

Rehearsal / Replay consists in replaying part of the old data, stored in an episodic mem-
ory, and mixes it with new data during learning [5, 14, 20, 27, 33]. The best performing
approaches follow this strategy, but their success depends on the number and representa-
tiveness of the chosen examples and require a large memory footprint. The limited amount
of examples stored induces an imbalance between old classes and newly introduced ones.
Models learning with rehearsal are then heavily biased. [15, 18, 41, 46] proposed solutions
to compensate for the bias at the classifier level. Rather than simply storing old examples,
an alternative is to produce data online by a continuously learned generative model [37, 40].

Another strategy is to make the classifier have outputs close to those of the previous
sessions, especially on old data. To this end, Learning without Forgetting [26] has adapted
the Knowledge Distillation (KD) loss introduced in [17]. The old classifier is the teacher and
distills his knowledge to the new classifier, seen as the student. Most of the rehearsal based
methods make use of some form of KD [5, 25, 33, 41, 46].

Other interesting strategies are Parameter Control [1,7, 23, 44], Dynamic Architectures
[31, 36, 42], Generative Replay [37, 40] or Meta-Learning [21, 32, 34].

Two approaches [25, 45] make the same hypothesis as our method: a large amount of
unlabeled data available during the learning sessions. They both implement a self-supervised
task: since KD does not require any ground-truth, they leverage unlabeled data by distilling
knowledge from two teachers, a model expert on the old classes and a model trained only
on the new classes, into a global model performing on all classes. While this kind of self-
supervision is an efficient regularization against catastrophic forgetting, these methods do
not exploit these additional data to enhance their representations.

Our method belongs to the rehearsal with memory category, but introduces both a new
KD scheme and a self-supervised objective that aims to learn better representations through-
out the CIL process.

Self-Supervised Representation Learning refers to a particular set of representation
learning methods that use pretext tasks. Pretext tasks are used to automatically create artifi-
cial labels from unlabeled data that can be used to compute an error signal for learning.

A wide range of pretext tasks has been explored in the literature. We refer the reader to
[22] for a complete review of the field. We do not detail this literature here because it is less
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central to our problem.

Our primary objective is to introduce regularization mechanisms against catastrophic
forgetting, and we focus on semi-supervised methods [6, 48] that we believe are good can-
didates. Among the most powerful recent methods, [38] combines coherence regularization
(robustness to transformations) and pseudo-labeling (semi-supervised learning).

Our approach proposes an original way to combine pseudo-labeling with CIL by intro-
ducing a specific KD loss ensuring prediction consistency between learning sessions.

3 Pseudo-Labeling for Class incremental learning

The PLCiL method proposed in this paper is based on a standard class incremental paradigm
that relies on rehearsal learning with episodic memory [33]. In the classical setting, the
available labeled samples during a training session only come from the memory and from
the new annotated data. As in [25, 45], we propose to complement this paradigm with
the possibility of using unlabeled data, with the motivation that access to unlabeled data at
training time is easy (inexpensive) and does not violate the principle of exclusive annotation
vocabulary between sessions that typifies class incremental learning.

We present this method in 4 steps: 1) its overview (notations, training sessions, prediction
model), ii) how the data is organized for each training session, iii) the various loss functions
at the heart of our approach, and iv) a discussion and justification of its main components.

3.1 Class Incremental Learning

The class incremental scenario formalizes the incoming labeled data as a stream of subsets
X ={x"X?...,X/,...} where each X/ = {x{,...,x;,} only contains instances of class j.
An incremental learning session uses several subsets pooled together and submitted to the
network for training. Once the session is done, the pool of data is discarded and the associ-
ated classes will not appear again in the data stream. During the i-th session, the model is
trained with the pool T; = {X =D+l xis } with s being the incremental step. For practical
reasons and without loss of generality, we set s fixed during the whole training process.

In our approach, we also have access to another source of data {/ providing unlabeled
images belonging to the same domain as X'. We make the hypothesis that ¢/ is available to
the process with no restriction at any time, although in practice only a limited quantity of
data can be exploited during each learning session.

At each session i, the learning process uses a deep neural network with parameters ©;
capable of predicting the class probability for any element y € J; = {y,...yixs} and any
input sample x € R": p(y = jlx) = fJ’: (x;®;). The DNN consists in a convolutional part with
parameters 6;, which can be seen as a feature extractor ¢(x,6;) : R" — R?, followed by a
fully connected layer classifier with parameters w; € IR?*(>) At each session, the model
is initialized with the previous set of parameters ®;_; = (6,_1,w;_1). s outputs are added to
the single-head classifier while the encoder keeps the same parameter structure in 6;.

