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Abstract Identifying distortions in images and videos
is important and useful in various visual applications,

such as image quality enhancement and assessment tech-
niques. Instead of applying them blindly, these tech-
niques can be applied or adjusted depending on the

type of distortion identified. In this paper, we propose
a deep multi-task learning (MTL) model for identify-
ing the types of distortion in both images and videos,
considering both single and multiple distortions. The

proposed MTL model is composed of one convolutional
neural network (CNN) shared between all tasks and
N parallel classifiers, where each classifier is dedicated

to identify a type of distortion. The proposed archi-
tecture also allows to adjust the number of tasks ac-
cording to the number of distortion types considered,

making the solution scalable. The proposed method has
been evaluated on natural scene images and laparo-
scopic videos databases, each presenting a rich set of
distortions. The experimental results demonstrate that
our model achieves the best performance among the
state-of-art methods for both single and multiple dis-
tortions1.
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1 Introduction

Nowadays, multimedia content, especially images and

videos, is used in a variety of fields and applications in-
cluding healthcare, industry, security and social media.
Images and videos go through several stages before be-

ing received and perceived by an end-user. The process-
ing stages may deteriorate the image quality by intro-
ducing different kinds of distortion. This can occur at
different stages including acquisition, processing, com-

pression, transmission and storing. For instance, dur-
ing acquisition, due to defocus or motion, blur could be
introduced. At the compression stage, lossy compres-

sion codecs like JPEG can introduce a blocking arti-
fact. Moreover, during transmission, some data packets
may be lost, which introduces degradation during im-
age or video reconstruction. Therefore, identifying dis-

tortions can be very useful for image enhancement and
correction techniques. Instead of blindly applying such
techniques [1–9], quality enhancement methods or other
image processing algorithms can be performed or ad-
justed depending on the types of distortion determined.
In addition, a priori knowledge of the type of distortion
improves the performance of image quality assessment
(IQA) metrics. Since such knowledge is essential in de-
termining the most appropriate distortion-specific IQA
metric [10–12], which are in most cases more efficient
in specific distortions than universal metrics. Moreover,
some IQA metrics take advantage of distortion infor-
mation by providing useful information/features to the

IQA algorithm [30–36].

The most common distortions encountered in real-
word applications are blur, noise and blocking artifacts.
Blur can have two forms: motion blur and defocus blur.

The blur distortion can come from different sources,
such as atmospheric turbulence, diffraction, optical de-
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focusing and camera shaking [9]. Noise is a random
variation of brightness or color information and can
be introduced during image/video acquisition, process-
ing and other practices [13]. Finally, blocking distortion
may be more noticeable by lossy compression, especially
at low bit rates. Such annoying distortion is mainly due
to the use of block-based coding approach, where each
block is transformed and quantized independently.

In addition, there are other types of distortions spe-
cific to certain fields of application. In laparoscopic
surgery, for instance, the surgeon uses a tiny camera
to project the internal organs of the abdomen on a
monitor. The displayed laparoscopic videos may be dis-
torted due to side effects of the instruments used or
due to technical problems [14]. Smoke distortion may
be introduced when using diathermy, while uneven il-
lumination distortion may occur if the field of view is
not evenly illuminated [15].

The human visual system (HVS) has the ability to
distinguish the type of distortion in an image/video. It

is therefore very interesting to develop an automatic
method that mimic this HVS’s capability. In recent
years, much efforts have been devoted to the problem
of identifying distortion in images and videos [18–34].

Most studies have focused on identifying a single type
of distortion [26], however, images and videos can suf-
fer from multiple distortions in most real-world appli-

cations [38], which is more challenging to address given
the complex interactions and masking effect among dis-
tortions.

Considering the importance of identifying image and
video distortions, in this paper, we propose a novel

approach that performs the multi-distortion identifica-
tion/classification task by decomposing it into several
sub-tasks, where each sub-task is responsible for identi-
fying a single type of distortion. Our proposed method
is a deep multi-task learning (MTL) model that ef-
ficiently and accurately classifies single and multiple
distortions. It consists of a pre-trained CNN shared

between all tasks and N separate parallel fully con-
nected (FC) neural networks, where each FC neural
network is responsible for identifying a specific type of
distortion. The proposed method has been evaluated on
natural scene image databases including popular IQA
databases. Furthermore, an evaluation on laparoscopic
videos database was conducted to show the efficiency
and adaptability of our proposed framework to differ-
ent applications.

The rest of this paper is organized as follows. In
Section 2, we give an overview on distortion identifica-
tion techniques. Section 3 provides a full description of

the proposed method. In Section 4, the experimental

results are presented and analyzed. Finally, Section 5
concludes the paper.

2 Related Work

In this section, we briefly review some of the previ-
ous works on identifying image distortion. These works
are grouped according to whether the identification of
distortion is considered as a single main task or as a
secondary sub-task of an IQA process.

2.1 Distortion identification as a main task

Praneeth et al. [20] proposed content and perception-
based features for efficient distortion classification, called
as COPDIC. Given an input image, features are derived
from local block level characteristics to classify com-
mon distortion types using local mean removal, divi-
sive normalization followed by natural scene statistics
(NSS) features extraction. Then, a pre-trained multi-
stage support vector machine (SVM) classifier is used

to identify the distortion type of this input image. Im-
age quality metrics can be useful for distortion identi-
fication process by providing the most relevant visual

features to the classifier. Chetouani et al. [18] proposed
to use the output of image quality metrics (IQMs) as
input for an artificial neural networks classifier to deter-

mine the distortion types within a given image. In [19],
Gabor filters are applied to both clean reference and
distorted images, then mean squared error (MSE) is cal-
culated between them, the results represent the features

used by a quadratic bayes normal classifier (QNBC) to
classify the type of distortion present in the distorted
image. However, since these last two described works
use full-reference IQA metrics, they require the pres-
ence of the clean reference image to identify the type
of distortion, which may not be practical in most real-
word applications.

