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Identifying distortions in images and videos is important and useful in various visual applications, such as image quality enhancement and assessment techniques. Instead of applying them blindly, these techniques can be applied or adjusted depending on the type of distortion identified. In this paper, we propose a deep multi-task learning (MTL) model for identifying the types of distortion in both images and videos, considering both single and multiple distortions. The proposed MTL model is composed of one convolutional neural network (CNN) shared between all tasks and N parallel classifiers, where each classifier is dedicated to identify a type of distortion. The proposed architecture also allows to adjust the number of tasks according to the number of distortion types considered, making the solution scalable. The proposed method has been evaluated on natural scene images and laparoscopic videos databases, each presenting a rich set of distortions. The experimental results demonstrate that our model achieves the best performance among the state-of-art methods for both single and multiple distortions 1 .

Introduction

Nowadays, multimedia content, especially images and videos, is used in a variety of fields and applications including healthcare, industry, security and social media. Images and videos go through several stages before being received and perceived by an end-user. The processing stages may deteriorate the image quality by introducing different kinds of distortion. This can occur at different stages including acquisition, processing, compression, transmission and storing. For instance, during acquisition, due to defocus or motion, blur could be introduced. At the compression stage, lossy compression codecs like JPEG can introduce a blocking artifact. Moreover, during transmission, some data packets may be lost, which introduces degradation during image or video reconstruction. Therefore, identifying distortions can be very useful for image enhancement and correction techniques. Instead of blindly applying such techniques [START_REF] Chen | An empirical identification method of gaussian blur parameter for image deblurring[END_REF][START_REF] Levin | Natural image denoising: Optimality and inherent bounds[END_REF][START_REF] Dabov | Image denoising by sparse 3-d transform-domain collaborative filtering[END_REF][START_REF] List | Adaptive deblocking filter[END_REF][START_REF] Foi | Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images[END_REF][START_REF] Dong | Compression artifacts reduction by a deep convolutional network[END_REF][START_REF] Kupyn | Deblurgan: Blind motion deblurring using conditional adversarial networks[END_REF][START_REF] Mao | Image restoration using convolutional auto-encoders with symmetric skip connections[END_REF][START_REF] Kundur | Blind image deconvolution[END_REF], quality enhancement methods or other image processing algorithms can be performed or adjusted depending on the types of distortion determined. In addition, a priori knowledge of the type of distortion improves the performance of image quality assessment (IQA) metrics. Since such knowledge is essential in determining the most appropriate distortion-specific IQA metric [START_REF] Immerkaer | Fast noise variance estimation[END_REF][START_REF] Marziliano | A no-reference perceptual blur metric[END_REF][START_REF] Wang | No-reference perceptual quality assessment of jpeg compressed images[END_REF], which are in most cases more efficient in specific distortions than universal metrics. Moreover, some IQA metrics take advantage of distortion information by providing useful information/features to the IQA algorithm [START_REF] Fezza | Using distortion and asymmetry determination for blind stereoscopic image quality assessment strategy[END_REF][START_REF] Wang | Distortion recognition for image quality assessment with convolutional neural network[END_REF][START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF][START_REF] Wang | Distortion recognition for image quality assessment with convolutional neural network[END_REF][START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF][START_REF] Huang | Encoding distortions for multi-task full-reference image quality assessment[END_REF][START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF].

The most common distortions encountered in realword applications are blur, noise and blocking artifacts. Blur can have two forms: motion blur and defocus blur. The blur distortion can come from different sources, such as atmospheric turbulence, diffraction, optical de-focusing and camera shaking [START_REF] Kundur | Blind image deconvolution[END_REF]. Noise is a random variation of brightness or color information and can be introduced during image/video acquisition, processing and other practices [START_REF] Ponomarenko | A new color image database tid2013: Innovations and results[END_REF]. Finally, blocking distortion may be more noticeable by lossy compression, especially at low bit rates. Such annoying distortion is mainly due to the use of block-based coding approach, where each block is transformed and quantized independently.

In addition, there are other types of distortions specific to certain fields of application. In laparoscopic surgery, for instance, the surgeon uses a tiny camera to project the internal organs of the abdomen on a monitor. The displayed laparoscopic videos may be distorted due to side effects of the instruments used or due to technical problems [START_REF] Verdaasdonk | Problems with technical equipment during laparoscopic surgery[END_REF]. Smoke distortion may be introduced when using diathermy, while uneven illumination distortion may occur if the field of view is not evenly illuminated [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF]. The human visual system (HVS) has the ability to distinguish the type of distortion in an image/video. It is therefore very interesting to develop an automatic method that mimic this HVS's capability. In recent years, much efforts have been devoted to the problem of identifying distortion in images and videos [START_REF] Chetouani | Image distortion analysis and classification scheme using a neural approach[END_REF][START_REF] Ortiz-Jaramillo | Quantifying image distortion based on gabor filter bank and multiple regression analysis[END_REF][START_REF] Praneeth | Blind distortion classification using content and perception based features[END_REF][START_REF] Ahn | Image distortion detection using convolutional neural network[END_REF][START_REF] Buczkowski | Convolutional neural network-based image distortion classification[END_REF][START_REF] Bianco | Disentangling image distortions in deep feature space[END_REF][START_REF] Falk | Improving robustness of image quality measurement with degradation classification and machine learning[END_REF][START_REF] Moorthy | Statistics of natural image distortions[END_REF][START_REF] Moorthy | A two-step framework for constructing blind image quality indices[END_REF][START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF][START_REF] Peng | Image quality assessment based on distortion-aware decision fusion[END_REF][START_REF] Chetouani | A hybrid system for distortion classification and image quality evaluation[END_REF][START_REF] Fezza | Using distortion and asymmetry determination for blind stereoscopic image quality assessment strategy[END_REF][START_REF] Wang | Distortion recognition for image quality assessment with convolutional neural network[END_REF][START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF][START_REF] Wang | Distortion recognition for image quality assessment with convolutional neural network[END_REF][START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF]. Most studies have focused on identifying a single type of distortion [START_REF] Moorthy | A two-step framework for constructing blind image quality indices[END_REF], however, images and videos can suffer from multiple distortions in most real-world applications [START_REF] Zhang | Opinion-unaware blind quality assessment of multiply and singly distorted images via distortion parameter estimation[END_REF], which is more challenging to address given the complex interactions and masking effect among distortions.