3.2 Buffer management and training data

The training data at each session comes from four different sources: the pool of annotated
data T;, the unlabeled data I/, the rehearsal buffer 5 and a data augmentation process.
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Memory Buffer B Its role is to store old annotated samples to mimic an episodic mem-
ory. It is characterized by a hyperparameter K that defines the number of stored samples.
During the learning process, we use random selection to pick the exemplars while ensuring
the balance between classes, i.e. after the i-th session, 3 contains L%J exemplars per class.

Data Augmentation We will see in the next section that our approach makes use of the
generation of pseudo-labels for non-annotated images. This mechanism is based on the idea
that images must keep the same pseudo-labels even when a transformation is applied to them.

We define two types of possible transformations: strong and weak, denoted respectively
as A(.) and a(.). In practice, our weak transformations consist of random horizontal flips
and translations, as it is practiced in most representation learning methods [33, 41]. Our
strong transformations strictly follow the implementation of [38]: they include transforma-
tions such as cutout, translation, rotation, color and brightness adjustment, etc. and use the
CTAugment sampling strategy described in [3]. The complete list of augmentations is pro-
vided in appendix D along with an ablation evaluating the combination of both weak and
strong augmentations for consistency regularization.

3.3 Learning process

The parameters ®; are learned by stochastic gradient descent (SGD) at each session i. As is
standard when applying SGD, each parameter update step makes use of a mini-batch of data
which is randomly sampled at each step. In the semi-supervised scheme proposed in our
approach, such a mini-batch § is made of two types of data: a subset S; containing B labeled
images sampled from 7; U B and another subset S, composed of uB images from I/ where
is a scalar hyperparameter.

The proposed PLCiL algorithm relies on the optimization of 3 combined losses targeting
3 different objectives: i) supervision coming from the novel labeled data, ii) consistency
regularization using pseudo-labels automatically generated on the unlabeled data, iii) self-
supervised knowledge distillation adding extra regularization. We describe these 3 losses
in the following, removing the session number i in the notations when its reference is not
necessary. The overall training process is illustrated in Figure 1.
Supervised loss /y,p. Its role is to use labeled data to learn the model. To improve robustness,
a data augmentation step is introduced using a weak transformation ¢. The supervised signal
is back propagated to the network using the standard cross-entropy loss between the output
of the DNN and the true labels. It can be expressed as:

=3 L HO/(@(x):0)) (1)

(x.y)€ES)

where f(x;®) € R is the predicted class distribution given an input x, |)| is the number
of classes considered in the current session. H is the cross-entropy defined by:

H(y, f(o(x);0)) = = ) yjlog(fj(o(x);:©)) )

jey

where y is a one-hot encoding of the true class label.

Self-Supervised loss /gs. Its role is to regularize the image representations by mimicking
true annotation using pseudo-labels on unlabeled data u from S, and two levels of image
transformations: weak and strong. A weakly transformed data o (u) is first fed to the DNN.
If the model is confident enough on its output (according to a threshold 7 on the scores), this
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prediction is used as a pseudo-label for a cross-entropy loss on the strongly augmented image
A(u). Given the prediction on weakly augmented data g, = f(a(u),®) and the pseudo-label
g, = argmax(q, ), the resulting self-supervised loss is:

1
lselt = ﬁ Z ]]-max(qu)>TH(un7f(A(u);(ai)) 3

ueSy,

Distillation loss /4. Distillation is used to ensure prediction consistency between sessions
and is thus expected to lower forgetting. We again use pseudo-labeling with confidence
thresholding but with the difference that the pseudo-labels are generated using the model
from the previous session f(x;®;_1). Let goig = f(0t(u),0;—1) and §ojg = argmax(golq)
be respectively the prediction and the associated pseudo-label at the previous session. The
knowledge distillation loss is defined as:

1 A
ka=— Z ]lmax(%ld)>‘tH(CI01d,f(-A(u);Gi)) @
lJ’B ues,

Note that in our approach, /4 is computed only on unlabeled samples.
Total loss. PLCiL combines the 3 training objectives during the optimization process:

loss = lsup + A (Isett + N lia) (5)
with n = D‘}J’; |'| the ratio between the number of classes learned by the old model and the
current number of classes. This scalar is used in'[26, 41, 46] to balance the distillation loss.
Note that with the assumption of s constant, n = % A is a scalar hyper-parameter balancing
supervision and self-supervision.