Namhyuk Ahn et al. [21] addressed the problem
of distortion classification in an image without a ref-
erence image using CNNs architectures. In order to
reach convergence quickly, they used pre-trained mod-
els on ImageNet dataset [39] including VGG 16 [40]
and ResNet-101 [41]. They also created a new Flickr-

Distortion dataset to train their model. Mateusz et al.
[22] proposed ensemble learning method composed of
two CNNs for distortion classification. The two CNNs
architectures are similar in terms of number of layers
and layout, but differ in the size and number of pa-
rameters used during the training. Both architectures
contain three convolutional and max pooling layers fol-
lowed by two FC layers. Their proposed solution out-
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performs other SVM-based solutions by more than 10%
in terms of accuracy. Bianco et al. in [23] proposed
to first analyze features extracted from different layers
of different deep neural network (DNN) architectures,
then evaluate their relevance for distortion classification
using clustering. The best features were then used for
the recognition of the type of distortion. The obtained
results showed that deep visual representations can be
exploited even in an unsupervised way to efficiently rec-
ognize various types of image distortion.

2.2 Distortion identification as a secondary task

Distortion identification is useful in the process of IQA,
either by helping to select the most appropriate metric
for quality evaluation or by providing useful informa-
tion about distortions for the metric itself. Therefore,
distortion classification can be included in the process
of IQA for better performance.

Falk et al. [24] proposed to select from a pool of full-
reference IQMs those representing the most relevant

features for each type of distortion. Then, they designed
composite measures for each distortion type based on
a linear combination of the selected features. There-

fore, the quality of distorted image is evaluated and
its distortion type is classified based on the distortion-
specific features. Moorthy et al. [25] demonstrated that
each distortion affects the statistics of natural images

in a characteristic way. Thus, they build a classifier
that can classify a given image into a particular dis-
tortion category solely on the basis of distorted image

statistics (DIS) which are an extension of NSS. Based
on this study, they proposed two no-reference IQMs:
blind image quality index (BIQI) [26] and distortion
identification-based image verity and integrity evalua-
tion (DIIVINE) [27], which are based on a two-stages
framework involving a distortion identification followed
by a distortion-specific quality assessment. Peng et al.

[28] also proposed a two-stage scheme for quality as-
sessment. At the first stage, the image distortion type
is predicted using a SVM. At the second stage, based
on knowledge of distortion type, a fusion of three ex-
isting IQMs is performed using the K-nearest neigh-
bors (KNN) regression. Chetouani et al. [29] proposed
a framework for estimating image quality based on the

assumption that there is no universal IQM that can
efficiently estimate image quality across all distortion
types. They proposed a method based on linear discrim-
inant analysis (LDA) to classify the distortions before
estimating image quality, where the classification stage
uses quality scores derived from different IQMs applied
on the reference image and its degraded version. The
classification of distortions helps to determine the types

of IQM that should be considered for the quality evalu-
ation stage. In the same vein, Zohaib et al. proposed in
[15] a distortion identification step followed by the qual-
ity evaluation for laparoscopic video. They used four
distortion-specific classification methods, which consist
of no-reference distortion-specific IQMs.

Considering the great successes achieved by deep
CNN on various computer vision tasks, it was natu-
ral to adopt it for IQA and distortion identification
tasks. Kang et al. [32] proposed a CNN model that
simultaneously estimates image quality and identifies
the type of distortion. The baseline structure of the
proposed model for quality assessment, called as IQA-
CNN, has one convolutional layer, one pooling layer,
two FC layers and one output layer. It was then ex-
tended for the distortion classification by adding a clas-
sification layer and was referred to as IQA-CNN+ and
later enhanced to IQA-CNN++ [42]. In this case, the
quality estimation is considered as the main task while
distortion identification as the secondary task. Wang et

al. [33] also proposed a CNN-based approach to iden-
tify the type of distortion and assess the quality with-
out the clean reference image. The parameters of the

proposed CNN model were learned to fit both tasks.
Kede et al. [34] proposed a CNN-based IQM which con-
sists of two sub-networks: 1) a distortion identification
network and 2) a quality prediction network, sharing

the early layers. First, the distortion identification sub-
network is trained, then, the quality prediction sub-
network is trained starting from the pre-trained early

layers and the output of the first sub-network. The same
idea has been followed in [35] and [36], for instance
Huang et al. [35] proposed a full reference IQM named

mask gated convolutional network (MGCN) that eval-
uates the image quality score and identifies distortions
simultaneously. In the MGCN metric, an encoder block
is designed to encode the transformation between ref-
erence and distorted images as low level features. Next,
the abstractor extracts high level features from the low
level features. Finally, the high level features are ex-
ploited by the predictor which predicts the image qual-
ity score and classifies distortions simultaneously.

The above described works have investigated dis-
tortion identification and achieved considerable results.
However, the proposed solutions suffer from three ma-
jor drawbacks. First, most of the proposed solutions
are knowledge-driven approaches, which means that the
feature descriptors must be designed manually such as:
NSS, DIS or even IQMs. Second, in many methods, the
classification of distortion is seen as a secondary task
or as a sub-task of IQA, while it is also important to
design a standalone distortion identification algorithm

considering its utility in various applications, including
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image enhancement and restoration techniques. Third,
the proposed classifiers are designed to consider a lim-
ited and predefined number of distortions, which makes
them not scalable and not general-purpose distortion
classifiers.

Our proposed solution has been designed to over-
come these drawbacks with the following main contri-
butions:

– Our proposed method is a data-driven approach,
which is based on a CNN model trained in an end-
to-end manner responsible for extracting the most
relevant features without any hand-engineering.

– Our proposed solution only performs distortion iden-
tification as the main and unique task. The proposed
MTL approach classifies several distortion types by
performing several tasks, where each task is respon-
sible for identifying a single and specific distortion
type.