Considering the importance of identifying image and video distortions, in this paper, we propose a novel approach that performs the multi-distortion identification/classification task by decomposing it into several sub-tasks, where each sub-task is responsible for identifying a single type of distortion. Our proposed method is a deep multi-task learning (MTL) model that efficiently and accurately classifies single and multiple distortions. It consists of a pre-trained CNN shared between all tasks and N separate parallel fully connected (FC) neural networks, where each FC neural network is responsible for identifying a specific type of distortion. The proposed method has been evaluated on natural scene image databases including popular IQA databases. Furthermore, an evaluation on laparoscopic videos database was conducted to show the efficiency and adaptability of our proposed framework to different applications.

The rest of this paper is organized as follows. In Section 2, we give an overview on distortion identification techniques. Section 3 provides a full description of the proposed method. In Section 4, the experimental results are presented and analyzed. Finally, Section 5 concludes the paper.

Related Work

In this section, we briefly review some of the previous works on identifying image distortion. These works are grouped according to whether the identification of distortion is considered as a single main task or as a secondary sub-task of an IQA process.

Distortion identification as a main task

Praneeth et al. [START_REF] Praneeth | Blind distortion classification using content and perception based features[END_REF] proposed content and perceptionbased features for efficient distortion classification, called as COPDIC. Given an input image, features are derived from local block level characteristics to classify common distortion types using local mean removal, divisive normalization followed by natural scene statistics (NSS) features extraction. Then, a pre-trained multistage support vector machine (SVM) classifier is used to identify the distortion type of this input image. Image quality metrics can be useful for distortion identification process by providing the most relevant visual features to the classifier. Chetouani et al. [START_REF] Chetouani | Image distortion analysis and classification scheme using a neural approach[END_REF] proposed to use the output of image quality metrics (IQMs) as input for an artificial neural networks classifier to determine the distortion types within a given image. In [START_REF] Ortiz-Jaramillo | Quantifying image distortion based on gabor filter bank and multiple regression analysis[END_REF], Gabor filters are applied to both clean reference and distorted images, then mean squared error (MSE) is calculated between them, the results represent the features used by a quadratic bayes normal classifier (QNBC) to classify the type of distortion present in the distorted image. However, since these last two described works use full-reference IQA metrics, they require the presence of the clean reference image to identify the type of distortion, which may not be practical in most realword applications.

Namhyuk Ahn et al. [START_REF] Ahn | Image distortion detection using convolutional neural network[END_REF] addressed the problem of distortion classification in an image without a reference image using CNNs architectures. In order to reach convergence quickly, they used pre-trained models on ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] including VGG 16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] and ResNet-101 [START_REF] He | IEEE conference on computer vision and pattern recognition (cvpr)[END_REF]. They also created a new Flickr-Distortion dataset to train their model. Mateusz et al. [START_REF] Buczkowski | Convolutional neural network-based image distortion classification[END_REF] proposed ensemble learning method composed of two CNNs for distortion classification. The two CNNs architectures are similar in terms of number of layers and layout, but differ in the size and number of parameters used during the training. Both architectures contain three convolutional and max pooling layers followed by two FC layers. Their proposed solution out-Accepted manuscript / Final version performs other SVM-based solutions by more than 10% in terms of accuracy. Bianco et al. in [START_REF] Bianco | Disentangling image distortions in deep feature space[END_REF] proposed to first analyze features extracted from different layers of different deep neural network (DNN) architectures, then evaluate their relevance for distortion classification using clustering. The best features were then used for the recognition of the type of distortion. The obtained results showed that deep visual representations can be exploited even in an unsupervised way to efficiently recognize various types of image distortion.

Distortion identification as a secondary task

Distortion identification is useful in the process of IQA, either by helping to select the most appropriate metric for quality evaluation or by providing useful information about distortions for the metric itself. Therefore, distortion classification can be included in the process of IQA for better performance.

Falk et al. [START_REF] Falk | Improving robustness of image quality measurement with degradation classification and machine learning[END_REF] proposed to select from a pool of fullreference IQMs those representing the most relevant features for each type of distortion. Then, they designed composite measures for each distortion type based on a linear combination of the selected features. Therefore, the quality of distorted image is evaluated and its distortion type is classified based on the distortionspecific features. Moorthy et al. [START_REF] Moorthy | Statistics of natural image distortions[END_REF] demonstrated that each distortion affects the statistics of natural images in a characteristic way. Thus, they build a classifier that can classify a given image into a particular distortion category solely on the basis of distorted image statistics (DIS) which are an extension of NSS. Based on this study, they proposed two no-reference IQMs: blind image quality index (BIQI) [START_REF] Moorthy | A two-step framework for constructing blind image quality indices[END_REF] and distortion identification-based image verity and integrity evaluation (DIIVINE) [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF], which are based on a two-stages framework involving a distortion identification followed by a distortion-specific quality assessment. Peng et al. [START_REF] Peng | Image quality assessment based on distortion-aware decision fusion[END_REF] also proposed a two-stage scheme for quality assessment. At the first stage, the image distortion type is predicted using a SVM. At the second stage, based on knowledge of distortion type, a fusion of three existing IQMs is performed using the K-nearest neighbors (KNN) regression. Chetouani et al. [START_REF] Chetouani | A hybrid system for distortion classification and image quality evaluation[END_REF] proposed a framework for estimating image quality based on the assumption that there is no universal IQM that can efficiently estimate image quality across all distortion types. They proposed a method based on linear discriminant analysis (LDA) to classify the distortions before estimating image quality, where the classification stage uses quality scores derived from different IQMs applied on the reference image and its degraded version. The classification of distortions helps to determine the types of IQM that should be considered for the quality evaluation stage. In the same vein, Zohaib et al. proposed in [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF] a distortion identification step followed by the quality evaluation for laparoscopic video. They used four distortion-specific classification methods, which consist of no-reference distortion-specific IQMs.