3.4 Discussion

The design of our algorithm was guided by 3 key objectives: i) the use of additional unlabeled
data to improve and make the learned representations more stable, due to the visual diversity
they provide; ii) the use of unlabeled data to add self-regularization to the classification
head; iii) the use of pseudo-labels, generated by the model of the previous session to distill
knowledge between incremental steps, adding additional regularization.

One of our main contributions is therefore knowledge distillation via unlabeled data.
This is related to consistency regularization by matching the distribution of outputs of the
two models (the old and the new one), while in related work KD is usually based on soft
sharpening [26]. Pseudo-labeling KD is very specific to our approach as we use distillation
on unlabeled samples: a confidence threshold allows to select the nature of the distilled
knowledge, retaining only the relevant examples, while classical distillation [25, 41, 45, 46]
blindly transfers a fraction (temperature parameter) of the whole knowledge contained in all
examples. This, together with the fact that the classification head grows with each training
session, makes our problem very different from that of FixMatch [38].

The argmax-based distillation loss /x4, defined in Eq. (4), takes advantage of both the un-
labeled mini-batch S, and the old stored model f(x;®;_1). In addition to the self-supervision
loss (Ise1r) Which regularizes the model as such, /x4 enforces the consistency between sessions
(i.e., between ®;_; and ;).

During the learning process, the model of the previous session is expert for the classes
already seen. During a new session it can produce pseudo-labels for unlabeled images. In
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practice, even if these images come from categories never seen, they have links with the
categories seen because of the selection process (application of transformation and score
thresholding), thus creating bridges between sessions. This is very different from pseudo-
labeling for semi-supervised learning, which concerns already known classes.

This distillation mechanism also makes it possible to properly take into account the in-
crease in the number of outputs of the classification head. The sudden increase in the number
of logits overwhelms the output distribution, due to the softmax activation. Thus, during the
first training epochs of f(x;®;), almost none of the predictions on unlabeled images will ex-
ceed the 7 threshold (usually set close to 1), which means that the pseudo-labeling process is
reset at each session. The KD loss ensures that consistent pseudo-labeling is maintained over
the sessions. The 1 parameter takes into account the fact that the pseudo-labels can change
over time as the number of possible outputs increases. When the teacher (i.e. the previous
model) knows only a few classes, many images are likely to get a wrong pseudo-label, so less
weight is given to the labels provided by the previous model in favor of the pseudo-labeling
done by the current model. However, a ratio 1 close to 1 means that the two models know
about the same amount of classes. We can assume that, in this case, most of the images can
be correctly labeled by both and then give the same credit to lyg and Iggjs.

4 Experiments

We experimentally validated our method on the 2 datasets commonly used to evaluate class
incremental methods, namely CIFAR-100 [24] and ImageNet-100 [35]. ImageNet-100 is a
subset of ImageNet-1000 where only 100 classes are considered (same classes as [5, 33]).

Evaluation is done using the standard incremental accuracy metric: the model is tested
at the end of each session on all the classes seen so far. The Last Accuracy is measured on
all classes once the class incremental process is completed, and the Average Accuracy is the
mean of all incremental accuracies, excluding the first session which cannot be considered
as incremental. For ImageNet experiments, we reported the top-5 accuracy. We averaged 3
runs for CIFAR-100 and 1 for ImageNet, as it is commonly done in the literature [41, 46].

Note that exploiting additional unlabeled data — which is the main objective of the pro-
posed approach — is not directly feasible with existing methods since they are designed to
work under full supervision. Only DMC+ [45] is designed to work under the same scenario.
Thus, the results, more than a direct raw comparison between the methods, should be seen
as a showcase of the advantages of using semi-supervision when training a CIL model.

We nevertheless compare our method to the following (fully supervised) rehearsal-based
solutions which are known to works in large scale CIL scenarios: GDumb [30], iCaRL [33],
BiC [41], Weight Aligning (WA) [46] and, as mentioned above, with the semi-supervised
DMC+ method [45]. To give fully supervised methods a fairer chance, we propose some ex-
periments in which they are pre-trained with the same unlabeled data. We have re-implemented
all the competing methods so as to have exactly the same backbone network and the same DL,
framework for all the methods being compared. Due to encountered difficulties in reproduc-
ing Global Distillation (GD) [25] and its costly requirements for unlabeled data sampling,
we directly report results from the original paper when possible.