– The number of types of distortion considered by
our proposed MTL model is adjustable and scalable
with respect to both data and application.

3 Proposed Method

The aim of our work is to develop a robust and reli-

able method for the identification of distortions without
needing to access the clean reference image. To achieve
that, we propose a deep multi-task learning (MTL) ap-
proach that identifies and classifies distortions in both

images and videos. We first give a formal definition of
MTL and the notations used, then we describe in detail
our proposed method.

3.1 Multi-task learning: definition and notations

Let us consider N related learning tasks {Ti}Ni=1, MTL

aims to enhance the learning of a model M of task Ti
by exploiting the knowledge contained in all or a subset
of the N tasks [16]. In the case of supervised learning, a

task Ti is associated to a training dataset Di composed
of M training samples Di = {zij , yij}Mj=1 with zij ∈ Rdi is
the jth training sample of dimension di and yij its label.

The training dataset of a task Ti can be represented by
a matrix Zi = {zi1, . . . ,ziM} ∈ RM×di . We can distin-
guish homogeneous MTL that, in opposite to heteroge-
neous MTL, consists in tasks of one type i.e., classifi-
cation or regression [44]. On the other hand, according
to the dimension di of the feature space of input sam-
ples i, we can distinguish heterogeneous-feature MTL

from homogeneous-feature MTL implying that the in-
put samples have the same dimension di = dj , ∀i 6= j.

In this paper, our distortion identification problem is
modeled as a homogeneous MTL for classification tasks
and homogeneous-feature MTL with the same input
image dimension or patches dimension. Researchers in
MTL address three main issues of when to share, what
to share, and how to share [16]. To answer the first is-
sue of when to share, MTL is motivated in this paper
by the strong relation among distortions identification
in a single input image. The what to share and how to
share, specifying the knowledge to share and the con-
crete way to share the knowledge, respectively, are both
addressed in detail in the next sections.

3.2 Proposed multi-task learning model

Our proposed model M takes an image I as input and
predicts its distortion types. The proposed model per-
forms N tasks, where each task is responsible for iden-

tifying a specific distortion type. Therefore, given an
input image I, our model outputs N values, where each
value represents the probability that I contains a cer-
tain distortion type. The proposed model can be for-

mulated as follows:

{p̂1, p̂2, ..., p̂N} =M(I), (1)

where p̂i denotes the probability of the presence of a
distortion di in the image I estimated by the modelM
with i ∈ {1, . . . , N}, and N represents the total number

of distortion types considered and therefore the number
of tasks performed by our MTL model.

Figure 1 shows the flowchart of the proposed ap-

proach. The model M is based on MTL framework
which typically consists of a shared part that branches
out into task-specific heads [43]. The shared part is a

feature extractor fθ(I) that takes as input an image I
and outputs a vector of features x ∈ RF , with F the
number of features and θ represents the parameters of
the shared CNN. The task-specific heads are classifiers
gφi(x) that takes as input the same vector of features
x but each identifies a specific type of distortion, where
φi stands for the parameters of the classifier. The fea-
ture extractor fθ(I) consists of a pre-trained CNN on
ImageNet dataset [39], while all classifiers consist of a
network of FC layers randomly initialized.

Overall, MTL aims to improve the generalization
performance of multiple prediction tasks by appropri-
ately sharing relevant information across them. Given

that the distortion identification is performed on the
same input and CNNs are known to be efficient in ex-
tracting the most salient and relevant features, we chose
to share the CNN among all tasks, so the features in
the shared layers do not need to be recalculated for the
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Fig. 1 The framework of our proposed approach for identi-
fying image distortions.

different tasks. However, since each distortion can be
identified based on the presence or absence of certain
features, the classifiers are kept task-specific. The ob-
jective of each classifier is to take the results from the
shared CNN and use them to classify the image into a
distortion-class. Thus, each network of FC layers will
compile the data extracted by the shared CNN to form

the final output representing a probability.

The pre-trained CNN used in the feature extraction

block is DenseNet 169 [45], for which we obtained the
best results, however, any other CNN architecture can
be considered. In the DenseNet 169 network, in each

layer, information is obtained from all preceding layers,
i.e., feature maps from all previous layers are concate-
nated, processed and passed to all subsequent layers.
This technique encourages the reuse of features, reduce

the number of parameters and strengthen the features
propagation. DenseNet 169 architecture consists of con-
volutional layers, pooling layers, dense blocks, transi-

tion blocks and FC layers, as shown in Figure 2. A
dense block consists of 1 × 1 convolution layer to re-
duce feature maps followed by 3 × 3 convolution layer
to improve the computational efficiency. Between each
two contiguous dense blocks, there is a transition block
which consists of 1× 1 convolution layer and a pooling
layer to reduce the number of feature maps.

In order to use the DenseNet 169 as feature extrac-
tor, the last dense layers are removed and the output

of the last dense block is flattened to form a vector of
features x. Given an input image I, the shared layers
fθ(I) responsible for extracting relevant features out-
puts a vector of features x

x = fθ(I). (2)

The number of tasks that our model performs is
fixed according to the number of distortion types to be
detected. If N types of distortion are addressed in the
considered application, our model performs N binary
classification tasks using N different classifiers. Each

classifier gφi
(x) is composed of two stacked FC lay-

ers of size 512 and an output layer of size 1. The last
output layer of each classifier has a sigmoid activation
layer that outputs values between [0, 1] representing the
probability p̂i indicating the presence of a distortion di
in the input image I

p̂i = gφi
(x), ∀i ∈ {1, . . . , N}. (3)

The end-to-end model is illustrated in Figure 2 and
can also be formulated as follows:

{p̂1, . . . , p̂N} = {gφ1
◦ fθ(I), . . . , gφN

◦ fθ(I)}. (4)

3.3 Input and output processing

The image datasets adopted in this study are not large
enough to train the deep DenseNet 169 from scratch,
hence the choice of using a pre-trained DenseNet 169 on

ImageNet. To further compensate the lack of training
samples while respecting input dimensions, we chose to
perform patch-wise training. In patch-wise training, the

CNN is trained on a small patch of the image instead
of the whole image. Therefore, given an input image
I, a fixed number of patches of size 224 × 224 is ex-
tracted over which our MTL model loops. Each patch

is treated individually, this means that for each patch
k, each classification block gφi

(x) outputs a probability
p̂i,k indicating the presence of a specific distortion di in

this patch. An average of all predictions is computed
and rounded at the end of each classifier to label the
image as follows:

p̂i =
1

K

K∑
k=1

p̂i,k, (5)

where K denotes the total number of patches extracted
from image I.

