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a b s t r a c t

Wireless Sensor Networks (WSNs) have been used by several kinds of urban and nature

monitoring applications as an important interface between physical and computational

environments. Node clustering is a common technique to organize data traffic, reduce com-

munication overhead and enable better network traffic management, improving scalability

and energy efficiency. Although current clustering protocols treat various kinds of dynam-

icity in the network, such as mobility or cluster-head rotations, few solutions consider the

readings similarity, which could provide benefits in terms of better use of compression

techniques and reactive detection of anomalous events. For maintaining similarity aware

clusters, the synchronization of the cluster’s average reading would allow a distributed

and adaptive operation. In this article, we propose an architecture for dynamic and distrib-

uted data-aware clustering, and the Dynamic Data-aware Firefly-based Clustering (DDFC)

protocol to handle spatial similarity between node readings. The DDFC operation takes into

account the biological principles of fireflies to ensure distributed synchronization of the

clusters’ similar readings aggregations. DDFC was compared to other protocols and the

results demonstrated its capability of maintaining synchronized cluster readings aggrega-

tions, thereby enabling nodes to be dynamically clustered according to their readings.

Ó 2014 Elsevier B.V. All rights reserved.

1. Introduction

Even though sensors are increasingly common in prac-

tical applications, most of them are primitive, when taking

only singular and individual data interpretations into

account, without establishing further relations between

readings. The most usual relations between data readings

are referred to as spatial and temporal relations [1]. For

example, for readings such as temperature, humidity and

lighting sensor readings are likely similar when taken in

regions near each other, due to their spatial relation. Sim-

ilarly, successive readings in a single localization tend to

vary gradually due to the temporal relation.

When exploring and analyzing data readings collec-

tively one could leverage possible relations in the data

readings for building more robust applications. In an urban

environment, collectively interpreted data can enable

streets traffic analysis so that optimal routes can be deter-

mined; spatial patterns of temperature readings can be

analyzed for locating heat islands for driving improve-

ments in urban planning; audio readings would determine

the level of auditive pollution or even map the sound prop-

agation in the environment, etc.

Wireless Sensor Networks (WSNs) have not reached

their maximum potential in term of data collection [2].

They have been used as a communication interface
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between the physical and computational mediums, formed

virtually by many data sets [3]. Hence, they are essential

for the Cyber-Physical Systems [4], which rely heavily on

an interface between the computation and physical envi-

ronments, and for the advent of the Internet of Things

[5], which integrate several kinds of heterogeneous devices

that need environment information [6]. Among techniques

that aim to provide better network scalability, clustering

techniques organize nodes in WSNs into hierarchical logi-

cal groups (clusters), allowing data aggregation and orga-

nization of the traffic in the network [7]. Further, through

the use of clustering techniques, an organization that

keeps nodes with similar readings grouped together could

bring advantages such as much more efficient data aggre-

gation. Moreover, such similarity aware clusters enhance

the capability of detection of anomalous events.

WSNs are dynamic in terms of topology, routes and

positioning of the nodes. Thus, clustering mechanisms

should be adaptive and reconfigurable. Nevertheless, lit-

tle research in protocols that handle simultaneously the

correlation and variation of data has been developed up

to the moment. Clustering protocols for WSNs may have

several objectives: some aim to handle the dynamicity

due to mobility [8,9], others try, sometime periodically,

to recreate entire cluster hierarchies [10]. However, few

protocols consider spatial data similarity [1,11] and even

fewer support the dynamic nature of data using a dynamic

clustering approach [12]. Thus, the lack of suitable proto-

cols for handling such data highlights the need for a data

aware protocol that creates clusters of nodes with similar

readings in an adaptive and dynamic way.

There are some design difficulties to be handled to pro-

vide an adaptive operation that continuously keeps nodes

with similar readings grouped together. A readings similar-

ity aware protocol for WSNs should ideally operate in a

distributed and self-organizable fashion, avoiding coordi-

nation from the sink and complete re-clustering opera-

tions. Such characteristics are commonly found in

biological systems, whose principles have often inspired

distributed networking algorithms [13]. Although biologi-

cal algorithms have inspired clock synchronization mecha-

nisms [14], they pose an unexplored potential in other

kinds of synchronization tasks [15].

In this work, in contrast to our work in [16], where the

proposal was still static lacking an Adaptive Agent, we pro-

pose a conceptual architecture for dynamic and distributed

data-aware clustering, and a logical organization protocol,

named DDFC (Dynamic Data-aware Firefly-based Cluster-

ing), that considers spatial data similarity in dynamic envi-

ronments. The protocol, utilizing the biological principles

of fireflies, groups nodes with similar readings. DDFC

synchronizes similar reading aggregations in clusters, sup-

porting their dynamic maintenance and internal routing,

thereby enabling an easy detection of nodes which should

be clustered together. DDFC acts between the link and

network layers, making use of link layer broadcasts to

establish logical clusters and perform intra cluster routing.

Hence, the network layer uses the clusters created by

DDFC, routing messages between the cluster-heads and

the sink. Such data similarity aware clusters enable several

kinds of applications in the real world. For instance, with

seismic data similarity information, patterns can point to

eruptions with some weeks of antecedence [17]; with

pollution data similarity analysis, water quality could be

estimated and this information could be used for identify-

ing possible areas of contamination and emission.

To assess DDFC’s general characteristics and capacity of

grouping nodes together, simulations were conducted on

the Network Simulator, version 3. Using data readings

collected from a real environment, DDFC was compared

to a variant and another protocol in terms of cluster-heads

stability, readings similarity of nodes clustered together

and inconsistent routes. Results obtained prove the effi-

ciency of DDFC in keeping nodes with similar data clus-

tered together and in electing adequate cluster-heads.

Our main contributions consist of (i) the usage of the

biological principles of fireflies to synchronize atemporal

data, different from traditional approaches that employ

fireflies to synchronize exclusively temporal based opera-

tions or clocks; (ii) a readings similarity aware clustering

protocol which differs from other solutions that focus on

more static clusters and dynamic indexing, while DDFC

focuses on creating and maintaining the clusters dynami-

cally without considering index based network queries;

(iii) a thorough evaluation of DDFC through simulations

where it is compared to the best scheme available in the

literature; the results demonstrate that our scheme

improves its performance by being more stable and by

decreasing the number of invalid routes.

The rest of the paper is organized as follows. Section 2

presents the related work. Section 3 presents the principles

of fireflies synchronization. Section 4 describes an over-

view of the data similarity concepts. Section 5 details the

DDFC protocol. Section 6 shows its performance evalua-

tion. Finally, Section 7 presents the conclusions and ideas

for future work.