Considering the great successes achieved by deep CNN on various computer vision tasks, it was natural to adopt it for IQA and distortion identification tasks. Kang et al. [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF] proposed a CNN model that simultaneously estimates image quality and identifies the type of distortion. The baseline structure of the proposed model for quality assessment, called as IQA-CNN, has one convolutional layer, one pooling layer, two FC layers and one output layer. It was then extended for the distortion classification by adding a classification layer and was referred to as IQA-CNN+ and later enhanced to IQA-CNN++ [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF]. In this case, the quality estimation is considered as the main task while distortion identification as the secondary task. Wang et al. [START_REF] Wang | Distortion recognition for image quality assessment with convolutional neural network[END_REF] also proposed a CNN-based approach to identify the type of distortion and assess the quality without the clean reference image. The parameters of the proposed CNN model were learned to fit both tasks. Kede et al. [START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF] proposed a CNN-based IQM which consists of two sub-networks: 1) a distortion identification network and 2) a quality prediction network, sharing the early layers. First, the distortion identification subnetwork is trained, then, the quality prediction subnetwork is trained starting from the pre-trained early layers and the output of the first sub-network. The same idea has been followed in [START_REF] Huang | Encoding distortions for multi-task full-reference image quality assessment[END_REF] and [START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF], for instance Huang et al. [START_REF] Huang | Encoding distortions for multi-task full-reference image quality assessment[END_REF] proposed a full reference IQM named mask gated convolutional network (MGCN) that evaluates the image quality score and identifies distortions simultaneously. In the MGCN metric, an encoder block is designed to encode the transformation between reference and distorted images as low level features. Next, the abstractor extracts high level features from the low level features. Finally, the high level features are exploited by the predictor which predicts the image quality score and classifies distortions simultaneously.

The above described works have investigated distortion identification and achieved considerable results. However, the proposed solutions suffer from three major drawbacks. First, most of the proposed solutions are knowledge-driven approaches, which means that the feature descriptors must be designed manually such as: NSS, DIS or even IQMs. Second, in many methods, the classification of distortion is seen as a secondary task or as a sub-task of IQA, while it is also important to design a standalone distortion identification algorithm considering its utility in various applications, including image enhancement and restoration techniques. Third, the proposed classifiers are designed to consider a limited and predefined number of distortions, which makes them not scalable and not general-purpose distortion classifiers.

Our proposed solution has been designed to overcome these drawbacks with the following main contributions:

-Our proposed method is a data-driven approach, which is based on a CNN model trained in an endto-end manner responsible for extracting the most relevant features without any hand-engineering. -Our proposed solution only performs distortion identification as the main and unique task. The proposed MTL approach classifies several distortion types by performing several tasks, where each task is responsible for identifying a single and specific distortion type.

-The number of types of distortion considered by our proposed MTL model is adjustable and scalable with respect to both data and application.

Proposed Method

The aim of our work is to develop a robust and reliable method for the identification of distortions without needing to access the clean reference image. To achieve that, we propose a deep multi-task learning (MTL) approach that identifies and classifies distortions in both images and videos. We first give a formal definition of MTL and the notations used, then we describe in detail our proposed method.

Multi-task learning: definition and notations

Let us consider N related learning tasks {T i } N i=1 , MTL aims to enhance the learning of a model M of task T i by exploiting the knowledge contained in all or a subset of the N tasks [START_REF] Zhang | A Survey on Multi-Task Learning[END_REF]. In the case of supervised learning, a task

T i is associated to a training dataset D i composed of M training samples D i = {z i j , y i j } M j=1 with z i j ∈ R di
is the jth training sample of dimension d i and y i j its label. The training dataset of a task T i can be represented by a matrix

Z i = {z i 1 , . . . , z i M } ∈ R M ×di .
We can distinguish homogeneous MTL that, in opposite to heterogeneous MTL, consists in tasks of one type i.e., classification or regression [START_REF] Yang | Heterogeneous multitask learning with joint sparsity constraints[END_REF]. On the other hand, according to the dimension d i of the feature space of input samples i, we can distinguish heterogeneous-feature MTL from homogeneous-feature MTL implying that the input samples have the same dimension

d i = d j , ∀i = j.
In this paper, our distortion identification problem is modeled as a homogeneous MTL for classification tasks and homogeneous-feature MTL with the same input image dimension or patches dimension. Researchers in MTL address three main issues of when to share, what to share, and how to share [START_REF] Zhang | A Survey on Multi-Task Learning[END_REF]. To answer the first issue of when to share, MTL is motivated in this paper by the strong relation among distortions identification in a single input image. The what to share and how to share, specifying the knowledge to share and the concrete way to share the knowledge, respectively, are both addressed in detail in the next sections.

Proposed multi-task learning model

Our proposed model M takes an image I as input and predicts its distortion types. The proposed model performs N tasks, where each task is responsible for identifying a specific distortion type. Therefore, given an input image I, our model outputs N values, where each value represents the probability that I contains a certain distortion type. The proposed model can be formulated as follows:

{p 1 , p2 , ..., pN } = M(I), (1) 
where pi denotes the probability of the presence of a distortion d i in the image I estimated by the model M with i ∈ {1, . . . , N }, and N represents the total number of distortion types considered and therefore the number of tasks performed by our MTL model. Figure 1 shows the flowchart of the proposed approach. The model M is based on MTL framework which typically consists of a shared part that branches out into task-specific heads [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. The shared part is a feature extractor f θ (I) that takes as input an image I and outputs a vector of features x ∈ R F , with F the number of features and θ represents the parameters of the shared CNN. The task-specific heads are classifiers g φi (x) that takes as input the same vector of features x but each identifies a specific type of distortion, where φ i stands for the parameters of the classifier. The feature extractor f θ (I) consists of a pre-trained CNN on ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF], while all classifiers consist of a network of FC layers randomly initialized.

Overall, MTL aims to improve the generalization performance of multiple prediction tasks by appropriately sharing relevant information across them. Given that the distortion identification is performed on the same input and CNNs are known to be efficient in extracting the most salient and relevant features, we chose to share the CNN among all tasks, so the features in the shared layers do not need to be recalculated for the
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Fig. 1 The framework of our proposed approach for identifying image distortions. different tasks. However, since each distortion can be identified based on the presence or absence of certain features, the classifiers are kept task-specific. The objective of each classifier is to take the results from the shared CNN and use them to classify the image into a distortion-class. Thus, each network of FC layers will compile the data extracted by the shared CNN to form the final output representing a probability.