3.4 Loss function

In multi-task learning, a joint loss function must be
defined for several tasks. While a single task has a well-
defined loss function, multiple tasks result in multiple
losses. Considering a MTL model that performsN tasks
with task-specific loss functions noted as Li and task-
specific weights noted as ωi, the loss function of the
MTL model is expressed as follows:

Ltotal =
1

N

N∑
i=1

ωi Li. (6)

All tasks in our case perform a classification, binary
cross-entropy (BCE) is the default loss function to use

Accepted manuscript / Final version



6 Zoubida Ameur et al.

Dense
Block 1

Transition
layer

FC
512

Dense
Block 2

Transition
layer

Dense
Block 3

Transition
layer

Dense
Block 4

FC
512

FC
512

FC
512

FC
512

FC
512

C
on

v

Po
ol

Po
ol

Noise distortion 
identification

JPEG distortion
identification

Blur distortion
identification

C
on

v

Po
ol. . .

C
on

v

C
on

v

C
on

v

C
on

v

Dense Block  Transition layer

Fig. 2 Deep multi-task learning model for the classification of distortions in natural scene images. Given an input image
patch, our MTL model passes the patch through the CNN DenseNet 169 to extract its most relevant features in the form of a
vector that will be fed into the different classifiers, then each classifier (FC layers network) is fed with this vector to output a
value indicating the probability of the presence of a specific distortion.

for binary classification problems where the target val-
ues are in the range of [0, 1]. Thus, we adopted the

task-specific loss function

Li=−
1

M

M∑
m=1

p
(m)
i log(p̂

(m)
i )+(1−p(m)

i )log(1−p̂(m)
i ), (7)

where p
(m)
i is the ground truth label and p̂

(m)
i is the

predicted probability of the distortion di at an image
sample m, while M represents the number of images
per batch.

One of the challenges of jointly learning multiple
tasks is to properly weighting the task-specific loss func-

tions [46, 47]. In our case, since the loss scales are the
same and task importance is the same, a uniform weigh-
ing is considered. The total loss is then an uniform
weight sum of the N loss functions, i.e., each task is
assigned a loss weight of ωi = 1/N, ∀i ∈ {1, . . . , N}.

Since each image consists of K patches, the single
loss function is expressed as follows

Li(pi, p̂i) =− 1

MK

M∑
m=1

K∑
k=1

p
(m)
i,k log

(
p̂
(m)
i,k

)
+(1− p(m)

i,k ) log
(

1− p̂(m)
i,k

)
.

(8)

3.5 Temporal extension

In order to show the efficiency and adaptability of our
proposed method to various and multiple distortion
types encountered in different applications, we also con-
sidered another challenging issue which is distortion

classification in laparoscopic videos. It is important to
note that we addressed this application as part of a

challenge organized in a leading international confer-
ence, for which we obtained the 3rd place in grand chal-

lenge2.

Laparoscopic videos are used in real-time, which re-
quires a real-time distortion classifier. Therefore, we ex-

tended our model to cover the temporal aspect by ap-
plying some modifications to the preprocessing steps
and the architecture of the model. Specifically, in order

to perform classification in real-time, the CNN used as
features extractor which is DenseNet 169 has been sub-
stituted by VGG16 [40], because it is less deep and con-
sequently takes less time in processing the input. In ad-

dition, the task-specific part contains five parallel clas-
sifiers, because the provided laparoscopic video qual-
ity (LVQ) dataset covers five distortion types [15], in-

cluding noise, defocus blur, motion blur, smoke and un-
even illumination. The end-to-end MTL model is then
composed of a shared pre-trained VGG16 followed by
five parallel classifiers each responsible for identifying a

single type of distortion as shown in Figure 3.

For hardware constraints and more precisely the
limits in terms of memory, patch extraction cannot be
done on video frames. Instead, frames extraction is per-
formed which allows to use the model as if it was fed
with input images and at the same time increase the

number of training samples. Since the distortions are
applied to all frames of a given reference video when
building the dataset [15], therefore, frames of the same
video are assigned the same labels. Given an input video
V , a fixed number of frames is extracted then fed into
the MTL model. Each frame is treated individually,

2Real-time Distortion Classification in Laparoscopic
Videos − ICIP 2020 Challenge: https://2020.ieeeicip.

org/challenge/
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Fig. 3 Deep multi-task learning model for the classification of distortions in laparoscopic videos. Given an input video frame,
our MTL model passes the frame through the CNN VGG16 to extract its most relevant feeatures in the form of a vector
that will be fed into the different classifiers, then each classifier (FC layers network) is fed with this vector to output a value
indicating the probability of the presence of a specific distortion.

then an average of all predictions is computed and roun-
ded to label the video.

4 Experiments

In this section, we first introduce the datasets used to
train and evaluate the proposed MTL model. Next, we
evaluate and compare the performance of our model

with respect to state-of-the-art methods on the different
datasets. Finally, we conduct a series of ablation exper-
iments to analyse the behavior of the proposed method.