2. Related work

WSNs are dynamic in multiple dimensions, such as

topology, routes and node locations. Hence, to support

the WSN operation, clustering protocols should be adap-

tive and reconfigurable [18]. Although there are many

solutions in the literature for handling several kinds of

dynamicities, none performs data-aware clustering in a

dynamic and scalable way.

Some protocols handle the dynamicity due to mobility

by maintaining clusters while nodes arbitrarily transit

through the network. The SPRPG protocol [8], for instance,

establishes a spanning tree though a recursive process, in

order to establish cluster-heads and gateways to connect

the clusters inside the tree. KHOPCA [9] operates pro-

actively through a simple set of rules that defines clusters

with variable k-hops. Those rules consider and manipulate

a score system, considering a node’s neighbors’ scores to

calculate its own score.

Other approaches support dynamicity through cluster

recreation, whether periodic or reactive. DCRR [10] con-

siders that clusters are relevant only when there is an

event detection, thus being created only on such occasions,

while supporting that, continuously maintaining a cluster



index structure is expensive. Similarly, the ESC protocol

[19] coordinates the nodes to detect a relevant event so

that, with leader node elections based on spatial cells,

redundant information is not sent to the base station.

However, despite the rich literature, none of the pro-

posed solutions offers sufficient support for data similar-

ity-aware clustering. Taking data similarity into account,

the CAG [1] protocol creates on-demand clusters through

the flooding of base station generated queries that carry

a field informing the acceptable threshold of data readings’

differences from nodes that are to be clustered together.

The DACA protocol [20] creates clusters as a query mes-

sage is forwarded in the network. It aims to reduce energy

consumption by eliminating sensor nodes during the result

collections. Like CAG, DACH [11] defines readings differ-

ence thresholds, creating a virtual hierarchy with several

crescent levels of similarity – operation is centralized at

the base station.

In the literature, SCCS [12] stands out by establishing

dynamic and reconfigurable clusters without needing con-

stant flooding operations, like CAG and DACH. It uses spa-

tial similarity to cluster nodes together and employs

compression techniques based on temporal similarity. Its

operation is coordinated by the base-station, which deter-

mines when the clusters should be recreated.

However, although those protocols are data-aware,

none supports clustering in a dynamic and scalable way.

Specifically, CAG depends on constantly flooding the net-

work to establish new static hierarchies and DACA is suit-

able only for query-driven WSNs. DACH, on the other hand,

depends heavily on the base station that collects data from

the entire network to effectively establish hierarchies

based on a static snapshot of the network. Finally, although

SCCS does not depend on constant flooding operations, its

maintenance is not suitable as it only allows cluster divi-

sions and still needs a complete re-clustering triggered

by the base station.

Thus, a protocol that operates in a more distributed way

and establishes dynamic similarity aware clusters is needed

for data similarity aware WSNs. A dynamic synchronization

operation should be performed, enabling the nodes to be

continuously grouped together or split apart, without a com-

plete restructuring triggered by the base station. The biolog-

ical principles of fireflies [13,15], having inspired several

clock synchronization mechanisms, seem to hold an unex-

plored potential to answer the challenge set forth here.

3. Fireflies synchronization mechanism

WSNs are expected to satisfy properties such as self-

organization, fault tolerance, scalability, heterogeneity

and decentralization. All these characteristics can actually

be found in natural systems. The high dynamicity present

in some biological systems is founded on a small set of

rules that determine a collaborative behavior, resulting in

resources management, tasks scheduling, social differenti-

ation and synchronization – without the need of external

control entities [15].

Firefly-based approaches are classified as bio-inspired

systems [15]. Some species manage to synchronize their

fires in a distributed manner. In [21], Mirollo and Strogatz

studied the fireflies firing, modeling their behavior through

coupled-pulse oscillators. They assume that each firefly has

an oscillator which is incremented and gradually synchro-

nizes, as presented in Fig. 1.

Fig. 1 shows the exchange of messages and resulting

synchronization of fireflies. Each firefly has an oscillator

represented by a vertical line; when its value reaches 1,

the firefly will blink, broadcasting a message that triggers

the other fireflies’ clock adjustments. The repetition of this

process for every firefly leads to synchronization, which is

specifically illustrated in Fig. 2.

The Fig. 2 shows the synchronization process between

the oscillators of two fireflies, called V1 and V2. Beginning

to fire later, the firefly V2 has its clock late when compared

to V1. Thus, in the instant t1, the flash of V1 makes V2

slightly advance its clock. Analogously, with the flash of

V2 on t2;V1 delays its clock. The same situation repeats

on the instants t3 and t4 until the clocks are finally syn-

chronized at t5.

Although clock synchronization through oscillator

pulses operates in an apparently simple way, it results

from the firefly behavior modeling. However, for its use

in WSNs, there are characteristics intrinsic to them which

are not handled directly. Tyrrell et al. [13] studied how

the fireflies oscillators can be applied in wireless ad hoc

networks. They showed that several latencies should be

considered or even intentionally incorporated by wireless

systems, such that their clocks are synchronized in a more

efficient way. Among these times are the latency of propa-

gation, transmission, decoding and refraction:

� Propagation latency (T i;j
0 ): time demanded for a mes-

sage to be sent from a given source i to a destination

j, proportional to the distance between such nodes;

� Transmission latency (TTx ): transmission duration of

the synchronization messages. Although in fireflies the

message is always the same, independent from the

source, wireless networks require message differentia-

tion in order to identify the source. Hence, a synchroni-

zation message must be stipulated, being it a standard

of pulses or a message preamble, both demanding time

for transmission;

� Decoding latency (Tdec): after receiving the message,

there is a period of time required for decoding the head-

ers of each layer as well as the contents of the message

themselves;

� Refraction latency (Trefr): for a higher stability, a refrac-

tion period is added after transmitting a pulse, during

which no alteration can be performed on a node’s local

clock.

Ignoring the propagation time and considering the puls-

ing period T of a firefly, a waiting time Twait is calculated,

according to Eq. (1), for the transmission of the synchroni-

zation message. The wireless medium requires the waiting

time for the better precision of the resulting synchroniza-

tion between the node clocks. After the pulse transmission,

no clock alteration can be performed for the period Trefr ,

which considers the possibility of messages being

exchanged in an unpredictable manner, due to the propa-

gation time T i;j
0 , causing instability of node clocks.



Twait ¼ T ÿ ðTTx þ TdecÞ: ð1Þ

The RFA (Reachback Firefly Algorithm) synchronization

mechanism [14] also considers wireless medium latencies.