The pre-trained CNN used in the feature extraction block is DenseNet 169 [START_REF] Huang | Densely connected convolutional networks[END_REF], for which we obtained the best results, however, any other CNN architecture can be considered. In the DenseNet 169 network, in each layer, information is obtained from all preceding layers, i.e., feature maps from all previous layers are concatenated, processed and passed to all subsequent layers. This technique encourages the reuse of features, reduce the number of parameters and strengthen the features propagation. DenseNet 169 architecture consists of convolutional layers, pooling layers, dense blocks, transition blocks and FC layers, as shown in Figure 2. A dense block consists of 1 × 1 convolution layer to reduce feature maps followed by 3 × 3 convolution layer to improve the computational efficiency. Between each two contiguous dense blocks, there is a transition block which consists of 1 × 1 convolution layer and a pooling layer to reduce the number of feature maps.

In order to use the DenseNet 169 as feature extractor, the last dense layers are removed and the output of the last dense block is flattened to form a vector of features x. Given an input image I, the shared layers f θ (I) responsible for extracting relevant features outputs a vector of features x x = f θ (I).

(

) 2 
The number of tasks that our model performs is fixed according to the number of distortion types to be detected. If N types of distortion are addressed in the considered application, our model performs N binary classification tasks using N different classifiers. Each classifier g φi (x) is composed of two stacked FC layers of size 512 and an output layer of size 1. The last output layer of each classifier has a sigmoid activation layer that outputs values between [0, 1] representing the probability pi indicating the presence of a distortion d i in the input image I pi = g φi (x), ∀i ∈ {1, . . . , N }.

(

) 3 
The end-to-end model is illustrated in Figure 2 and can also be formulated as follows:

{p 1 , . . . , pN } = {g φ1 • f θ (I), . . . , g φ N • f θ (I)}.
(4)

Input and output processing

The image datasets adopted in this study are not large enough to train the deep DenseNet 169 from scratch, hence the choice of using a pre-trained DenseNet 169 on ImageNet. To further compensate the lack of training samples while respecting input dimensions, we chose to perform patch-wise training. In patch-wise training, the CNN is trained on a small patch of the image instead of the whole image. Therefore, given an input image I, a fixed number of patches of size 224 × 224 is extracted over which our MTL model loops. Each patch is treated individually, this means that for each patch k, each classification block g φi (x) outputs a probability pi,k indicating the presence of a specific distortion d i in this patch. An average of all predictions is computed and rounded at the end of each classifier to label the image as follows:

pi = 1 K K k=1 pi,k , (5) 
where K denotes the total number of patches extracted from image I.

Loss function

In multi-task learning, a joint loss function must be defined for several tasks. While a single task has a welldefined loss function, multiple tasks result in multiple losses. Considering a MTL model that performs N tasks with task-specific loss functions noted as L i and taskspecific weights noted as ω i , the loss function of the MTL model is expressed as follows:

L total = 1 N N i=1 ω i L i . (6) 
All tasks in our case perform a classification, binary cross-entropy (BCE) is the default loss function to use for binary classification problems where the target values are in the range of [0, 1]. Thus, we adopted the task-specific loss function

L i =- 1 M M m=1 p (m) i log(p (m) i )+(1-p (m) i )log(1-p (m) i 
), [START_REF] Kupyn | Deblurgan: Blind motion deblurring using conditional adversarial networks[END_REF] where p (m) i

is the ground truth label and p(m) i is the predicted probability of the distortion d i at an image sample m, while M represents the number of images per batch.

One of the challenges of jointly learning multiple tasks is to properly weighting the task-specific loss functions [START_REF] Kendall | Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[END_REF][START_REF] Chen | Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks[END_REF]. In our case, since the loss scales are the same and task importance is the same, a uniform weighing is considered. The total loss is then an uniform weight sum of the N loss functions, i.e., each task is assigned a loss weight of ω i = 1/N, ∀i ∈ {1, . . . , N }.

Since each image consists of K patches, the single loss function is expressed as follows

L i (p i , pi ) = - 1 M K M m=1 K k=1 p (m) i,k log p(m) i,k +(1 -p (m) i,k ) log 1 - p(m) i,k . (8) 

Temporal extension

In order to show the efficiency and adaptability of our proposed method to various and multiple distortion types encountered in different applications, we also considered another challenging issue which is distortion classification in laparoscopic videos. It is important to note that we addressed this application as part of a challenge organized in a leading international conference, for which we obtained the 3rd place in grand challenge2 .

Laparoscopic videos are used in real-time, which requires a real-time distortion classifier. Therefore, we extended our model to cover the temporal aspect by applying some modifications to the preprocessing steps and the architecture of the model. Specifically, in order to perform classification in real-time, the CNN used as features extractor which is DenseNet 169 has been substituted by VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], because it is less deep and consequently takes less time in processing the input. In addition, the task-specific part contains five parallel classifiers, because the provided laparoscopic video quality (LVQ) dataset covers five distortion types [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF], including noise, defocus blur, motion blur, smoke and uneven illumination. The end-to-end MTL model is then composed of a shared pre-trained VGG16 followed by five parallel classifiers each responsible for identifying a single type of distortion as shown in Figure 3.

For hardware constraints and more precisely the limits in terms of memory, patch extraction cannot be done on video frames. Instead, frames extraction is performed which allows to use the model as if it was fed with input images and at the same time increase the number of training samples. Since the distortions are applied to all frames of a given reference video when building the dataset [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF], therefore, frames of the same video are assigned the same labels. Given an input video V , a fixed number of frames is extracted then fed into the MTL model. Each frame is treated individually, Fig. 3 multi-task learning model for the classification of distortions in laparoscopic videos. Given an input video frame, our MTL model passes the frame through the CNN VGG16 to extract its most relevant feeatures in the form of a vector that will be fed into the different classifiers, then each classifier (FC layers network) is fed with this vector to output a value indicating the probability of the presence of a specific distortion.

then an average of all predictions is computed and rounded to label the video.