4.1 Datasets

4.1.1 Natural scene image datasets

In order to evaluate the proposed method on natu-
ral scene images, four publicly available image quality

databases are exploited: KonstanzLin artificially dis-
torted image quality database (KADID-10K) [49],
computational and subjective image quality (CSIQ) [48],
Tampere image dataset (TID2013) [13] and laboratory
for image & video multi distortion (LIVEMD) [37].
KADID-10K contains 81 pristine images of size

512×384, each degraded by 25 distortions at five sever-
ity levels. CSIQ is composed of 866 images that were ob-
tained from 30 clean original images of size
512 × 512 using six distortion types and four to five
severity levels. TID2013 provides 25 reference images of
size 512 × 384 and 3000 distorted images at five levels
of distortion. Unlike KADID-10K, CSIQ and TID2013
datasets, which are single distortion datasets, LIVEMD
is a multiply distorted image dataset, i.e., it contains

Table 1: Features of the considered natural scene image

datasets. All datasets constrain three types of distor-
tion: {blur, noise and JPEG}. Multi-distorted images
of blur-JPEG and blur-noise are also included in the
LIVEMD dataset resulting in five calsses.

Dataset Number of Number of multi-

images classes distortion

KADID-10K [49] 1215 3 %

CSIQ [48] 450 3 %

TID2013 [13] 375 3 %

LIVEMD [37] 405 5 !

distorted images counting multiple distortion types si-
multaneously. LIVEMD dataset [37] contains 15 refer-
ence images from which two subsets of distorted images
are created using three distortion types, including blur,
JPEG and noise. The first subset is obtained by ap-
plying blur followed by JPEG, each at three different
severity levels. In the same way, the second subset is ob-
tained by applying blur followed by noise. This results
in a total of 450 distorted image.

We considered three distortion types that are com-
mon in the three databases: (a) JPEG compression
(JPEG), (b) white noise contamination (noise) and (c)
Gaussian blur (blur). This leads us to use 1215, 450,
375 and 405 images respectively from the KADID-10K,
CSIQ, TID2013 and LIVEMD datasets. Table 1 sum-
marises the main features of the considered natural im-
ages datasets.

Figure 4 illustrates a clean reference image from
LIVEMD dataset and its distorted versions, including
blur, JPEG, noise, blur-JPEG and blur-noise distor-
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(a) Clean image (b) blur (c) JPEG

(d) noise (e) blur-JPEG (f) blur-noise

Fig. 4 A clean reference image and its distorted versions, from LIVEMD database, containing blur, JPEG, noise and combi-
nations of blur-JPEG, blur-noise distortions.

(a) Clean image (b) awgn (c) defocus blur

(d) motion blur (e) smoke (f) uneven illumination

Fig. 5 An example of a frame extracted from laparoscopic video and its distorted versions covering each distortion type in
the LVQ dataset.

tions. As mentioned before, these distortions are the
most common and widely studied types of distortion.

4.1.2 Laparoscopic video dataset

Laparoscopic video quality dataset [15] consists of a to-
tal of 20 reference videos, each of 10 seconds duration.
These videos were extracted from Cholec80 dataset [50].
The selection of videos was made to include maximum
possible variations of scene content and temporal in-
formation. For scene content, ten different categories
were chosen: bleeding, grasping and burning, multiple
instruments, irrigation, clipping, stretching away, cut-
ting, stretching forward, organ extraction and burning.

Each reference video is distorted by five different kinds
of distortion (single or multiple distortions) with four
different levels, resulting in a total of 800 videos. The
resolution of videos is 512× 288 with a 16:9 aspect ra-
tio and a frame-rate of 25 frames per second (FPS).
Figure 5 shows the different types of distortion included
in LVQ dataset. These distortions are the most common
affecting laparoscopic videos.

4.2 Implementation details

For natural scene image datasets, the training is per-
formed with back-propagation using ADAM optimiza-
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tion [51,52] with a learning rate of 0.0001, a 10−6 decay
and momentum of 0.9. A dropout is applied after each
FC layer of size 512 with a rate equals to 0.25. Dropout
is a regularization technique used to reduce overfitting
in artificial neural networks. It consists of randomly ig-
noring some nodes of a given layer during training. This
method forces each node to assume different degrees of
responsibility for the inputs as they are either activated
or dropped out randomly during the training process.
This has the effect of making the training process noisy,
thus avoiding overfitting [53].

For an end-to-end training, the model is trained it-
eratively by back-propagation over 60 epochs. In each
epoch, the training set is divided into batches for batch-
wise optimization. Each mini-batch contains six images
(M = 6), each represented by a fixed number of patches
(K = 4 for CSIQ and TID2013, K = 6 for KADID-10K
and K = 8 for LIVEMD) of size 244×224, thus leading
to an effective batch size of M ×K patches.

For laparoscopic video dataset, in each epoch, the
training set is divided into batches of videos for batch-

wise optimization. Each mini-batch contains 10 videos,
each represented by ten frames (M = 100), thus leading
to the effective batch size ofM×K = 100 frames (K = 1).

4.3 Evaluation procedure

In order to train and evaluate our proposed MTL model,

we randomly split each dataset into two subsets of non
overlapping content, 80% for training and 20% for test-
ing. This procedure is repeated 10 times and the median

of overall accuracy, precision, recall and F1-score values
are reported and used to evaluate the performance of
our model on the test set.

Precision is defined as the number of true positives
(TPs) divided by the number of TPs plus the number
of false positives (FPs) as follows :

precision =
TP

TP + FP
, (9)

in our case, TP is when the model perfectly identifies
the presence of a distortion type. While, FP is when the

model confuses the presence of a distortion type with
another.