All methods are tested using the same DNN : a Wide-ResNet-28-8 [43] (WRN28-8) for
CIFAR and a ResNet-18 [16] for ImageNet. For reference, WRN28-8 achieves 82.8% on
CIFAR-100 and ResNet-18 top-5 accuracy on ImageNet-100 is 94.4%. All hyperparameters
used are detailed in appendix A.1 with an in depth study of the sensitivity of y, T and 4
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Number of classes

*Results from [25] with WRN16-2 backbone and . .
Tiny Images (30M images) as unlabeled data. Figure 2: Plot of incremental accuracy over the suc-

Table 1: CIL comparison on CIFAR-  cessive sessions on CIFAR-100-full. Best viewed in
100-full. PDF.

Method CIFAR-100-20% ‘ ImageNet-100-10%
Last (%) Avg (%) ‘ Last (%) Avg (%) ‘ Last (%) Avg (%) ‘ Last (%) Avg (%)
Random Init ‘ RotNet Init ‘ Random Init ‘ RotNet Init

GDumb [30] 28.2 422 25.3 40.4 40.6 59.6 43.7 62.0
iCaRL [33] 42.7 48.9 439 51.1 45.4 57.8 51.9 59.5
BiC [41] 43.3 49.8 43.5 57.3 50.7 62.4 52.2 68.8
WA [46] 40.5 49.7 45.5 55.4 30.2 54.7 40.9 64.5
DMC+ [45] 36.4 42.8 39.3 49.8 56.2 68.1 57.5 69.6
Ours 59.8 66.5 59.5 67.6 61.3 73.8 61.2 75.0

Table 2: Experiments with fewer labels available: CIFAR-100-20% and ImageNet-100-10%.

in appendix C. For CIFAR-100, WRN28-8 contains many more parameters than ResNet-32
commonly used by CIL methods. This choice of backbone is discussed in appendix A.2.

4.1 Class Incremental Results

We conducted experiments following the standard class incremental protocol [5, 33] on
CIFAR-100. We set s = 10, i.e. 10 sessions of 10 classes. The memory size for rehearsal
K is set to 2000. Since we use the whole labeled dataset here, we refer to this experimental
setting as CIFAR-100-full. For DMC+ and PLCiL, we emulate an unlabeled data stream by
randomly sampling 100K unlabeled images from ImageNet-1000 (subsampled to 32 x 32).

The results obtained are available in Table 1. They show the value of exploiting unla-
beled data in a joint CIL framework. Indeed, our PLCiL method consistently outperforms
other state-of-the-art methods on CIFAR-100-full, gaining +5.6% on final accuracy. In the
following section, we demonstrate that the semi-supervised nature of our method is able to
address even more challenging scenarios where less supervision is available.
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- Loss Last (%) Avg (%)
Scenario Last (%) Avg (%) o a1 598
a. ImageNet-900 61.3 73.8 Lyup + AN kg 61.9 63.9
b. ImageNet-100 76.9 83.3 Lup + Alsery 50.3 65.15
c. ImageNet-1000 65.1 76.2 Laup + Alsetf +Nlka) 61.5 74.0
d. Places365 59.6 72.7 sup + ALset f + Mstanara) 52.0 65.6

lsup +A'(lsaft + nlstandkd) 50.9 63.4

Table 3: Class incremental performance
on ImageNet-100-10% with 4 different

unlabeled datasets. Table 4: CIL on CIFAR-100-full with only

specific components of the loss enabled.

4.2 Semi-Supervised Class Incremental Results

The following experiments study the behavior of our method in scenarios even closer to the
non semi-supervised scenarios: only a very limited set of labeled data is available, while a
large amount of cheap unlabeled data is accessible.

Following this principle, we keep the previous settings with s = 10 but reduce the size
of the labeled dataset. For CIFAR-100-20%, we randomly pick 100 samples per class out of
the 500, while for ImageNet-100-10%, 130 labeled samples per class are retained. This is in
line with the amount of labels commonly used in semi-supervised works [38]. The memory
budget remains unchanged with K = 2000.

The process of collecting the unlabeled data is the same as before: we sample 100,000
data from ImageNet-1000 at the beginning of each session. To avoid any data leakage,
images belonging to classes learned incrementally are removed from the unlabeled data.