Experiments

In this section, we first introduce the datasets used to train and evaluate the proposed MTL model. Next, we evaluate and compare the performance of our model with respect to state-of-the-art methods on the different datasets. Finally, we conduct a series of ablation experiments to analyse the behavior of the proposed method.

Datasets

Natural scene image datasets

In order to evaluate the proposed method on natural scene images, four publicly available image quality databases are exploited: KonstanzLin artificially distorted image quality database (KADID-10K) [START_REF] Lin | Kadid-10k: A large-scale artificially distorted iqa database[END_REF], computational and subjective image quality (CSIQ) [START_REF] Larson | Most apparent distortion: full-reference image quality assessment and the role of strategy[END_REF], Tampere image dataset (TID2013) [START_REF] Ponomarenko | A new color image database tid2013: Innovations and results[END_REF] and laboratory for image & video multi distortion (LIVEMD) [START_REF] Jayaraman | Objective quality assessment of multiply distorted images[END_REF]. KADID-10K contains 81 pristine images of size 512 × 384, each degraded by 25 distortions at five severity levels. CSIQ is composed of 866 images that were obtained from 30 clean original images of size 512 × 512 using six distortion types and four to five severity levels. TID2013 provides 25 reference images of size 512 × 384 and 3000 distorted images at five levels of distortion. Unlike KADID-10K, CSIQ and TID2013 datasets, which are single distortion datasets, LIVEMD is a multiply distorted image dataset, i.e., it contains distorted images counting multiple distortion types simultaneously. LIVEMD dataset [START_REF] Jayaraman | Objective quality assessment of multiply distorted images[END_REF] contains 15 reference images from which two subsets of distorted images are created using three distortion types, including blur, JPEG and noise. The first subset is obtained by applying blur followed by JPEG, each at three different severity levels. In the same way, the second subset is obtained by applying blur followed by noise. This results in a total of 450 distorted image.

We considered three distortion types that are common in the three databases: (a) JPEG compression (JPEG), (b) white noise contamination (noise) and (c) Gaussian blur (blur). This leads us to use 1215, 450, 375 and 405 images respectively from the KADID-10K, CSIQ, TID2013 and LIVEMD datasets. Table 1 summarises the main features of the considered natural images datasets. tions. As mentioned before, these distortions are the most common and widely studied types of distortion.

Laparoscopic video dataset

Laparoscopic video quality dataset [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF] consists of a total of 20 reference videos, each of 10 duration. These videos were extracted from Cholec80 dataset [START_REF] Twinanda | Endonet: a deep architecture for recognition tasks on laparoscopic videos[END_REF].

The selection of videos was made to include maximum possible variations of scene content and temporal information. For scene content, ten different categories were chosen: bleeding, grasping and burning, multiple instruments, irrigation, clipping, stretching away, cutting, stretching forward, organ extraction and burning.

Each reference video is distorted by five different kinds of distortion (single or multiple distortions) with four different levels, resulting in a total of 800 videos. The resolution of videos is 512 × 288 with a 16:9 aspect ratio and a frame-rate of 25 frames per second (FPS).

Figure 5 shows the different types of distortion included in LVQ dataset. These distortions are the most common affecting laparoscopic videos.

Implementation details

For natural scene image datasets, the training is performed with back-propagation using ADAM optimiza-Accepted manuscript / Final version tion [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF][START_REF] Reddi | On the convergence of adam and beyond[END_REF] with a learning rate of 0.0001, a 10 -6 decay and momentum of 0.9. A dropout is applied after each FC layer of size 512 with a rate equals to 0.25. Dropout is a regularization technique used to reduce overfitting in artificial neural networks. It consists of randomly ignoring some nodes of a given layer during training. This method forces each node to assume different degrees of responsibility for the inputs as they are either activated or dropped out randomly during the training process. This has the effect of making the training process noisy, thus avoiding overfitting [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF].

For an end-to-end training, the model is trained iteratively by back-propagation over 60 epochs. In each epoch, the training set is divided into batches for batchwise optimization. Each mini-batch contains six images (M = 6), each represented by a fixed number of patches (K = 4 for CSIQ and TID2013, K = 6 for KADID-10K and K = 8 for LIVEMD) of size 244 × 224, thus leading to an effective batch size of M × K patches.

For laparoscopic video dataset, in each epoch, the training set is divided into batches of videos for batchwise optimization. Each mini-batch contains 10 videos, each represented by ten frames (M = 100), thus leading to the effective batch size of M ×K = 100 frames (K = 1).

Evaluation procedure

In order to train and evaluate our proposed MTL model, we randomly split each dataset into two subsets of non overlapping content, 80% for training and 20% for testing. This procedure is repeated 10 times and the median of overall accuracy, precision, recall and F1-score values are reported and used to evaluate the performance of our model on the test set.

Precision is defined as the number of true positives (TPs) divided by the number of TPs plus the number of false positives (FPs) as follows :

precision = T P T P + F P , (9) 
in our case, TP is when the model perfectly identifies the presence of a distortion type. While, FP is when the model confuses the presence of a distortion type with another.

Recall is defined as the number of TPs divided by the number of TPs plus the number of false negatives (FNs) as follows :

recall = T P T P + F N , ( 10 
)
in our case, FN is when the model mistakenly predicts the absence of a distortion type. Finally, the F1-score is calculated as follows:

F 1-score = T P T P + 1 2 (F P + F N ) . ( 11 
)
4.4 Experimental Results

Classification threshold

In the proposed model, the last layers are assigned sigmoid activation functions which make them output a value between 0 and 1 representing the probability that an image contains a specific distortion. The decision for converting the predicted probability into a class label is governed by a parameter referred to as the decision threshold, discrimination threshold or simply the threshold, which typically has a default value of 0.5. In the case of a binary classification with class labels 0 and 1, values below the threshold are assigned to class 0 and values greater than or equal to the threshold are assigned to class 1. In our case, our MTL model performs N binary classifications such that each of them serves to identify a specific type of distortion, so that 0 indicates the absence of distortion, while 1 indicates its presence. The default threshold may not represent an optimal interpretation of the predicted probabilities, so they must always be adapted to the problem under consideration, and therefore adjust the threshold value accordingly. Hence, we studied the performance of our model, in all datasets, according to the values of the threshold.