Recall is defined as the number of TPs divided by
the number of TPs plus the number of false negatives
(FNs) as follows :

recall =
TP

TP + FN
, (10)

in our case, FN is when the model mistakenly predicts
the absence of a distortion type. Finally, the F1-score

Fig. 6 Classification accuracy with respect to different
threshold values for all considered datasets.

is calculated as follows:

F1-score =
TP

TP + 1
2 (FP + FN)

. (11)

4.4 Experimental Results

4.4.1 Classification threshold

In the proposed model, the last layers are assigned sig-
moid activation functions which make them output a

value between 0 and 1 representing the probability that
an image contains a specific distortion. The decision
for converting the predicted probability into a class la-

bel is governed by a parameter referred to as the deci-
sion threshold, discrimination threshold or simply the
threshold, which typically has a default value of 0.5. In
the case of a binary classification with class labels 0
and 1, values below the threshold are assigned to class
0 and values greater than or equal to the threshold are
assigned to class 1. In our case, our MTL model per-

forms N binary classifications such that each of them
serves to identify a specific type of distortion, so that
0 indicates the absence of distortion, while 1 indicates
its presence. The default threshold may not represent
an optimal interpretation of the predicted probabilities,
so they must always be adapted to the problem under

consideration, and therefore adjust the threshold value
accordingly. Hence, we studied the performance of our
model, in all datasets, according to the values of the
threshold.

Figure 6 shows the accuracy of our classification
model as a function of the threshold. The threshold has
been varied within a range of [0.1, 0.9] with a step of
0.1. The accuracy is then calculated according to this
hard threshold. From this figure, one can notice that
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10 Zoubida Ameur et al.

Table 2: Overall accuracy on single and multi-distortion
image datasets. The top result is highlighted in bold-
face.

Method
Dataset

KADID-10K CSIQ TID2013 LIVEMD

BRISQUE [54] 91.71 80.54 88 88.56

DIIVINE [27] 49.44 56.24 55.28 74.71

IQM-G 90.80 79.57 82.66 88.67

COPDIC [20] 90.57 90.96 88.25 90.64

Mateusz [22] 92.45 91.08 89.32 85.05

Kang [32] 93.64 90.71 92.26 86.14

Kede [34] 98.52 97.03 95 88.57

Golestaneh [36] 97.68 93.67 92.53 95.13

MGCN [35] 96.96 97.10 94.79 88.23

Bianco [23] - 79.60 85.40 90.90

Our model 100 98.88 100 100

our model achieves relatively low performance for very
low or very high threshold values, this is particularly
clear for CSIQ and TID2013 datasets. Because a very
low threshold value makes the model really sensitive,

while a very high threshold value makes it indifferent
for a wide range of probabilities. Our model achieves
its best performance for a threshold value between 0.4

and 0.5. Therefore, a threshold value of 0.5 was adopted
and the results provided below were obtained based on
this threshold value.

4.4.2 Comparison and discussion

The performance of our model is evaluated and com-
pared to ten state-of-the-art methods, including dis-
tortion identification-based image verity and integrity

evaluation (DIIVINE) [27], blind/referenceless image
spatial quality evaluator (BRISQUE) [54], distortion-
specific IQMs, COntent & Perception based features

for DIstortion Classification (COPDIC) [20], Mateusz’s
method [22], Kang’s method [32], Kede’s method [34],
Golestaneh’s method [36], mask gated convolutional net-
work (MGCN) [35] and Bianco’s method [23]. The first

four methods are based on hand-crafted features that
are fed into a SVM classifier. For instance, the third
method (noted as IQM-G) groups three
distortion-specific IQMs, so that each of them quan-
tifies a specific distortion (blur, JPEG and noise) in a
given input image. To quantify blur distortion, an algo-
rithm designed to measure local perceived sharpness in
images relying on both spectral and spatial properties is
used [55]. To quantify JPEG distortion, a no-reference
quality measurement algorithm for JPEG compressed
images is exploited [12]. To quantify noise distortion, a
technique to estimate the noise level proposed in [56] is
adopted. The scores obtained from each of these three

distortion-specific IQMs are used to form a vector of
features that will be introduced in a SVM to perform

the classification of distortion. The remaining six meth-
ods are deep learning-based approaches.

The comparison of our model with state-of-the-art
methods is first performed in terms of accuracy, as re-
ported in Table 2. From this table, we can notice that
our model outperforms all considered methods in all
datasets, this is particularly remarkable for LIVEMD
dataset, which is the most challenging. In addition,
BRISQUE provides fairly good results for a handcrafted
method, while DIIVINE performance is poor on all
datasets. IQM-G method also manages to provide quite
good results on the different datasets, which means that
the three distortion-specific IQMs chosen as feature ex-
tractors are complementary and their combination suc-
ceeds to discriminate the distortion type. Each of the
handcrafted-based methods provides balanced results
on the different datasets, which means that their perfor-
mance is not strongly tied to the content of any dataset.
However, their results generally remain inferior to those
achieved by deep learning-based methods. We can also

notice that the Kede [34] and Golestaneh [36] meth-
ods achieve the best performance among deep learning-
based approaches, but without going beyond the pro-
posed method.

Overall, it can be noted that handcrafted meth-
ods have proven that they can be competitive with

deep learning-based methods if the extracted features
are relevant for distortion identification and adapted to
the datasets. The importance of the feature extraction
step is also well illustrated through the performance

of BRISQUE, DIIVINE and IQM-G methods, since all
of them use a SVM classifier but provide different ac-
curacy, because each one extracts different types and

number of features. The difficulty with such approaches
is choosing features that cover all types of distortion.
However, since our method is a data driven approach,
the selection of distortion-specific features is done auto-
matically across the different towers, i.e., the classifiers
specializing in a single distortion type.

In addition, we computed the precision and recall for
each distortion type separately. Precision for all consid-
ered datasets is reported in Tables 3, 4, 5 and 6, while
recall scores are reported in the diagonal of the normal-

ized confusion matrices plotted in Figure 7. From Table
3, we can notice that our model obtained 100% preci-
sion for all the distortions considered. Likewise, most of
the deep learning-based methods provide good results,
this is due to the fact that KADID-10K is the dataset
with the largest number of distorted images, thus al-
lowing to better learn the features of each distortion
type.