Furthermore, it uses an approach where a firefly waits for

its time to pulse in order to perform its clock adjustment,

instead of performing it as soon as another firefly pulse is

detected. Thus, it enables a clock adjustment only once

with the accumulated value and, that way, keeps the

mechanism behavior more stable. This operation is spe-

cially useful when fireflies have many neighbors and the

received pulses adjust the clock alternating between

advances and delays, causing minor instabilities. More-

over, such mechanism applies random latencies in the

transmission of each pulse, avoiding collisions in the wire-

less medium.

Similar to RFA, several other works handle synchroniza-

tion under an exclusively temporal aspect by considering

the internal clock of each node [13,22] or focusing on the

synchronization of operations based on turns [23,24]. Nev-

ertheless, although the work inspired by fireflies for WSNs

focus on the temporal synchronization matter and such

temporal synchronization is more evident, it is possible

to employ a similar operation to keep the clustering proto-

col parameters synchronized. In [25], it was shown that

although limited to a regional scope, such synchroniza-

tions leads also to a global convergence. Hence, the syn-

chronization based on the biological principles of fireflies

seems to be appropriate for handling the dynamicity of

data readings in a clustering protocol maintenance opera-

tion as a whole.

4. Data similarity

There are several approaches in the literature to define

WSNs data similarity, which depend not only on the

handled scope, but mainly on data and on the application.

Multimedia applications that handle video streams [26,27]

typically associate similarity to (a) overlapping areas in dif-

ferent image frames. After overlapping regions detection,

those areas can be easily compressed or even partially

eliminated [28].

Regarding scalar data, simple similarity functions can

be employed, since they are explicit numeric manipula-

tions. Considering a timeless similarity function, i.e., which

is given in a discrete instant and not in a continuous

period, common functions commonly involve (b) L abso-

lute difference thresholds between readings a and b,

such that jaÿ bj < L > is satisfied; (c) Q percentage differ-

ence between readings, such that b is similar to a if

jaÿ bj < Q � a >; (d) customized predefined ranges of

readings. Fig. 3 illustrates these similarity concepts.

The similarity of a multimedia frame, Fig. 3a, expresses

the region which is common to frames obtained by differ-

ent cameras. The functions of absolute differences between

readings, Fig. 3b, are adequate when there is no necessity

for specific ranges of readings to be considered similar

and for when the data readings may be expressed by small

numerical values. In such cases, the percentage difference,

Fig. 3c, clusters the readings in an unequal way: Higher

readings will have a larger range of similar readings due

to the bigger range generated by the percentage difference.

Finally, customized ranges, Fig. 3d, are normally employed

when there are predefined distinct groups of interest.

Although these are common approaches, the function to

determine the data similarity is strictly dependent on the

application and the data. Therefore, for data adequate han-

dling, data similarity aware protocols should ideally adapt

their behavior according to a similarity function. Thus, they

should allow an easy alteration of the similarity function,

without impacting the protocol behavior, which must han-

dle the network dynamicity requirements.

5. Dynamic Data-aware Firefly-based Clustering

Different from our previous work in [16], this section

describes in detail the high-level architecture for the DDFC

(Dynamic Data-aware Firefly-based Clustering) protocol,

developed to create and maintain logical clustering of

nodes that have similar spatial readings. By maintaining

local structures for storing neighborhood information,

DDFC’s Firefly Agent synchronizes local aggregations of

Fig. 1. Fireflies and clock synchronization process.

Fig. 2. Couple of firefly oscillators being synchronized.



similar average readings at nodes, enabling accurate

determination of when a cluster should be fragmented or

different clusters should be merged together. Once logical

clusters are established, DDFC’s Indexing Agent defines

indexes for internal routing on the clusters, enabling

the messages from common nodes to reach one of their

cluster-heads. In DDFC, clusters can be composed of more

than one cluster-head, due to the spatial extent of similar

readings. Likewise, the internal routing within a cluster

can take more than a hop to reach a cluster-head.

5.1. Overview

The DDFC protocol aims to create and maintain logical

clusters of nodes which have similar readings. For that,

each node keeps the average aggregation of its cluster

readings locally synchronized, in order to verify when a

cluster should be fragmented or when different clusters

should be merged in the cases of, respectively, readings

that do not satisfy or satisfy the desired similarity level.

Once having the clusters established, DDFC defines indexes

for internal cluster routing, allowing the messages from

common nodes to be forwarded to their cluster-head and

thus the sink. The general architecture for the protocol is

divided in three components, defined as agents, as shown

in Fig. 4.

The Firefly Agent is the bioinspired component of the

architecture. Its main task is to synchronize the average

readings aggregation, thus enabling the cluster mainte-

nance. The Indexing Agent, on the other hand, gives scores

for each of the nodes in the network, such that nodes with

a given maximum score are taken for cluster-heads, and

the remaining nodes use their scores, which are crescent

towards a cluster-head, in order to route their data to such

cluster-heads. Finally, the Adaptive Agent seeks to dynam-

ically adapt the interval between each beacon broadcast,

given that, in conditions of stability, the interval may be

increased while in unstable conditions, the interval may

be decreased, so that the cluster structures may respond

quickly to eventual changes.

Moreover, the general operation of DDFC does not con-

sider energy scarceness to be an issue. Most of the applica-

tions envisioned can rely on energy scavenging from the

environment, or even fixed sources through electric net-

works in urban environments, such as street poles. Never-

theless, if DDFC is used by energy constrained applications,

several independent energy optimizations can be per-

formed at the link and network layers.

Further, it is important to clarify that the specific kind of

dynamicity handled by DDFC is the node readings dynam-

icity. Hence, whenever dynamicity is mentioned without a

different qualifier, it refers to the data read by nodes,

which varies throughout time and space. Analogously, sim-

ilarity and synchronization will refer to node data readings

and the average synchronization in a neighborhood, as it

will be elaborated in the following sections.

Fig. 3. Examples of data similarity definitions.
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5.1.1. Neighborhood information storage

Two simple local structures of great importance in each

sensor node support the DDFC operation. Fig. 5 shows a

topology and the data structures stored in the nodes, rep-

resented by dashed circles. Such data structures corre-

spond respectively to (i) information about spatial

neighbors data readings and (ii) the set of spatial neighbors

that satisfy the data similarity thresholds. The highlighted

node has seven neighbors, fromwhich, four possess similar

readings satisfying the data similarity thresholds.

The set of nodes with similar readings is kept in a struc-

ture (i) SNeigh. Further, a local structure (ii) NeighR keeps

information about all spatial neighbors readings, such

information regard individual readings of each neighbor

and those neighbors aggregated readings, and the number

of nodes whose readings were aggregated.

5.2. Synchronization of reading aggregations

DDFC defines a synchronization component inspired in

the biological principles of fireflies [13], named Firefly Agent.