Figure 6 shows the accuracy of our classification model as a function of the threshold. The threshold has been varied within a range of [0.1, 0.9] with a step of 0.1. The accuracy is then calculated according to this hard threshold. From this figure, one can notice that for a wide range of probabilities. Our model achieves its best performance for a threshold value between 0.4 and 0.5. Therefore, a threshold value of 0.5 was adopted and the results provided below were obtained based on this threshold value.
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Comparison and discussion

The performance of our model is evaluated and compared to ten state-of-the-art methods, including distortion identification-based image verity and integrity evaluation (DIIVINE) [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF], blind/referenceless image spatial quality evaluator (BRISQUE) [START_REF] Mittal | Blind/referenceless image spatial quality evaluator[END_REF], distortionspecific IQMs, COntent & Perception based features for DIstortion Classification (COPDIC) [START_REF] Praneeth | Blind distortion classification using content and perception based features[END_REF], Mateusz's method [START_REF] Buczkowski | Convolutional neural network-based image distortion classification[END_REF], Kang's method [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF], Kede's method [START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF], Golestaneh's method [START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF], mask gated convolutional network (MGCN) [START_REF] Huang | Encoding distortions for multi-task full-reference image quality assessment[END_REF] and Bianco's method [START_REF] Bianco | Disentangling image distortions in deep feature space[END_REF]. The first four methods are based on hand-crafted features that are fed into a SVM classifier. For instance, the third method (noted as IQM-G) groups three distortion-specific IQMs, so that each of them quantifies a specific distortion (blur, JPEG and noise) in a given input image. To quantify blur distortion, an algorithm designed to measure local perceived sharpness in images relying on both spectral and spatial properties is used [START_REF] Vu | A spectral and spatial measure of local perceived sharpness in natural images[END_REF]. To quantify JPEG distortion, a no-reference quality measurement algorithm for JPEG compressed images is exploited [START_REF] Wang | No-reference perceptual quality assessment of jpeg compressed images[END_REF]. To quantify noise distortion, a technique to estimate the noise level proposed in [START_REF] Liu | Noise level estimation using weak textured patches of a single noisy image[END_REF] is adopted. The scores obtained from each of these three distortion-specific IQMs are used to form a vector of features that will be introduced in a SVM to perform the classification of distortion. The remaining six methods are deep learning-based approaches.

The comparison of our model with state-of-the-art methods is first performed in terms of accuracy, as reported in Table 2. From this table, we can notice that our model outperforms all considered methods in all datasets, this is particularly remarkable for LIVEMD dataset, which is the most challenging. In addition, BRISQUE provides fairly good results for a handcrafted method, while DIIVINE performance is poor on all datasets. IQM-G method also manages to provide quite good results on the different datasets, which means that the three distortion-specific IQMs chosen as feature extractors are complementary and their combination succeeds to discriminate the distortion type. Each of the handcrafted-based methods provides balanced results on the different datasets, which means that their performance is not strongly tied to the content of any dataset. However, their results generally remain inferior to those achieved by deep learning-based methods. We can also notice that the Kede [START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF] and Golestaneh [START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF] methods achieve the best performance among deep learningbased approaches, but without going beyond the proposed method.

Overall, it can be noted that handcrafted methods have proven that they can be competitive with deep learning-based methods if the extracted features are relevant for distortion identification and adapted to the datasets. The importance of the feature extraction step is also well illustrated through the performance of BRISQUE, DIIVINE and IQM-G methods, since all of them use a SVM classifier but provide different accuracy, because each one extracts different types and number of features. The difficulty with such approaches is choosing features that cover all types of distortion. However, since our method is a data driven approach, the selection of distortion-specific features is done automatically across the different towers, i.e., the classifiers specializing in a single distortion type.

In addition, we computed the precision and recall for each distortion type separately. Precision for all considered datasets is reported in Tables 3,4, 5 and 6, while recall scores are reported in the diagonal of the normalized confusion matrices plotted in Figure 7. From Table 3, we can notice that our model obtained 100% precision for all the distortions considered. Likewise, most of the deep learning-based methods provide good results, this is due to the fact that KADID-10K is the dataset with the largest number of distorted images, thus allowing to better learn the features of each distortion type.

From Table 4, we can notice that our model delivered 100% precision for JPEG and noise distortions on CSIQ dataset, while obtained 96.66% for blur distortion. Also, IQM-based metric obtained a precision of 100% for noise distortion on CSIQ dataset, while provided low performance for blur and JPEG distor-Moreover, DIIVINE method provided the lowest performance, whereas BRISQUE performed well except for JPEG distortion. In addition, Kede [START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF], Golestaneh [START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF] and MGCN [START_REF] Huang | Encoding distortions for multi-task full-reference image quality assessment[END_REF] methods obtained high and stable results for all the distortions of CSIQ dataset.
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From Table 5, we can observe that some methods achieved high precision up to 100% for a specific distortion type. This means that features of these methods are well-designed for a specific distortion type but do not generalize well to all distortion types. On the other hand, the proposed method provided very stable results for all distortion types considered. [START_REF] Praneeth | Blind distortion classification using content and perception based features[END_REF] 85.53 89.61 92.68 Mateusz [START_REF] Buczkowski | Convolutional neural network-based image distortion classification[END_REF] 82.42 90.34 84.55 Kang [START_REF] Kang | Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks[END_REF] 86.05 84.82 88.17 Kede [START_REF] Ma | End-to-end blind image quality assessment using deep neural networks[END_REF] 89.67 85.63 90.28 Golestaneh [START_REF] Golestaneh | No-reference image quality assessment via feature fusion and multi-task learning[END_REF] Finally, from Table 6, we can notice a significant decrease in performance of all methods, except DIIVINE, compared to their performance on the other datasets. Because, LIVEMD dataset contains images with multidistortion types making them difficult to recognize. Despite this, our model succeed in recognizing perfectly all types of distortion thanks to the adoption of the MTL architecture.

Distortion identification confusion

For a complete evaluation of our model, normalized confusion matrices are plotted to discuss mis-classified distortions. Each row in a confusion matrix represents an actual label which we call true label, while each column represents a predicted label. The purpose behind plotting confusion matrices is to show the number occurrences or probability for a class being classified as another one. Figure 7 depicts normalized confusion matrices of our model on the four considered datasets, from which we can notice that the proposed model always perfectly identified and classified distortion types of all datasets, except for CSIQ dataset, where noise distortion is confused with blur distortion.