Since this setting is very difficult for fully supervised methods due to the scarcity of data,
we also compare with a self-supervised initialization using the same amount of unlabeled
data (1M images). WRN28-8 and ResNet-18 were trained using RotNet [12] on ImageNet-
1000 (with classes to be learned incrementally excluded). Self-supervised pre-training is the
most immediate way to allow fully supervised methods to access as much unlabeled data as
PLCiL or DMC+.

The results are presented in Table 2. The lack of data is clearly perceptible for supervised
approaches and only GDumb is stable due to the fact that its performance only depends on
the buffer size. Meanwhile, PLCiL maintains the level of performance obtained during the
first protocol, proving that in scenarios with very few labels, our method can efficiently ex-
ploit unlabeled data. Although the representations obtained by self-supervision are better,
the exploitation of unlabeled data throughout is more efficient with PLCiL, which is outper-
forming all pretrained fully supervised methods.

PLCIiL is consistently better than DMC+, which however exploits the same quantity
of data as PLCiL. We believe this is because DMC+ only exploits unlabeled data to dis-
till knowledge from a learned model with full supervision. From the plasticity-stability
dilemma, such approach focuses on leveraging unlabeled data to improve stability. The per-
formance on new classes is dependent on the fully supervised training phase of the teacher
model. While PLCIL has a similar behavior with [, it also aims to improve plasticity by
also implementing self-supervised representation learning with [, and its data augmenta-
tion strategy. The ablation study gives more details on the contribution of each loss.
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4.3 Ablation study

Impact of the unlabeled data source. In the experiments reported in tables 1 and 2, we use
an unlabeled dataset which is semantically similar to the target while excluding all samples
belonging to the learned classes (as it is common in self-supervised literature). This emulates
an application where both the unlabeled data ¢/ and labeled data X" are collected from the
same environment.

In order to evaluate the influence of the unlabeled source, we repeat the same experiment
on ImageNet-100-10% with random initialization using 4 different unlabeled datasets for {/:
(a) samples from the remaining 900 classes as in section 4.2. (b) samples from the remaining
images of ImageNet-100 (which is feasible since only 10% of the labeled images are used
in X). (c) samples from all unused images from ImageNet-1000 so that ¢/ contains about
one tenth of images belonging to classes in X" using uniform sampling. (d) samples from a
semantically unrelated dataset (Places-365 [47]).

Results are presented in Table 3. (c) shows that a reasonable class leakage between U
and X is efficiently leveraged by our model, improving the performance from our baseline
(a). We also tried the idealistic scenario of (b) with the exact same classes in both dataset.
This provides an upper bound of our method given a fully related unlabeled dataset. At last,
using a semantically unrelated dataset in (d) slightly lowers the performance compared to (a)
but still outperforms the other approaches shown in table 2.

Contribution of each loss component We ran several variants of PLCiL on CIFAR-100-
full to evaluate the contribution of each loss term (see Table 4). We noticed two complemen-
tary behaviors when ;4 and Iy are used separately. The version with pseudo-labeling KD
focuses on the stability of the model, keeping the most consistent accuracy from session to
session and achieves the best final accuracy despite a lower average. This is due to the fact
that it struggles to learn new classes, especially during the early stages where the proportion
of old classes is low, making KD less relevant. The version with only /s enhances the plas-
ticity of the model, allowing to learn the new classes with better accuracy as it is shown in the
first sessions. However, this variant still lacks regularization to alleviate the catastrophic for-
getting during the later stages. By combining both, PLCiL optimizes the plasticity-stability
trade-off and gives satisfactory results during all sessions. The full version of Table 4 with
accuracy at all sessions is provided in Appendix B.1.

Efficiency of Pseudo-Labeling for Knowledge Distillation. We replaced our /; by a
standard KD, as in [41, 46], but still applied on unlabeled data only. The results are given in
the penultimate line of Table 4. Standard KD (/y4,414) has little or no effect and gives results
similar to BiC and WA. This comparison highlights the efficiency of our custom distillation
with only unlabeled data and pseudo-labeling.

We also experimented with the removing of the Pseudo-Labeling step. As for KD, the
soft alternative consists in using directly the output distribution as target. Using a similar loss
to the standard distillation I, 7, we apply consistency regularization between weakly and
strongly augmented images. In the last line of Table 4 with both ¢ and lggnara, i.€. with
the thresholding removed in all losses, the performance further drop. This result validates
the usefulness of a hard thresholding for leveraging unlabeled data.
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5 Conclusion

We introduce a simple class incremental method combining learning by rehearsal and self-
supervised learning that takes advantage of complementary unlabeled data during the learn-
ing process. With this simple approach, we demonstrate that semi-supervision is a valuable
aid to the problems of catastrophic forgetting and scarcity of data at training time. Ex-
perimental validation on both CIFAR-100 and ImageNet-100 shows that PLCiL has better
learning capacities than existing methods, thanks to finer and more stable representations.