That component locally synchronizes a value that indicates

the readings aggregation of the current node’s cluster. That

value enables nodes to know when they should leave their

cluster, in the case of readings being too different, and when

neighbor clusters should be merged due to similar readings

that satisfy the data similarity threshold.

Initially, each node forms different clusters, which are

gradually merged, according to the similarity threshold.

After an initial stable formation, the clusters will be

maintained dynamically through their union and fragmen-

tation. Algorithm 1 presents the operation of the DDFC’s

Firefly Agent.

Periodically, each node broadcasts a beacon message,

analog to the flashing of a firefly, informing (i) its identifier

ADDR; (ii) its current reading, obtained through the func-

tion getReadingðÞ; (iii) the average aggregated reading of

nodes with similar readings in its neighborhood, obtained

through the function getAverageReadingðÞ, and (iv) the

quantity of neighbors with similar readings (l.1–5). The

periodic broadcast of such messages always introduces a

random infimum delay in order to avoid simultaneous

transmissions (l.3).

The function getAverageReading (l.17) calculates the

synchronized weighted average of the readings aggrega-

tion in the local neighborhood that satisfy the desired sim-

ilarity, i.e., neighbors which are members of the same

cluster. Considering the current node’s reading (l.18–19),

the average of the aggregated readings (aR) in the same

cluster is calculated (l.20–24), using the number nR of

readings aggregated on that node as a weight (l.21). Hence,

the average aggregation of similar readings on the region

of that node is obtained (l.25) and is used to easily repre-

Algorithm 1. Firefly Agent

1: procedure BEACONTIMEREXPIRE

2: Send(ADDR, getReading(), getAverageReading(), jSNeighj)

3: Wait(interval + rnd())

4: BeaconTimerExpireðÞ

5: end procedure

6:

7: procedure RECEIVEBEACONðsrc; iR; aR;nRÞ

8: NeighR½src�  fiR; aR;nRg

9: localAvg  getAverageReadingðÞ

10: if ðjiRÿ localAvgj < CThreshÞ&ðjgetReadingðÞ ÿ aRj < CThreshÞ

11: SNeigh SNeigh
S

fsrcg

12: else

13: SNeigh SNeighÿ fsrcg

14: end if

15: end procedure

16:

17: procedure GETAVERAGEREADING

18: accumulatedReading  getReadingðÞ

19: nOfReadings 1

20: foreach v 2 SNeigh do

21: temp NeighR½v �:aR � NeighR½v�:nR

22: accumulatedReading  accumulatedReading þ temp

23: nOfReadings nOfReadingsþ NeighR½v �:nR

24: end foreach

25: return ðaccumulatedReading=nOfReadingsÞ

26: end procedure



sent its neighborhood. That way, nodes can check when

they should be clustered together.

Upon receiving a beacon (l.7), the node will know its

origin src, the origin’s individual reading iR, the average

aggregated reading aR of its neighborhood and the quan-

tity nR of nodes whose readings are aggregated. The NeighR

structure is updated (l.8) with such information, indepen-

dent from any similarity relations – since similarity rela-

tions may change, it is important to keep information on

every node that may possibly share the same cluster in

the future. The average readings aggregation in the region

of the current node (l.9) is considered to verify determine

when whether readings of the current node and the origin

node src satisfy the data reading similarity threshold

CThresh (l.10). The structure SNeigh is then updated, includ-

ing the origin src if the similarity threshold is satisfied –

that corresponds to an union operation. On the other hand,

if the threshold is not satisfied, src is removed from such

list, corresponding to a fragmentation. Hence, such

updates of SNeigh on both the current and src nodes corre-

spond respectively to the union and fragmentation of their

clusters, in the cases of similar or different neighborhood

readings regarding the desired data similarity threshold.

The similarity function applied on Algorithm 1 consists

of two parts: (i) jiRÿ localAvgj < CThresh and (ii)

jgetReadingðÞ ÿ aRj < CThresh, which correspond basically

to the same similarity verification, however, with distinct

references. The part (i) checks if the reading iR received

from the neighbor node src satisfies the threshold CThresh,

when compared to the cluster of the current node. On the

other hand, part (ii) verifies whether the current reading

getReadingðÞ of the local node satisfies the threshold

CThresh when compared to the cluster of the node src.

These two pieces are important in order to guarantee the

coherence between what neighbor nodes considers to be

similar, i.e., two nodes must agree that they have similar

readings bidirectionally.

Fig. 6 illustrates an example of the Firefly Agent’s oper-

ation, showing the readings aggregation synchronization of

each cluster and consequent similarity relations. The

dashed edges indicate purely spatial neighbors, while the

solid edges indicate neighbors which satisfy the reading

similarity threshold. The boxes beside each node corre-

spond to the structure shown in Fig. 5, informing, from

top to bottom, the individual reading of that node, the syn-

chronized aggregated reading from it and its neighbors and

the quantity of readings that were aggregated there. Each

instant T is separated by the broadcast of a beacon from

each node. In the initial instant T1, the aggregated readings

of each node correspond to their own, since no beacon was

exchanged yet.

This example considers a value CThresh ¼ 3:0, meaning

that readings are said similar if their differences satisfy the

3.0 threshold, as previously defined. Hence, the edges

ððB;DÞ; ðD;CÞ; ðC;AÞÞ satisfy the similarity threshold, estab-

lishing similarity relations in the state T1. Then, the nodes

update their aggregated readings aRTn according to the ear-

lier instant readings aRTnÿ1, as elaborated on the Algorithm

1. In the instant T2, aRT2ðAÞ ¼ 20þ1�22
1þ1

, aRT2ðBÞ ¼ 26þ1�24
1þ1

,

aRT2ðCÞ ¼ 22þ1�20þ1�24
1þ1þ1

, aRT2ðDÞ ¼ 24þ1�22þ1�26
1þ1þ1

. Thus, the simi-

larity edges ðB;CÞ is created. In the instant T3, the aggre-

gated readings are updated again, aRT3ðAÞ ¼ 21þ3�22
1þ3

,

aRT3ðBÞ ¼ 25þ3�24þ3�22
1þ3þ3

, aRT3ðCÞ ¼ 22þ2�21þ2�25þ3�24
1þ2þ2þ3

, aRT3ðDÞ ¼
24þ2�25þ3�22

1þ2þ3
. Then, edge ðA;BÞ appears.

This way, each node will have its SNeigh structure

updated through the exchange of beacons. Such structure

indicates which nodes in the neighborhood are seen as

members of the same cluster. Thus, as each node knows

which neighbors belong to the same cluster, the global

Fig. 5. Data structure for neighborhood information storage: (i) SNeigh and (ii) NeighR.

