KINEBEC - Kinetic simulation of Quantum
Boltzmann Equation

License

This file is part of KINEBEC.

KINEBEC is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

KINEBEC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with
KINEBEC. If not, see http://www.gnu.org/licenses/ .

Authors

KINEBEC is managed by

o Alexandre MOUTON (CNRS Lille - France) as lead developer
o Thomas REY (Université de Lille - France) as lead scientific manager

Description of KINEBEC

KINEBEC is a simulation code developed in C dedicated to classical and quantum
Boltzmann equations in 2D and 3D in velocity. This code is based on spectral
methods in velocity and can uses MPI, OpenMP or CUDA tools for speeding
up its execution and for managing large data. More details about the involved
numerical methods can be found in the following papers:

e Mouhot & Pareschi: Fast algorithms for computing the Boltzmann collision
operator, Math. Comput. 256-75 (2006), pp. 1833-1852

http://www.gnu.org/licenses/

o Filbet, Hu & Jin: A numerical scheme for the quantum Boltzmann equation
with stiff, collision terms, Math. Model. Numer. Anal. 46 (2012), pp. 443-
463

Requirements

We detail here the libraries and softwares that are required for installing and
running KINEBEC on a Linux-type OS. Since the main purpose of KINEBEC
is to perform parallelized simulations, we provided some configurations with
MPI, OpenMP or CUDA. These configurations are not mandatory but strongly
recommended for running 3D quantum simulations.

Note that you need at least one I/O dependency to be satisfied in order to
compile and run KINEBEC (HDF5 or Adios).

Required in any case:

o Cmake (version >= 2.8)
o FFTW3 (version >= 3.3.4)
o Python 3.x

Required for MPI parallelization:

o OpenMPI (version >= 1.10.2)
o FFTW3-mpi (version >= 3.3.4) with headers

Required for OpenMP parallelization:

e OpenMP (version >= 3.1)
o FFTW3-omp (version >= 3.3.4) with headers

Required for CUDA parallelization:

o CUDA Toolkit (version >= 9.0)
e CuFFT with headers
e CUDA Runtime with headers

Required for HDF5 1/0:

o HDF5 (version >= 1.8.16) with headers
o Parallel HDF5 (version >= 1.8.16) with headers - recommended if you
consider the MPI features

Required for Adios I/0:

o Mxml (version >= 2.9) with headers

o Zlib (version >= 1.2.8) with headers

o Bzip2 (version >= 1.0.6) with headers

o Glib 2.0 (version >= 2.48) with headers

o HDF5 (version >= 1.8.16) with headers

o Parallel HDF5 (version >= 1.8.16) with headers - recommended if you
consider the MPI features

o Adios (version >= 1.9.0) with headers

If you are using a Debian-based Linux OS, you can install these dependencies
with packages: for example, with Ubuntu, you can type the following command
(replace apt-get by apt with Ubuntu 16.04 or newer):

sudo apt-get install cmake openmpi-* libfftw3-mpi-dev \
libfftw3-dev libfftw3-bin libmxml-dev zliblg-dev libbz2-dev \
libglib2.0-dev libhdf5-openmpi-dev libhdfb5-serial-dev libadios-dev

Installation

To install KINEBEC, you should proceed as follows:

1.
2.

Download and install all dependencies (see Section 4).

Move to the sub-directory (KINEBEC_ROOT_PATH)/CMake_Dependencies
and verify if the paths are valid in each Find***.cmake file. If you have
some difficulties with this part, do not hesitate to contact us.

. Open a terminal and move to the directory (KINEBEC_ROOT_PATH).

. Type the following commands:

python build_kinebec.py <I0 flags> [build flags] [optional
flags]

You are required to provide at least one of the following IO flags:
--with-hdf5 (for using HDF5) and/or --with-adios (for using Adios).
In addtion, you should provide one or several build flags which correspond
to the versions of Kinebec you aim to compile: --serial (for serial
version), --mpi (for OpenMPI version), -—omp (for OpenMP version),
--cuda (for CUDA version).

Finally, you can also add the flag ——force-vectorization for compiling
specific loops within the code for better benefits of GCC vectorization.
Note that this feature is highly memory consuming during the execution.

. The compilation is successfully finished if the following sub-directories are

created and filled:

— (KINEBEC_ROOT_PATH) /build/(BUILD_VERSION) /bin

— (KINEBEC_ROOT_PATH) /build/(BUILD_VERSION)/1ib

— (KINEBEC_ROOT_PATH) /build/ (BUILD_VERSION) /include

with (BUILD_VERSION) being set to serial and/or mpi and/or omp and/or
cuda.

Getting started

To generate a setup file, you can type the following command:

(KINEBEC_ROOT_PATH) /build/serial/bin/generate_setup_file [setup_file]

To run a serial simulation, you can type the following command:

(KINEBEC_ROOT_PATH) /build/serial/bin/kinebec <setup_file>

To run a MPI simulation, you can type

mpirun -np <#CPUs> (KINEBEC_ROOT_PATH)/build/mpi/bin/kinebec <setup_file>
To run an OpenMP simulation, you can type

export OMP_NUM_THREADS=<#THREADS>
(KINEBEC_ROOT_PATH) /build/omp/bin/kinebec <setup_file>

To run a CUDA simulation, you can type the following command

(KINEBEC_ROOT_PATH) /build/cuda/bin/kinebec <setup_file> \
-nb <#blocks> -nt <#threads_per_block>

Note that a setup file is required for running the application kinebec. You
can also add the flag ——resume in order to resume a simulation that has been
previously stopped (such option can be useful when you are using a job manager
with a limited wall-time).

Visualization of results

Since the goal of KINEBEC is to perform parallelized simulation of Boltzmann-
like equations, the I/O part of the code is parallelized with Adios or HDF5
libraries. If the Adios solution has been selected, some .bp files will be generated
(one per time iteration). If the HDF5 solution is selected, some .h5 files will be
generated and each of them will be supplemented with a .xdmf reader file (one
pair .h5/.xdmf per time iteration).

Such file can be read with the Vislt visualization software. More informations
about Vislt can be found at the link below:

http://wei.llnl.gov /simulation/computer-codes/ visit

For visualizing the contents of a .bp, you just need to start Vislt, open the .bp
file and select a visualization method.

For visualizing the contents of a .h5/.xdmf, you just need to start Vislt, open
the .xdmf file and select a visualization method.

Note that if an output result file set of the form {diags_0.bp, diags_1.bp,
diags_2.bp, ...} is opened, it is possible to visualize the dynamics of the
numerical results.

As a complement, it is also possible to visualize the contents of .h5/.xdmf files
with Paraview:

https://www.paraview.org/

http://wci.llnl.gov/simulation/computer-codes/visit
https://www.paraview.org/

We also provide some Python-Matplotlib routines to visualize the contents of
.h5 files. Please check the file visualization.py to get inspired.

Do not hesitate to contact us for highlighting your numerical results on the
KINEBEC web gallery by sending us pictures or movies.

Contact

o Alexandre MOUTON (lead developer): alexandre.mouton@univ-lille.fr

o Thomas REY (lead scientific manager): thomas.rey@univ-lille.fr

	License
	Authors
	Description of KINEBEC
	Requirements
	Installation
	Getting started
	Visualization of results
	Contact