Acknowledgments. Frederic Jurie is partly supported by ANR grant #ANR-19-CHIA-0017.
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A Implementation details

A.1 Training details

In this section, we provide all details needed for training the PLCiL. All parameters were
selected through cross-validation.

On CIFAR-100, each session has 150 epochs. The labeled mini-batch size B is 32 with
1 = 7. The confidence threshold 7 is set to 0.8 and A to 1. On ImageNet-100, training takes
70 epochs per session and uses the following set of parameters: {B=32,u=7,7=0.7,A =
3}

All experiments are trained with SGD. The learning rate is initialized to 0.03 with Nes-
terov momentum set to 0.9. We use a weight decay of 1074, a learning rate decay with
cosine annealing and warm restart [28] with an initial period Tp = 10 multiplied by a factor
Tuir = 2 after each restart.

The sensitivity of the main hyperparameters , T and A are detailed in the following
Appendix C. In particular, ¢ controls the ratio unlabeled/labeled data of each batch. Our
experiments have shown that a larger u is generally better at the expense of increased com-
putational costs. We kept u quite low so our PLCiL could run on limited hardware with
computation time similar to the other methods. 7 and A control the pseudo-labeling process
and were tuned for each dataset.

A.2 Continual Training of large DNNs

Our experimentation on CIFAR-100 uses a WRN-28-8 backbone architecture ( 23M train-
able parameters), as [38]. Incidentally, self-supervision — or semi-supervision — is used to
train large DNNs when the application is data-scarce. Those models, and even larger ones
with hundreds of millions of weights, are now prevailing on classification benchmarks.

Despite that, most CL methods are only evaluated on smaller DNNGs: e.g. ResNet-32 for
CIFAR with only 460K parameters, far from state-of-the-art accuracy in batch training. This
questions the quality of the representation that such small models can learn and therefore,
their plasticity potential. For reference, the batch accuracy is 80.6% for WRN28-8 and
72.3% for ResNet-32.

We have conducted more experiments on CIFAR-100-full, similar to those of Section 4.1
but with a smaller ResNet-32, to observe the influence of the size of the network. We present
performance comparison between these two backbones in Table 5.

With the ResNet-32, our PLCiL falls behind the compared state-of-the-art methods that
were designed with this particular backbone. However, our purpose is to see how the meth-
ods scale to larger models. Apart from WA, all the methods become more accurate with
larger models. The gap stands out with our method with an overall +12.4% obtained when
using a larger architecture. Using WRN28-8 instead of ResNet-32 seems less profitable to
other methods, and even damages the accuracy of WA. This can be justified by the limited
amount of data they can use at each session, making it harder to learn a large number of
weights. Our PLCiL addresses this issue and makes larger architectures trainable thanks to
the extensive visual diversity submitted to the model through the self-supervised signal.
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Method ResNet-32 WRN28-8
Last (%) Avg (%) | Last (%) Avg (%)

GDumb [30] 20.7 35.0 27.8 42.0
iCaRL [33] 47.1 57.9 53.9 63.9
BiC [41] 50.8 62.7 559 67.1
WA [46] 52.1 65.6 50.8 64.4
DMC+ [45] 43.9 58.4 50.4 62.8
Ours 46.9 62.1 61.5 74.0

Table 5: Comparison between all tested approaches on CIFAR-100-full with two backbones:
ResNet-32 (460K parameters) and WRIN28-8 (24M parameters).

loss 10 20 30 40 S50 60 70 80 90 100 Avgacc
Lyup 917 822 742 660 629 583 534 509 464 441 598
Lyup + AN la 917 476 59.1 689 715 687 67.6 661 635 619 639
Loup + Myers 917 856 787 721 617 63.6 595 562 525 503  65.15
Lsup + A (Lser f + Nlia) 917 869 849 8.1 765 739 708 667 638 615 740
Lup + Alsers + Nsrandaraka) 917 842 778 722 666 640 628 576 529 520 656

Table 6: CIL on CIFAR-100-full with only specific components of the loss enabled. Accu-
racy (%) are computed at the end of each session on all the classes learned so far. Average
accuracy does note take into account the first session.