Fig. 6. Firefly agent readings aggregation synchronization on nodes.



cluster of a node corresponds to the set formed by the

union of that node with each of the nodes in the SNeigh

structure. This operation is performed recursively for each

node’s SNeigh structure. Inductively, if a node A belongs to

the cluster of a node B and B belongs to the cluster of a

node C, then A also belongs to the cluster of node C.

However, this global vision of complete clusters is not

maintained locally, as such operation would cause high

overhead without the assurance of coherence. Thus,

although logical clusters exist globally, their complete for-

mation is not locally visible at the node level. Nevertheless,

the knowledge of local neighborhoods allows nodes to

establish a distributed cluster-head based hierarchy. With

such structures defined by the Firefly Agent, the Indexing

Agent, defined in the next section, operates respecting

the data similarity, and guarantees that nodes manage to

send their messages to a cluster-head in their clusters.

5.3. Indexing of internal routes to cluster-heads

DDFC establishes cluster-heads and routes from com-

mon nodes to the nearest cluster-heads through an Index-

ing Agent, that takes the similarity relations established

into account. The Indexing Agent uses a Score System,

which is based on the rules proposed by KHOPCA (K-HOP

Clustering Algorithm) [9]. Through these rules, each node

updates its self-attributed score according to the scores

of its neighbors in the same cluster – information piggy-

backed in the beacon used by the Firefly Agent.

A maximum score MaxK is defined as a parameter, also

determining themaximum distance to a cluster-head. Nodes

with a score equal to MaxK are elected as cluster-heads,

while the remaining nodes use their scores as a way to

determine which is the next hop in the routing to the near-

est cluster-head. Moreover, such parameter indicates theMS

maximum time needed for the initial cluster-wide synchro-

nization of the average readings aggregation. As MS is

directly related to the maximum distance to a cluster-head,

it corresponds toMS ¼ MaxK � int in the worst case scenario.

However, it should be noted that although MS time is

needed for the cluster-head to have an average readings

aggregation representing the entire cluster, a coherent initial

configuration is obtained already with the first beacons, due

to the spatial similarity and the neighbor-to-neighbor bidi-

rectional similarity relations.

In the beginning, every node has the same score pts ¼ 0.

Being MaxK the maximum score and SN1 the list of m

neighbors of the same cluster, the score pts of a node n is

updated according to Eq. (2), based on the rules proposed

by KHOPCA. The first condition of such equations aims to

keep a maximum difference of 1 between the scores of

neighbor nodes, given that MPtsðnÞ is the maximum pts of

nodes in SNðnÞ. The second rule defines a node as a clus-

ter-head, maximizing its pts to MaxK, in case its neighbors

have minimum score. The third rule aims to decrease the

score of a node if it has a score greater than all its neighbors,

but is not a cluster-head, in order to keep the maximum dif-

ference between neighbors score equal to 1. Finally, the

fourth rule aims to eliminate the existence of adjacent

cluster-heads, nodes with pts ¼ MaxK. Such rules compose

the Score System.

MPtsðnÞ ÿ 1; if ptsðmÞ > ptsðnÞ; 8m 2 SNðnÞ;

MaxK; if ptsðmÞ ¼ 0;8m 2 SNðnÞ;

ptsðnÞ ÿ 1; if ptsðnÞ– MaxK & ptsðnÞ > ptsðmÞ;

8m 2 SNðnÞ;

ptsðnÞ ÿ 1; if ptsðnÞ ¼ MaxK & 9m 2 SNðnÞ given;

ptsðmÞ ¼ MaxK & jSNðmÞj > jSNðnÞjð Þð ;

or jSNðmÞj ¼ jSNðnÞj & m > nð ÞÞ:

8
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>
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This Score System, although based on the rules pro-

posed by KHOPCA [9], was extended to better adapt to

the dynamic needs of the environment, showing better sta-

bility. The Indexing Agent gives priority, when regarding

scores, to those nodes that have more neighbors with sim-

ilar readings – priority expressed in the fourth rule of the

Rules System. Thus, the cluster-heads stability and quality

is higher.

These rules are applied periodically at each node, in the

same order they were presented, from the first to the

fourth, and at each verification, only one rule can be

applied. Such operation is different from KHOPCA, which

applies more than one rule, resulting in an undetermined

order and behavior, which would produce less stable

results, as shown in Section 6.

Fig. 7 illustrates the way such rules are applied, using a

parameter MaxK ¼ 3. Thus, for this example, a common

node can be at most 3 hops away from a cluster-head.

On the figure, solid edges between each pair of nodes indi-

cate a similarity relation between their readings and, that

manner, they consider each other as neighbors, according

to the structure SNeigh. In the instant T1, every node pos-

sesses the same minimum score pts ¼ 0. In the state T2,

given that a rules verification does not have synchrony

requirements, in our example the nodes B;C and D apply

the rules first, maximizing their scores through the second

rule. As nodes A and E perform the rules verification later,

their neighbors already have pts ¼ MaxK and, thus, A and E

apply the first rule. In the instant T3, there are three adja-

cent nodes with pts ¼ MaxK. Then, nodes B and D apply the

fourth rule, because node C has more similar neighbors.

After that, node A applies the first rule again, keeping the

difference between adjacent scores as at most 1.

The structure presented in the figure is maintained

dynamically in spite of readings and topology variations.

With such structure, the nodes that satisfy pts ¼ MaxK

are considered cluster-heads. Common nodes can route

data to their nearest cluster-head by always forwarding

such data to a node that belongs to their SNeigh and whose

score is greater that their own score. Thus, as the cluster-

heads are those with the higher possible score and the

rules establish a scores progression towards the cluster-

head, it is guaranteed that a cluster-head is always reached

on the end of the travelled path.

However, to allow the clusters to adapt more dynami-

cally to readings changes and for node scores to converge

more efficiently, it is possible to employ an adaptive1 Same SNeigh list, abbreviated due to space constraints.



interval between the beacon transmissions. Seeking such

behavior, the Adaptive Agent determines how beacon

intervals should be delayed or advanced. Such agent is pre-

sented in the following section.

5.4. Dynamic adaptation of the actuation intervals

The Adaptive Agent verifies if the Firefly Agent should

delay or advance its operation and consequent beacon

transmission.2 Such Agent keeps the similarity information

more up to date, so that the Firefly Agent establishes clusters

satisfying the reading similarity thresholds more efficiently

and the Indexing Agent can update its structure and routes

accordingly. Note that, all verifications performed by the

Adaptive Agent occur with an interval equivalent to 1=3 of

the default interval of the Firefly Agent beaconing operation,

in order to guarantee the existence of time windows suffi-

ciently large between the verifications, so that changes that

would have an impact on the cluster formations are more

probable.