Because neither precision nor recall, alone, gives all the information on the performance of a model, F1score of our model for each distortion type is computed and provided in Table 7. The good result reported in this table shows that our model is accurate and robust in the classification of distortions. 8 shows the classification performance of each architecture on the four datasets. It is clear that the using DenseNet architecture as a features extractor provides the best performance. Furthermore, in addition to providing the highest performance, this architecture is the one with the lowest number of parameters, thus requiring less memory and computational resources. Second, in Table 9 and Figure 8, we show the classification performance when the proportions of training data vary between 20% and 80% on the four datasets considered. We can conclude that the classification performance is not strongly dependent on the size of training data. From 75 images as a training dataset, we can achieve a high classification accuracy of over 80% for all datasets, which shows the efficiency of our model.

Evaluation on LVQ dataset

For distortion classification in laparoscopic videos, our model is evaluated on the LVQ dataset and compared to multiple state-of-the-art methods, including DIIVINE, BRISQUE and Zohaib's method [START_REF] Khan | Towards a video quality assessment based framework for enhancement of laparoscopic videos[END_REF]. It is important to specify that the LVQ dataset contains both single and multiple distortions, which makes it more challenging.

Table 10 shows the overall accuracy and the precision per distortion of our model compared to stateof-the-art methods. We can notice that DIIVINE and BRISQUE methods perform relatively poorly on smoke and uneven illumination distortions, because they were designed to process natural scene images and not laparoscopic videos content where such distortions are common. Zohaib's method provides good results but with different performance for the different distortions. However, our proposed method offers the best accuracy and outperforms all the considered methods using a single end-to-end model. This illustrates the efficiency and adaptability of our proposed model to different types of distortion encountered in different applications. Figure 9 shows the confusion matrix of our model for each of the distortions on the LVQ dataset. It provides additional information, in particular, allows to visualize which distortions are confused with others. We can see that the videos containing defocus blur are sometimes classified as containing both defocus blur and uneven illumination, this is due to the fact that the dataset does not contain enough samples of videos containing both defocus blur and uneven illumination distortions, so that the model learns to efficiently distinguish when a video contains solely defocus and when it contains defocus with uneven illumination.
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Table 11 shows the performance of our model in terms of precision and F1-score for single and multiple distortions on the LVQ dataset. From this table, we can notice that our model identifies and classifies perfectly videos containing a single distortion type, while 98.61% precision and 99.30% F1-score are reported for videos with multiple distortions due to the the complex interactions and masking effect between distortions.

Another important aspect to consider when classifying distortions in laparoscopic videos is the run time. For such application, real-time performance are required. Table 12 shows the average classification time per frame for DIIVINE, BRISQUE and our model, obtained on intel core i7 system with 32GB RAM and NVIDIA GeForce GTX 1080 running on Windows OS. We can observe that even though our model is based on deep learning techniques, which are known to be computationally heavy, it supports 0.05 FPS, thus making our approach a faster method than the other methods while still providing better accuracy. In addition, the obtained average classification time per frame allows real-time distortion classification.

As mentioned before, the task of distortion classification of laparoscopic videos has been addressed as part of a grand challenge. The evaluation of our model 

Method

Average time per frame (seconds) DIIVINE [START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF] 3.30 BRISQUE [START_REF] Mittal | Blind/referenceless image spatial quality evaluator[END_REF] 0.08 Our model 0.05 by challenge organizers on a private dataset containing different laparoscopic videos than those provided in the training dataset, yielded an F1-score for single distortion equals to 90.7 and F1-score for a mixture of single and multiple distortions equals to 93.3. The ranking was done based on a weighted combination of classification accuracy and F1-score as defined in Eq. ( 12), on the basis of which our solution was ranked 3rd. 
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Conclusion

In this paper, we have proposed a deep MTL model for distortion identification. The proposed MTL model consists of a shared features extractor and a set of parallel classifiers. Each classifier is responsible for identifying a single type of distortion. This MTL architecture allows each classifier to focus on the features related to the distortion for which it is responsible, instead of covering all the distortions at the same time, making it more specialized.

The experimental results showed that our proposed method provides better performance than state-of-theart approaches for single and multiple distortions. In addition, our MTL model offers the best trade-off between prediction accuracy and computation time. Finally, the proposed solution is scalable with respect to the number of distortion types. As future work, we plan to extend our MTL model to perform both distortion identification and severity level estimation.

Fig. 2

 2 Fig.2Deep multi-task learning model for the classification of distortions in natural scene images. Given an input image patch, our MTL model passes the patch through the CNN DenseNet 169 to extract its most relevant features in the form of a vector that will be fed into the different classifiers, then each classifier (FC layers network) is fed with this vector to output a value indicating the probability of the presence of a specific distortion.

Figure 4

 4 Figure4illustrates a clean reference image from LIVEMD dataset and its distorted versions, including blur, JPEG, noise, blur-JPEG and blur-noise distor-

Fig. 4 AFig. 5

 45 Fig.4A clean reference image and its distorted versions, from LIVEMD database, containing blur, JPEG, noise and combinations of blur-JPEG, blur-noise distortions.

Fig. 6

 6 Fig. 6 Classification accuracy with respect to different threshold values for all considered datasets.

Fig. 7

 7 Fig. 7 Confusion matrices on natural scenes image datasets.

Fig. 8

 8 Fig. 8 Precision per distortion and overall classification accuracy according to the training data size for the four considered natural scene image datasets.

Fig. 9

 9 Fig. 9 Confusion matrix on LVQ dataset.

F

  inalscore = 0.35 rank f 1 single multi + 0.35 rank accuracy + 0.15 rank f 1 single + 0.15 rank time.

Table 1 :

 1 Features of the considered natural scene image datasets. All datasets constrain three types of distortion: {blur, noise and JPEG}. Multi-distorted images of blur-JPEG and blur-noise are also included in the LIVEMD dataset resulting in five calsses.