B Complete ablation results

B.1 Contribution of each loss component

In Table 6, we present the full version of Table 2 from our ablation study (Sec. 4.3). With
the accuracy at each session, we can clearly distinguish the difference between li; and Iy s.
The former focuses on stability with a consistent accuracy across all sessions while the later
enhance the learning of new classes during the early steps but is still very prone to forgetting.

These results corroborate the importance of the weight 1 in the complete loss as dis-
cussed in section 3.4. When the proportion of new classes is still high compared to the
number of classes already learned (1) low), the performance is more dependent on the ability
to learn new things, KD should then have a low impact on the training. However, during the
later sessions, when the number of classes to retain is very high compared to the novelty (n
close to 1), KD becomes crucial against the catastrophic forgetting.

C Hyperparameters sensitivity

C.1 Ratio labeled-unlabeled data: u

The hyperparameter u defines the amount of unlabeled data sampled in each mini-batch,
i.e. for each labeled mini-batch size B, our algorithm considers (B unlabeled data. Thus,
increasing p directly increase the visual diversity seen by the model in a self-supervised
fashion. However, this also means larger mini-batches for training which can be timely
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m 0 1 23 7 15 31

Avgacc 59.8 69.2 712 721 740 744 750
Lastacc 44.1 555 589 595 615 622 63.6

Table 7: Comparison of Last Accuracy and Average Accuracy for different values of u on
CIFAR-100-full.

and computationally expensive. In table 7, with B set to 32, we see a consistent increase
in performance with larger unlabeled mini-batches. We chose to keep p = 7 for all our
experimentation since it gives satisfactory results and keep the training time and hardware
requirement comparable to others CI methods (e.g. B+ uB gives a total mini-batch size of
256 with u =7 and B = 32). Higher values of i only yield minor improvements despite
being way more costly.

C.2 Selectivity of the threshold 7 and weight of the pseudo-labeling A

In table 8, we display the results for several combination of the hyperparameters 7 and A.
The trends indicate that A should be kept close to 1, meaning that giving too much weight to
the self-supervised part of the loss has a negative impact on the learning of classes.

The PLCIL is less sensitive to the threshold value. For A < 2, our model reach at least
72.6% average accuracy for all 7 tested here. This is due to the fact that our model answer
confidently for the majority of the unlabeled data seen, outputting high values that goes
beyond most threshold values. This is probably due to the curated nature of our unlabeled
data pool (ImageNet) which contains visual information easily transferable to CIFAR (close
domains). We did not happen to experiment on it, but we believe that T could be crucial
to filter noisy information when dealing with non-curated unlabeled data or if the domains
between the labeled and the unlabeled data were further apart.

D Data Augmentation

Our approach makes use of data augmentation strategies to leverage the information provided
by the unlabeled data. In this section, we study the impact of the two types of augmentation
used: weak and strong, and demonstrate that their combination is useful to improve the
performance, especially for large scale datasets and scarce annotations.

D.1 List of Augmentations

In this paper, we used the combination of two sets of augmentation: weak ¢ and strong A.

Weak augmentations consist in random vertical and horizontal translations followed by
an horizontal flip occurring with a probability of 0.5. A resizing is applied when needed in
order to fit the input requirement of the model.

Strong augmentations are applied according to the CTAugment [3] algorithm. It sam-
ples two transformations from the following list of 18: autoconstrast, brightness adjustment,
color adjustment, contrast adjustment, cutout, histogram equalization, pixel inversion, iden-
tity, posterizing, rescaling, rotation, sharpness adjustment, horizontal shear, vertical shear,
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T A ‘ Avg acc (%) Last acc (%)
0.5 1 73.6 61.9
0.5 2 73.5 61.0
0.5 5 71.0 60.9
0.5 7 69.4 58.5
0.5 10 62.2 56.9
0.7 1 73.6 61.7
0.7 2 73.6 61.5
0.7 5 69.6 62.3
0.7 7 69.1 60.8
0.7 10 67.3 57.5
0.8 1 74.7 62.3
0.8 2 74.4 624
0.8 5 73.4 62.3
0.8 7 72.7 59.3
0.8 10 67.3 59.3
0.9 1 72.6 59.3
0.9 2 73.6 61.6
0.9 5 73.4 58.5
0.9 7 72.3 59.4
0.9 10 68.5 50.9

Table 8: Evaluation of the PLCIL for different combinations of T and A. For this experiment,
results are reported on only one permutation of classes instead of the usual 3 runs.
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Augmentation Last (%) Avg (%)
weak + CTAugment 61.5 74.0
weak + weak 2.8 8.4
CTAugment + CTAugment 45.8 62.3
RandAugment + CTAugment 53.8 68.2

Table 9: Class incremental performance for several data argumentation strategies on incre-
mental CIFAR-100-full.

smoothing, solarizing, horizontal translation, vertical translation. Each selected transforma-
tion is applied with a magnitude sampled from a learned range.