The Adaptive Agent performs two tests to determine if

the Firefly Agent’s beaconing operation should be advanced.

If the current reading of the node compared to its

neighborhood synchronized aggregations does not satisfy a

similarity threshold considering a more relaxed CThresh
0
¼

1:5 CThresh, then the beaconing operation is advanced

immediately, because the node’s reading does not satisfy

the clusters aggregation anymore. Here, a larger interval is

needed so that small fluctuations do not trigger such

advancement. A better value for this relaxed value may be

obtained thorough analysis, as it depends on the specific kind

of the data being considered by the application.

While the previous condition yielded an immediate

advancement, there are less critical conditions that can

also result in configuration changes. Such changes may

not be present on the current node, but on its surrounding

nodes. Hence, if the Indexing Agent has updated the score

of the current node in the previous actuation period or if

the current node has received a beacon from one of its

neighbors in such period, the current period of the beacon-

ing operation should be reduced by half.

With such advancements, stable configurations are

established more quickly and, once established, the bea-

cons can be sent with a higher interval. Thus, if no

advancement conditions occur, the current period of the

beaconing operation should be delayed for three times its

current value. The operation of the Adaptive Agent is

shown in Fig. 8. Note that, the rhombuses with dashed

lines indicate that the condition considers changes since

the last verification of the flowgram, which occurs in T

time intervals, corresponding to a fraction 1=3 of the

original fixed period of the beaconing operation.3

Hence, the Adaptive Agent follows a sequence of verifi-

cations which occur in T periods. Although a proactive

approach that constantly verifies and adapts the intervals

could be used, this periodic verification is preferable

because it guarantees a more stable and well behaved

operation. As receiving a beacon leads to the advancement

of the beaconing period, the proactive operation would

be hard to be handled since many beacons may be received

in considerably small windows of time. Thus, such

verification in a larger time window allows the protocols

to perform with more stability and yet, in a dynamic

manner.

Fig. 7. Indexing agent operation: nodes change their scores based on similar neighbors scores.

Immediate 
advancement 

Delays current 
period for 3x higher 

Similarity satisfies 
CThresh

Has Indexing Agent 
updated the score? 

Received beacon 
since the last period? 

no

yes no

yes

no

Has already delayed 
the current period? 

no

Advancement for 
of current period 

yes

yes

Start

Waits T 

Fig. 8. Operation flowgram of the adaptive agent.

2 It must be pointed out that the Indexing Agent acts in the same interval

of the Firefly Agent, because the scores information are sent in piggyback in

the same beacon.

3 Discrete intervals are used so that beacons from different nodes may be

considered in the same time window. We suggest a default value of 1=3,

but it may be changed according to the application, so that the flowgram is

checked with a more appropriate frequency.



5.4.1. Remarks on nodes density and invalid routes

The Adaptive Agent is impacted by the node density in

the network. As its operation timer may be advanced on

receiving a beacon from a cluster neighbor, it is foreseen

that a high density of nodes could cause overhead and

instability. Therefore, the use of the Adaptive Agent is ade-

quate for sparser networks. Nevertheless, as the Adaptive

Agent is an extension of the Firefly and Indexing Agents,

dense networks could still employ the DDFC clustering

protocol by disabling the dynamic intervals.

Furthermore, timer advancements generate variations

in the timer periods. This decreases the protocol’s stability,

in order to compensate for faster event detections. Conse-

quently, there is a trade-off: the faster detection depends

on a less coordinated exchange of beacons, which may

yield temporary invalid routes that are corrected as other

neighbors exchange beacons.

Therefore, the usage of the Adaptive Agent depends

exclusively on the application needs and network density.

By using the Adaptive Agent, an event that would other-

wise be detected just after the int beaconing interval may

be detected up to 66% faster, as a consequence of the lower

int=3 checking times. Further, although invalid routes

appear, they are temporary and always corrected with

the exchange of beacons from neighboring nodes.

6. Performance analysis

To evaluate the DDFC protocol performance we imple-

mented it in the NS3 simulator, version 3.14.1. The evalu-

ation scenario creates a realistic environment monitoring

application aiming to assess the established clusters effi-

ciency by verifying the readings similarity relations and

the quality of the elected cluster-heads. This scenario is

based on the humidity readings collected by the Intel Berk-

ley Research Lab [29]. Considering an urban scenario, we

assume nodes do not have energy limitations, which could

be obtained from existing electric networks, such as trough

street poles [30].

The scenario is composed of 54 nodes that operate for

1200 s. As the environment was small, it was amplified

in a scale of 15x, resulting in a rectangular area of 630 m

vs 480 m, given that in the original scenario a standard

transmission range would manage to cover all the area,

leading to uninteresting results. With this scale, a trans-

mission range of 100 m is used, enabling an evaluation that

still has data with spatial relation properties.

Four parameters are varied in the simulations: (i)

CThresh, which indicates the reading similarity among

data; (ii) int, which indicates the fixed interval between

beacons; (iii) MaxK, which determines the maximum

possible distance from a common node to a cluster-head,

such that the maximum distance is MaxK þ 1; and (iv)

adap, which indicates whether or not an adaptive interval

was considered in the simulation. The ranges

0:5;1:0;1:5;2:0 were used for CThresh;1;2;3 for maxK;

and 6;12;24;48;96 for int.

Apart from that parameters variation for DDFC, another

variant of DDFC was implemented, named DDFC-K. Such

variation uses the original rules from the KHOPCA [9]

protocol on the Indexing Agent, keeping the remaining

agents operating the exact same way as DDFC. Such variant

aims to verify if the proposed alterations were capable of

enhancing the stability and quality of established cluster-

heads.

The SCCS (Spatiotemporal Clustering and Compressing

Scheme) [12] protocol was also implemented for the

evaluation. It was chosen because it presents a clusters

maintenance operation which considers the readings sim-

ilarity to cluster the nodes. The CThresh is a common

parameter to SCCS, sharing the same meaning as for DDFC.

The parameter int, for SCCS, is the interval between the

transmission of HELLO messages, analog to DDFC’s bea-

cons. The main difference between DDFC and SCCS is the

need of SCCS to coordinate the network from the base sta-

tion, determining when clusters should be split apart in

order to keep the data similarity threshold satisfied.

The evaluated metrics were: number of cluster-heads,

number of clusters, number of lone nodes, cluster-

heads duration, average readings amplitude on clusters

and internal routes inconsistency. These metrics deter-

mine the protocol behavior in how well it dynamically

adapts to the readings variation, and the quality of the

internal routes from common nodes to cluster-heads it

produces.