From Table 4, we can notice that our model de-
livered 100% precision for JPEG and noise distortions
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Fig. 7 Confusion matrices on natural scenes image datasets.

on CSIQ dataset, while obtained 96.66% for blur dis-
tortion. Also, IQM-based metric obtained a precision
of 100% for noise distortion on CSIQ dataset, while
provided low performance for blur and JPEG distor-
tions. Moreover, DIIVINE method provided the lowest

Table 3: Precision per distortion type on KADID-10K
dataset. The top result is highlighted in boldface.

Method
Distortion

blur JPEG noise

BRISQUE [54] 87.65 90.5 98.9

DIIVINE [27] 53.65 43.03 50.31

IQM-G 80.75 92.3 100

COPDIC [20] 92.18 87.88 93.04

Mateusz [22] 94.57 90.21 89.95

Kang [32] 96.88 93.47 90.49

Kede [34] 98.54 100 97.06

Golestaneh [36] 98.55 97.71 98.29

Our model 100 100 100

Table 4: Precision per distortion type on CSIQ dataset.
The top result is highlighted in boldface.

Method
Distortion

blur JPEG noise

BRISQUE [54] 83.3 63.33 96.66

DIIVINE [27] 69.83 30.30 68.23

IQM-G 78.12 60.58 100

COPDIC [20] 87.29 91.16 90.41

Mateusz [22] 89.94 94.55 90.75

Kang [32] 91.57 86.46 93.19

Kede [34] 98.50 95.31 94.48

Golestaneh [36] 93.40 95.52 90.96

MGCN [35] 95.61 97.72 97.62

Our model 96.66 100 100

Table 5: Precision per distortion type on TID2013
dataset. The top result is highlighted in boldface.

Method
Distortion

blur JPEG noise

BRISQUE [54] 92.85 75 100

DIIVINE [27] 64.53 49.09 50.87

IQM-G 100 60.71 92.85

COPDIC [20] 90.84 85.27 86.69

Mateusz [22] 85.21 89.50 91.74

Kang [32] 91.63 93.04 90.71

Kede [34] 94.93 96.28 95.29

Golestaneh [36] 94.81 90.36 89.18

MGCN [35] 98.02 91.26 90.89

Our model 100 100 100

performance, whereas BRISQUE performed well except
for JPEG distortion. In addition, Kede [34], Golestaneh
[36] and MGCN [35] methods obtained high and stable
results for all the distortions of CSIQ dataset.

From Table 5, we can observe that some methods
achieved high precision up to 100% for a specific distor-

tion type. This means that features of these methods
are well-designed for a specific distortion type but do
not generalize well to all distortion types. On the other
hand, the proposed method provided very stable results
for all distortion types considered.
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Table 6: Precision per distortion type on LIVEMD
dataset. The top result is highlighted in boldface.

Method
Distortion

blur JPEG noise

BRISQUE [54] 78 91.82 92.18

DIIVINE [27] 88.48 62.17 65.46

IQA-G 80.47 79.04 92.76

COPDIC [20] 85.53 89.61 92.68

Mateusz [22] 82.42 90.34 84.55

Kang [32] 86.05 84.82 88.17

Kede [34] 89.67 85.63 90.28

Golestaneh [36] 93.50 96.57 93.84

MGCN [35] 90.08 84.26 88.22

Our model 100 100 100

Table 7: F1-score for each distortion type on natural
scene image datasets.

Dataset
Distortion

blur JPEG noise

KADID-10K 100 100 100

CSIQ 100 100 98.18

TID2013 100 100 100

LIVEMD 100 100 100

Finally, from Table 6, we can notice a significant de-
crease in performance of all methods, except DIIVINE,

compared to their performance on the other datasets.
Because, LIVEMD dataset contains images with multi-
distortion types making them difficult to recognize. De-
spite this, our model succeed in recognizing perfectly all

types of distortion thanks to the adoption of the MTL
architecture.

4.4.3 Distortion identification confusion

For a complete evaluation of our model, normalized con-
fusion matrices are plotted to discuss mis-classified dis-
tortions. Each row in a confusion matrix represents an

actual label which we call true label, while each column
represents a predicted label. The purpose behind plot-
ting confusion matrices is to show the number occur-
rences or probability for a class being classified as an-
other one. Figure 7 depicts normalized confusion matri-
ces of our model on the four considered datasets, from
which we can notice that the proposed model always
perfectly identified and classified distortion types of all
datasets, except for CSIQ dataset, where noise distor-
tion is confused with blur distortion.

Because neither precision nor recall, alone, gives all
the information on the performance of a model, F1-
score of our model for each distortion type is computed
and provided in Table 7. The good result reported in
this table shows that our model is accurate and robust
in the classification of distortions.

Table 8: Classification accuracy using different pre-
trained CNN architectures.

CSIQ TID2013 KADID-10K LIVEMD
VGG16 87.77 100 99.58 97.53
VGG19 83.33 98.64 99.58 100

ResNet50 91.11 100 100 98.76
DenseNet 169 98.88 100 100 100

4.4.4 Ablation experiments

To investigate the effectiveness of our model, we con-
duct a series of ablation experiments. First, different
pre-trained CNN architectures have been considered
as feature extraction block, including VGG16, VGG19,
ResNet50 and Densenet. Table 8 shows the classifica-
tion performance of each architecture on the four
datasets. It is clear that the using DenseNet architec-
ture as a features extractor provides the best perfor-
mance. Furthermore, in addition to providing the high-
est performance, this architecture is the one with the

lowest number of parameters, thus requiring less mem-
ory and computational resources.

Second, in Table 9 and Figure 8, we show the classi-
fication performance when the proportions of training
data vary between 20% and 80% on the four datasets

considered. We can conclude that the classification per-
formance is not strongly dependent on the size of train-
ing data. From 75 images as a training dataset, we can
achieve a high classification accuracy of over 80% for

all datasets, which shows the efficiency of our model.