D.2 Augmentation Strategies

Pseudo-Labeling allows to regularize the output consistency of the model when using weak
and strong augmentation of the same image. This choice of using both weak and strong
augmentation is similar to [38] and motivated by the ablation study shown in [9, 38].

In this study, we try different combinations of augmentation on the incremental CIFAR-
100 benchmark. We compare the following settings: the standard weak + strong CTAug-
ment, only weak augmentation, only strong augmentation using CTAugment and strong aug-
mentation using RandAugment for Pseudo-Labeling and CTAugment for prediction. Results
are presented in Table 9.

When using only weak augmentation, at each session, the model quickly reaches an
accuracy close to 100% on the training data but shows very bad results on the validation set.
This behavior suggests an overfitting situation. Strong augmentation with either CTAugment
or RandAugment also yields lower performance compared to the original setting. In [38],
the authors mentioned the fact that their model trained with only strong augmentations did
not converge. Our small ablation study corroborates the findings of [9, 38]: mixing two
families of augmentation is essential for consistency regularization and generating labels
from weakly augmented data is more consistent for predicting pseudo-labels.

D.3 Impact of Strong Augmentation on Concurrent Methods

In the main experiments, we evaluate each method given the optimization and parameters
provided in the original papers or code repository. Each of these methods preprocess their
data using random translation and random horizontal flip which is the same as the weak
augment used in our approach.

Since strong augmentation is a core component of the PLCiL, we also evaluate here
if other methods can benefit from a wider variety of image transformations. In table 10,
we report the performance of each method on the 3 benchmarks of our study using strong
augmentation.

The results show that strong augmentation has mitigated results on the other methods.
GDumb and WA are significantly improved on all 3 datasets. BiC and iCaRL on the other
hand have some inconsistencies which can lead to a drop in accuracy on some benchmarks.
For instance, iCaRL reaches top performance on CIFAR-100-full with strong augmentation,
even outclassing our PLCIL in final accuracy, but has the opposite behavior on ImageNet-
100-10% where the performance is strongly lowered. DMC+ is the most negatively impacted
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Weak Augment ‘ Strong Augment

Method Last (%) Avg (%) | Last (%) Avg (%)
CIFAR-100-full
GDumb [30] 27.8 42.0 33.9 48.4
iCaRL [33] 53.9 63.9 62.3 69.7
BiC [41] 55.9 67.1 46.9 68.9
WA [46] 50.8 64.4 51.3 65.8
DMC+ [45] 50.4 62.8 No Convergence
Ours 61.5 74.0
CIFAR-100-20%
GDumb [30] 28.2 42.2 344 50.4
iCaRL [33] 42.7 48.9 47.2 53.9
BiC [41] 433 49.8 46.9 60.8
WA [46] 40.5 49.7 52.6 62.1
DMC+ [45] 36.4 42.8 No Convergence
Ours 59.8 66.5
ImageNet-100-10%

GDumb [30] 40.6 59.6 49.1 67.0
iCaRL [33] 45.4 57.8 40.1 52.2
BiC [41] 50.7 62.4 38.6 44.9
WA [46] 30.2 54.7 40.0 50.9
DMC+ [45] 56.2 68.1 44.8 63.0
Ours 61.3 73.8

Table 10: Effect of adding strong augmentation in concurrent baselines. The Weak Augment
column reports the performance from the original implementations and are the results pre-
sented in the section 4.1 and 4.2 of our paper. Strong Augment lists all new results obtained
when applying strong augmentations. We also report the performance of our PLCiL, which
uses both, as a reference.

method with an important degradation of its performance. The model did not converge for
both CIFAR-100 experiments.

These experiments suggest that more data augmentation is a simple solution to increase
the incremental performance but does not fit some CI methods which have been mostly
designed with only weak augmentation. The nature of the dataset is also an important factor.
Our PLCIL on the other hand seems to behave consistently with strongly augmented data
across the 3 benchmarks evaluated here.
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