The number of cluster-heads, clusters and lone nodes

are evaluated not only for performance but also to assess

the protocol’s suitability to possible applications. The clus-

ter-head duration expresses the time a cluster-head man-

ages to keep its maximum score, given that higher

average durations indicate that the most suitable cluster-

heads were elected. Energy issues are disregarded – the

suitability of those nodes in the role of cluster-head is

energy independent. The cluster readings amplitude

expresses the average difference between the highest and

lowest readings in the clusters, and is important for verify-

ing the aggregates synchronization’s behavior correctness.

Finally, the internal routes inconsistency corresponds to

the average number of nodes which cannot reach their

cluster-heads with the current network state and node

scores.

The results presented in the following were obtained

from 35 simulations performed for each parameter combi-

nation. The charts present a 95% confidence interval, indi-

cated by vertical bars.

6.1. Established clusters

Fig. 9 presents a set of charts which evaluates the influ-

ence of the CThresh parameter on the number of cluster-

heads, clusters, and lone nodes – i.e., nodes whose cluster

consist of only one node. On the left, it can be seen that

the higher the CThresh, the lower the number of cluster-

heads. Further, MaxK has the same influence, being more

visible between MaxK ¼ 1 and MaxK ¼ 2. This happens

because the higher the CThresh, the lower the number of

clusters, as seen on the central chart, because more distant

readings will be considered similar.MaxK acts according to

the rules presented in the Indexing Agent, given that

higher MaxKs yield less cluster-heads. Finally, the number

of lone nodes tends to decrease as the CThresh parameters



increases, given that with higher CThreshs, more nodes will

be clustered together due to the less strict similarity rela-

tion needed. Overall, the average cost in messages

exchanged without the Adaptive Agent is n � int, where n

is the number of nodes.

6.1.1. Comparison with DDFC-K and SCCS

Fig. 10 presents the results obtained for the DDFC-K

variation. It can be seen that DDFC-K has results very sim-

ilar to DDFC. This indicates that the alterations on the rule

system have not generated major changes on the network

hierarchy as a whole, not being evident on these metrics.

SCCS, on the other hand, showed a very distinct behav-

ior, as seen in Fig. 11. Initially, the number of established

cluster-heads is lower, due to the more complex hierarchy

of SCCS, which establishes, apart from cluster-heads, gate-

way nodes to connect adjacent clusters. However, apart

from that, the number of cluster-heads and clusters does

not follow the CThresh growth in a linear way. That hap-

pens because the charts present the average values, con-

sidering the entire simulation time. With SCCS, there is a

tendency for the number of clusters to go up to a certain

limit, because the SCCS maintenance consists only of

breaking clusters, without any mergers. Hence, even with
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Fig. 9. Number of cluster-heads, clusters and lone nodes.
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Fig. 10. Behavior of the clusters on DDFC-K.
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Fig. 11. Behavior of the clusters on SCCS.



a CThresh large enough for only a few clusters to exist, they

will still be continuously split, without mergers to balance

such metric.

The lone nodes metric showed an inadequate behavior

with SCCS, given that for small values of CThresh, too many

nodes in the network are alone in their clusters. This hap-

pens because, apart from the clusters breaking before a

reclustering process triggered by the sink, the SCCS algo-

rithm does not guarantee that the nodes are consolidated

on a permanent state. Many of the nodes were kept in a

temporary state GWR (candidate to gateway) until the sink

would trigger another reclustering process. Furthermore,

as it will be shown further, as SCCS does not employ the

cluster average readings and only breaks the clusters, the

CThresh parameters tend to exert a more restrictive

influence.

6.2. Cluster-head duration

Fig. 12 presents a set of histograms which relates the

number of cluster-heads and their durations, determined

in a discrete number of turns, given that a turn represents

a time period of 10s. The set of histograms is presented in a

frame that varies horizontally the parameter int and verti-

cally the parameter CThresh. It is seen that in every case,

higher concentrations of cluster-heads are found for the

duration of 120 turns, which in this case corresponds to

the entire lifetime of the network. The high duration of

these cluster-heads, established according to the Indexing

Agent scores, indicates that the used rules establish stable

cluster-heads, even with the dynamicity of data readings.

This happens mostly because of the fourth rule employed

by the Indexing Agent, which was modified to give priority

to the cluster-heads with greater number of neighbors

with similar readings.

When CThresh increases, the number of cluster-heads

drops. Although this difference is more pronounces for

the maximum duration, it happens in every case, and it

happens because a higher CThresh yields less cluster-heads

in the network as a whole, as seen in Fig. 9. When higher

beaconing intervals are used, the duration of the cluster-

heads is more dispersed in the intermediate cases, decreas-

ing not only the number of cluster-heads of low duration

(i.e., less than 10 turns), but also the number of cluster-

heads of maximum duration.

6.2.1. Comparison with DDFC-K and SCCS

Both SSCS and DDFC-K presented lower stability of the

established cluster-heads. For 24 s intervals with a

CThresh ¼ 1:0, for instance, while DDFC presented 13 clus-

ter-heads with maximum duration, DDFC-K and SSCS pre-

sented 12 and 9, respectively. Fig. 13 shows the histogram

for the cluster-head durations for the DDFC-K variation,

which employs KHOPCA’s original rules on the Indexing

Agent. Comparing such histogram to DDFC’s, it can be

observed that although int and CThresh have the same

influence on the results, the duration of the cluster-heads

for DDFC-K is always inferior, indicating a worse choice

of cluster-heads. That happens because DDFC applies mod-

ified rules that optimize stability by giving priority to the

cluster-heads which have larger neighborhood of similar

readings.

Fig. 14 presents the histogram of cluster-heads duration

for SCCS. The higher distribution of cluster-heads at lower

durations can be immediately observed. SCCS does not

manage to establish cluster-heads adequately when

CThresh is too low because, independent from the estab-

lished cluster-heads, there is the rupture of the clusters,

which is mandatory when the cluster readings diverge,

without any further unions. Further, CThresh exerts more
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restrictive influence, as will be seen further. However, a

more stable behavior is observed for CThresh ¼ 1:0, spe-

cially for the case of int ¼ 6:0. High values for CThresh also

present instability because the higher these values are, the

greater the extension of the formed clusters is leading to a

higher likelihood of the cluster to break with the similarity

thresholds.

It is hard to establish patterns on the duration of clus-

ter-heads because SCCS behaves in a not deterministic

way, depending very much on the order with which the

messages are exchanged during the cluster setup phase.

Unlike DDFC, which breaks and merges the clusters

dynamically in a simple and more efficient way, SCCS can

only break them and has to rely on a complete reclustering

operation to achieve something analog to the transparent

and abstract mergers of DDFC’s clusters.