4.4.5 Evaluation on LVQ dataset

For distortion classification in laparoscopic videos, our
model is evaluated on the LVQ dataset and compared to
multiple state-of-the-art methods, including DIIVINE,
BRISQUE and Zohaib’s method [15]. It is important to
specify that the LVQ dataset contains both single and
multiple distortions, which makes it more challenging.

Table 10 shows the overall accuracy and the pre-
cision per distortion of our model compared to state-

of-the-art methods. We can notice that DIIVINE and
BRISQUE methods perform relatively poorly on smoke
and uneven illumination distortions, because they were
designed to process natural scene images and not la-
paroscopic videos content where such distortions are
common. Zohaib’s method provides good results but
with different performance for the different distortions.
However, our proposed method offers the best accuracy
and outperforms all the considered methods using a sin-
gle end-to-end model. This illustrates the efficiency and
adaptability of our proposed model to different types of
distortion encountered in different applications.
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Table 9: Effect of different proportions of training data on the classification performance.

Training(%)
CSIQ TID2013

N samples
Precision

Accuracy N samples
Precision

Accuracy
blur JPEG noise blur JPEG noise

20% 90 76.92 94.84 88.59 82.77 75 90 89.79 98.95 87.62
40% 180 94.79 96.59 97.61 95.18 150 98.68 97.22 100 98.21
60% 270 98.52 100 96 97.22 225 98.03 100 100 99.32
80% 360 96.66 100 100 98.88 300 100 100 100 100

Training(%)
KADID-10K LIVEMD

N samples
Precision

Accuracy N samples
Precision

Accuracy
blur JPEG noise blur JPEG noise

20% 243 98.52 99.68 99.05 98.97 81 92.70 100 96.02 91.97
40% 486 99.60 100 100 99.86 162 98.46 100 100 97.94
60% 729 100 100 99.37 99.79 243 100 100 100 100
80% 972 100 100 100 100 324 100 100 100 100
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Fig. 8 Precision per distortion and overall classification accuracy according to the training data size for the four considered
natural scene image datasets.

Table 10: Precision per distortion and overall classification accuracy on the LVQ dataset. The top result is high-
lighted in boldface.

Method
Distortion

awgn defocus blur motion blur smoke uneven illumination Overall

DIIVINE [27] 98.21 96.10 98.30 80.15 75.55 65.38

BRISQUE [54] 100 89.67 90 68.38 62.58 50.53

Zohaib [15] 100 91.5 89 87 88.5 -

Our model 100 100 100 100 99.37 99.37

Figure 9 shows the confusion matrix of our model for
each of the distortions on the LVQ dataset. It provides
additional information, in particular, allows to visualize
which distortions are confused with others. We can see

that the videos containing defocus blur are sometimes
classified as containing both defocus blur and uneven
illumination, this is due to the fact that the dataset
does not contain enough samples of videos containing
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Fig. 9 Confusion matrix on LVQ dataset.

both defocus blur and uneven illumination distortions,

so that the model learns to efficiently distinguish when
a video contains solely defocus and when it contains
defocus with uneven illumination.

Table 11 shows the performance of our model in
terms of precision and F1-score for single and multi-

ple distortions on the LVQ dataset. From this table, we
can notice that our model identifies and classifies per-
fectly videos containing a single distortion type, while
98.61% precision and 99.30% F1-score are reported for

videos with multiple distortions due to the the complex
interactions and masking effect between distortions.

Another important aspect to consider when classi-
fying distortions in laparoscopic videos is the run time.
For such application, real-time performance are required.
Table 12 shows the average classification time per frame
for DIIVINE, BRISQUE and our model, obtained on
intel core i7 system with 32GB RAM and NVIDIA
GeForce GTX 1080 running on Windows OS. We can
observe that even though our model is based on deep
learning techniques, which are known to be compu-
tationally heavy, it supports 0.05 FPS, thus making
our approach a faster method than the other methods
while still providing better accuracy. In addition, the
obtained average classification time per frame allows
real-time distortion classification.

As mentioned before, the task of distortion classi-
fication of laparoscopic videos has been addressed as
part of a grand challenge. The evaluation of our model

Table 11: Precision and F1-score of our model for single
and multiple distortions on the LVQ dataset.

Precision F1-score
Single distortion 100 99.43
Multiple distortions 98.61 99.30

Table 12: Average classification time per frame evalua-

tion.

Method
Average time per frame

(seconds)

DIIVINE [27] 3.30

BRISQUE [54] 0.08

Our model 0.05

by challenge organizers on a private dataset containing
different laparoscopic videos than those provided in the
training dataset, yielded an F1-score for single distor-
tion equals to 90.7 and F1-score for a mixture of single
and multiple distortions equals to 93.3. The ranking

was done based on a weighted combination of classifi-
cation accuracy and F1-score as defined in Eq. (12), on
the basis of which our solution was ranked 3rd.

Finalscore = 0.35 rank f1 single multi

+ 0.35 rank accuracy

+ 0.15 rank f1 single

+ 0.15 rank time.

(12)
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5 Conclusion

In this paper, we have proposed a deep MTL model
for distortion identification. The proposed MTL model
consists of a shared features extractor and a set of paral-
lel classifiers. Each classifier is responsible for identify-
ing a single type of distortion. This MTL architecture
allows each classifier to focus on the features related
to the distortion for which it is responsible, instead of
covering all the distortions at the same time, making it
more specialized.

The experimental results showed that our proposed
method provides better performance than state-of-the-
art approaches for single and multiple distortions. In
addition, our MTL model offers the best trade-off be-
tween prediction accuracy and computation time. Fi-
nally, the proposed solution is scalable with respect to
the number of distortion types. As future work, we plan
to extend our MTL model to perform both distortion
identification and severity level estimation.
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