	Dataset	Number of Number of	multi-
		images	classes	distortion
	KADID-10K [49]	1215	3
	CSIQ [48]	450	3
	TID2013 [13]	375	3
	LIVEMD [37]	405	5

Table 2 :

 2 Overall accuracy on single and multi-distortion image datasets. The top result is highlighted in boldface.

	Method	KADID-10K	Dataset CSIQ TID2013 LIVEMD
	BRISQUE [54]	91.71	80.54	88	88.56
	DIIVINE [27]	49.44	56.24	55.28	74.71
	IQM-G	90.80	79.57	82.66	88.67
	COPDIC [20]	90.57	90.96	88.25	90.64
	Mateusz [22]	92.45	91.08	89.32	85.05
	Kang [32]	93.64	90.71	92.26	86.14
	Kede [34]	98.52	97.03	95	88.57
	Golestaneh [36]	97.68	93.67	92.53	95.13
	MGCN [35]	96.96	97.10	94.79	88.23
	Bianco [23]	-	79.60	85.40	90.90
	Our model	100	98.88	100	100
	our model achieves relatively low performance for very
	low or very high threshold values, this is particularly
	clear for CSIQ and TID2013 datasets. Because a very
	low threshold value makes the model really sensitive,
	while a very high threshold value makes it indifferent

Table 3 :

 3 Precision per distortion type on KADID-10K dataset. The top result is highlighted in boldface.

	Method	blur	Distortion JPEG	noise
	BRISQUE [54]	87.65	90.5	98.9
	DIIVINE [27]	53.65	43.03	50.31
	IQM-G	80.75	92.3	100
	COPDIC [20]	92.18	87.88	93.04
	Mateusz [22]	94.57	90.21	89.95
	Kang [32]	96.88	93.47	90.49
	Kede [34]	98.54	100	97.06
	Golestaneh [36] 98.55	97.71	98.29
	Our model	100	100	100

Table 4 :

 4 Precision per distortion type on CSIQ dataset. The top result is highlighted in boldface.

	Method	blur	Distortion JPEG	noise
	BRISQUE [54]	83.3	63.33	96.66
	DIIVINE [27]	69.83	30.30	68.23
	IQM-G	78.12	60.58	100
	COPDIC [20]	87.29	91.16	90.41
	Mateusz [22]	89.94	94.55	90.75
	Kang [32]	91.57	86.46	93.19
	Kede [34]	98.50	95.31	94.48
	Golestaneh [36]	93.40	95.52	90.96
	MGCN [35]	95.61	97.72	97.62
	Our model	96.66	100	100

Table 5 :

 5 Precision per distortion type on TID2013 dataset. The top result is highlighted in boldface.

	Method	blur	Distortion JPEG	noise
	BRISQUE [54]	92.85	75	100
	DIIVINE [27]	64.53	49.09	50.87
	IQM-G	100	60.71	92.85
	COPDIC [20]	90.84	85.27	86.69
	Mateusz [22]	85.21	89.50	91.74
	Kang [32]	91.63	93.04	90.71
	Kede [34]	94.93	96.28	95.29
	Golestaneh [36] 94.81	90.36	89.18
	MGCN [35]	98.02	91.26	90.89
	Our model	100	100	100

Table 6 :

 6 Precision per distortion type on LIVEMD dataset. The top result is highlighted in boldface.

	Method	blur	Distortion JPEG	noise
	BRISQUE [54]	78	91.82	92.18
	DIIVINE [27]	88.48	62.17	65.46
	IQA-G	80.47	79.04	92.76
	COPDIC			

Table 7 :

 7 F1-score for each distortion type on natural scene image datasets.

		93.50	96.57	93.84
	MGCN [35]	90.08	84.26	88.22
	Our model	100	100	100
	Dataset	Distortion blur JPEG	noise
	KADID-10K	100	100	100
	CSIQ	100	100	98.18
	TID2013	100	100	100
	LIVEMD	100	100	100

Table 8 :

 8 Classification using different pretrained architectures.

		CSIQ TID2013 KADID-10K LIVEMD
	VGG16	87.77	100	99.58	97.53
	VGG19	83.33	98.64	99.58	100
	ResNet50	91.11	100	100	98.76
	DenseNet 169	98.88	100	100	100
	4.4.4 Ablation experiments		
	To investigate the effectiveness of our model, we con-
	duct a series of ablation experiments. First, different
	pre-trained CNN architectures have been considered
	as feature extraction block, including VGG16, VGG19,
	ResNet50 and Densenet. Table		

Table 9 :

 9 Effect of different proportions of training data on the classification performance.

				CSIQ					TID2013		
	Training(%)	N samples	blur	Precision JPEG	noise	Accuracy N samples	blur	Precision JPEG	noise	Accuracy
	20%	90	76.92	94.84	88.59	82.77	75	90	89.79	98.95	87.62
	40%	180	94.79	96.59	97.61	95.18	150	98.68	97.22	100	98.21
	60%	270	98.52	100	96	97.22	225	98.03	100	100	99.32
	80%	360	96.66	100	100	98.88	300	100	100	100	100
			KADID-10K					LIVEMD		
	Training(%)	N samples	blur	Precision JPEG	noise	Accuracy N samples	blur	Precision JPEG	noise	Accuracy
	20%	243	98.52	99.68	99.05	98.97	81	92.70	100	96.02	91.97
	40%	486	99.60	100	100	99.86	162	98.46	100	100	97.94
	60%	729	100	100	99.37	99.79	243	100	100	100	100
	80%	972	100	100	100	100	324	100	100	100	100

Table 10 :

 10 Precision per distortion and overall classification accuracy on the LVQ dataset. The top result is highlighted in boldface.

	Method	Distortion awgn defocus blur motion blur smoke uneven illumination Overall
	DIIVINE [27]	98.21	96.10	98.30	80.15	75.55	65.38
	BRISQUE [54]	100	89.67	90	68.38	62.58	50.53
	Zohaib [15]	100	91.5	89	87	88.5	-
	Our model	100	100	100	100	99.37	99.37

Table 11 :

 11 Precision and F1-score of our model for single and multiple distortions on the LVQ dataset.

		Precision F1-score
	Single distortion	100	99.43
	Multiple distortions	98.61	99.30

Table 12 :

 12 Average classification time per frame evaluation.
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