6.3. Similarity of readings among clustered nodes

To determine if the Firefly Agent managed to cluster

nodes of similar readings, the amplitude metric is

employed, which corresponds to the difference between
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the highest and lowest readings in a cluster. Fig. 15 shows

the average amplitude of clusters regarding the evaluated

parameters. The amplitude increases proportionally to

CThresh, but always stays below a 2 � CThresh limit. That

proves that the Firefly Agent has managed to group nodes

of similar readings, because given an average reading v, a

cluster would accept new nodes in the interval

½v ÿ CThresh;v þ CThresh�, whose amplitude is exactly

2 � CThresh.

The MaxK parameter does not exert much influence on

the amplitude of the clusters. Although it influences the

number of cluster-heads, as seen in Fig. 9, the number of

clusters remains the same, depending only on the similar-

ity threshold and on the CThresh. The use of an adaptive

interval reduces the amplitude of the clusters, although

barely. That happens because although an adaptive

approach allows that readings changes and logical clusters

become more dynamic and quick, it does not exert much

influence on the amplitude itself, given that the raise of

dynamicity yields faster adaptation only. Hence, such

adaptive approach is beneficial regarding the faster detec-

tion of events of interest, as a consequence of the faster

clusters formation adaptation to readings variation.

Furthermore as int intervals between the beacons

increase so does the amplitude of the readings. That hap-

pens because with higher intervals nodes will take more

time to exchange beacons and thus update the cluster for-

mation to a more coherent state. Moreover, for

CThresh ¼ 2:0, the behavior of the amplitude variation

according to int breaks the expected behavior. This hap-

pens because, as seen in Fig. 9, the network operates with

only two clusters for CThresh ¼ 2:0. The network organiza-

tion in only two clusters is anomalous by itself due to the

immense size such clusters reach.
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Fig. 15. Similarity of readings inside the same clusters.
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Fig. 16. Readings similarity for DDFC-K.



6.3.1. Comparison with DDFC-K and SCCS

As seen in Fig. 16, DDFC-K presented amplitudes almost

equal to DDFC. With the use of not adaptive intervals, the

amplitude found is exactly the same. On the other hand,

when adaptive intervals are used, there is a minor varia-

tion to the amplitude, though without showing a constant

pattern in every case. That indicates such changes occur

due to the change of the beaconing timing.

Fig. 17 shows the amplitudes of the clusters established

by SCCS. They are always lower, at approximately 50% of

the amplitude yielded by DDFC. That happens for two rea-

sons. Initially, DDFC employs the average aggregation of

readings in the cluster to compare the similarity among

nodes, yielding a flexible behavior in the recognition of

new similar readings. On the other hand, SCCS employs

always the cluster-head’s reading, exhibiting less flexibil-

ity. Furthermore, as SCCS can only break its clusters, with-

out dynamically merging them, nodes of the same cluster

are in smaller number Fig. 11, contributing to the stricter

similarity relation.

Even though this explains the inadequate behavior of

SCCS for the case of CThresh ¼ 0:5, which generates a prac-

tical interval that is too small, in the remaining cases its

behavior does not improve significantly. Thus we can con-

clude that all protocols and variants respected the similar-

ity threshold considered, but SCCS is less flexible and, in

practice, considers an interval approximately 50% lower

than expected.

6.4. Route inconsistency

Fig. 18 shows the average accumulated inconsistency of

routes in the indicated scenarios – i.e., the average of inva-

lid routes throughout all the simulation time. It is noted

that the higher the int is, the higher the inconsistency.

Although an adaptive approach enhances the convergence
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Fig. 17. Readings similarity for SCCS.
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Fig. 18. Accumulated inconsistency of routes.
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Fig. 19. Inconsistency of routes for DDFC-K.



time in the start of the network lifetime, it ends generating

more invalid routes. Thus, the application should – by itself

– determine if the more flexible adaptive detection justifies

the slightly larger number of invalid routes. Such Fig-

ure also varies the MaxK parameter, which increases the

number of invalid routes with larger values, due to the

greater distances that are made possible between common

nodes and cluster-heads.

6.4.1. Comparison with DDFC-K and SCCS

The chart of Fig. 19 shows the inconsistency for the

DDFC-K variant. In all scenarios, the proposed modifica-

tions on the rule system enhanced the stability of

established cluster-heads, by giving priority to the clus-

ter-heads with larger number of neighbors with similar

readings. Thus, the inconsistency is smaller for DDFC.

Fig. 20 presents the accumulated inconsistency of

routes for SCCS. Two important points are observed. Ini-

tially, the inconsistency for SCCS is much superior, corre-

sponding to twice the invalid routes in DDFC, due to

SCCS’s instability and constant fragmentation of clusters.

What is more, there is no obvious pattern between the

inconsistency and the int parameter. This is because in

SCCS there are no clusters unions which explains the

insensitivity to the int parameter. For DDFC the indexing

operation is dynamic and adaptive. Therefore, even though

at a given instant there may exist an invalid route, the state

of nodes always converge quickly to a valid configuration.

In SCCS, there are no route repairs, so one has to rely on the

complete reclustering of the entire network.

7. Conclusion

Clusters of nodes with similar spatial readings in WSNs

enable more efficient use of aggregation techniques and a

more robust detection of anomalous events of interest.

Inspired by fireflies, the DDFC protocol employs periodic

beacons to keep the readings aggregation synchronized

on the nodes of every cluster in an adaptive and reconfig-

urable approach. Given that, neighbors with similar read-

ings are dynamically identified, enabling the cluster

fragmentation and union operations.

The Firefly Agent employs its biological principles in a

novel way, differing from the current literature. Mean-

while, the Indexing Agent clusters the nodes dynamically

while keeping routing information. An Adaptive Agent

was also proposed in order to enhance the former agents

further when event detection needs to be performed even

faster vis-a-vis the beacon interval.

Such agents maintain clusters of nodes with similar

readings, enabling new kinds of applications. In the agri-

culture, such clusters could be used to adjust water irriga-

tion based on humidity readings from sensors. In the urban

environment, clusters of heat and pollution readings can

guide health and social projects to enhance the quality of

life. Overall, applications that depend on spatial extents

similarity information can benefit from using DDFC.

DDFC was evaluated with real readings, obtained from

the Intel Berkeley Research Lab. Simulations show that

DDFC dynamically keeps the nodes clustered through a

synchronized aggregation of the average readings in the

clusters, always satisfying the predefined similarity

threshold. The rule modifications employed presented bet-

ter stability, yielding a decrease in the number of inconsis-

tent routes when compared to SCCS. As future work we

intend to explore the adaptive control of the interval

between each beacon broadcast to decrease the overhead

for dense networks.
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