
HAL Id: hal-03464317
https://hal.science/hal-03464317v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipeline Optimization using a Cost Extension of Timed
Petri Nets

Rémi Parrot, Mikaël Briday, Olivier H Roux

To cite this version:
Rémi Parrot, Mikaël Briday, Olivier H Roux. Pipeline Optimization using a Cost Extension of Timed
Petri Nets. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), Jun 2021, Lyngby,
Denmark. pp.37-44, �10.1109/ARITH51176.2021.00018�. �hal-03464317�

https://hal.science/hal-03464317v1
https://hal.archives-ouvertes.fr


Pipeline Optimization using a Cost Extension of
Timed Petri Nets

Rémi Parrot
École Centrale de Nantes
LS2N, UMR CNRS 6004

Nantes, France

Mikaël Briday
École Centrale de Nantes
LS2N, UMR CNRS 6004

Nantes, France

Olivier H. Roux
École Centrale de Nantes
LS2N, UMR CNRS 6004

Nantes, France

Abstract—A major step in arithmetic operators design is the
placement of pipeline stages, with the goal of drastically increase
the data throughput.

Approaches, such as the as-soon-as-possible greedy algorithm,
allow pipelining with a frequency target. They can possibly be
combined with a retiming operation to reduce the number of
pipeline registers. This retiming step is based on a weighted
directed graph model, from which the pipeline placement is
reduced to an optimisation problem (for example ILP). However,
this approach produces only a unique solution, and makes it
difficult to add additional constraints on the resulting pipeline.

We propose to use a Timed Petri Net extension with cost, where
time captures the propagation delay and cost measures the size of
pipeline registers. The state space of the model captures exactly
the circuit states and the branching points, so its exploration can
be guided by comparing the circuit states regarding any feature
(number and size of registers, critical path, throughput, etc). The
pipeline exploration can be reduced to a weighted branching-time
logic model-checking problem, that we prove to be PSPACE-
complete on this model.

We have implemented this exploration algorithm in a prototype
tool. We apply it on some arithmetic operators provided by
FloPoCo showing improvements up to 35% compared to the
current implementation.

Index Terms—pipeline optimisation, arithmetic operator, syn-
chronous circuit, Timed Petri Net

I. INTRODUCTION

The pipeline is an essential step in the design of arithmetic
operators to significantly increase the operating frequency and
therefore the throughput, at the cost of an increased latency.

The work presented in this paper takes place just before the
synthesis phase, when an unpipelined circuit is available. The
circuit is composed of different operators which are combina-
torial or sequential entities that are not modified (replacement
of a constant multiplier by a shift-and-add implementation
for example). We focus on the automatic generation of a
pipeline, i.e. the efficient placement of the flip-flops that
guarantee a target frequency, but also minimize the resources
consumed by the pipeline. As the target applications are the
arithmetic operators, we restrict ourselves on synchronous,
dataflow circuits with unfoldable loops.

This work is supported by the Renault-Centrale Nantes chair dedicated to
the propulsion performance of electric vehicles.

Automatic pipeline

Automatic pipeline generation was initially formalized by
Leiserson and Saxe in [1], using a graph theoric model. This
solution is based on retiming, i.e. moving registers from one
place to another to change the timings of the circuit but without
altering the functionality. Using retiming, it is possible to build
a pipeline ensuring a minimal throughput, and minimizing the
resources consumed by the registers [1]. However, this solution
is complex to implement, and has a level of abstraction that
makes it very difficult to add additional constraints on the
produced pipeline.

An as-soon-as-possible greedy algorithm has been imple-
mented by Istoan and De Dinechin in [2] for the FloPoCo
arithmetic core generator framework [3]. This method adds
operators as early in the pipeline as possible, until the maxi-
mum target period is reached. It then goes to the next pipeline
stage and starts the operation again. This approach is very
fast to execute, and guarantees a target frequency. However, it
does not necessarily compute the optimal pipeline in terms of
resource consumption.

This result can be improved by using retiming, but we
want to go further, by allowing additional constraints to be
added to the pipeline. For example, it can be useful for time-
multiplexing to ensure that two signals are never produced
simultaneously, or at least at the same pipeline stage. There-
fore, we propose a new approach based on a formal model:
the Petri Net.

Petri Nets for circuit design

As introduced in [1], a circuit can be abstracted by a
weighted directed graph. In fact, the intuition behind this
model is a Marked Graph (also called event graph) which is a
subclass of Petri Net where each place has one incoming arc,
and one outgoing arc. Due to their concurrency nature, Petri
Net have been extensively used to analyse and optimise timing
properties of both synchronous and asynchronous circuits [4]–
[7].

It has proven to be particularly effective in Latency-
insensitive systems, since such architectures have been pro-
posed [8]. Bufistov et al. [4] extend the work of Leiserson
and Saxe on Latency-insensitive systems, by combining re-
timing and recycling, i.e. inserting bubbles (registers without



informative value), in order to reduce the total number of reg-
isters while providing a minimum throughput. More recently,
Josipovic et al. [9] propose a timing optimization of circuits
generated by HLS with control-flow structures, by extracting
choice-free sub-circuit and applying to them the approach of
Bufistov et al. [4].

Advances have also been made on asynchronous circuits,
through slack matching, i.e. inserting buffer register to prevent
stalls. Najibi et al. [6] focus their work on mode-based condi-
tional asynchronous circuits, where the modes switching have
given probabilities. They break the slack matching problem of
such systems into Markov chains for the mode switching, and
Petri Net for the buffer placement.

All those works share the same method of resolution:
deduce the timing constraints from the Petri Net structure,
and get back to an Integer Linear Problem. In contrast, we
propose to explore the states of the circuit using directly the
semantics of the model. The main interest is that the model
states capture exactly the circuit states, so the exploration can
be guided online by comparing the circuit states regarding any
feature (number and size of registers, critical path, throughput,
etc).

Formal model of a circuit

We propose to use the formal model of [10] extending
Timed Marked Graph, capturing the behaviour of the circuit,
the propagation delay and the number of pipeline registers.

The two main time extensions of Petri Nets are Time Petri
Nets [11] and Timed Petri Nets [12]. While a transition can be
fired within a given interval for Time Petri Nets, deterministic
(or constant) “firing times” are assigned to transitions of Timed
Petri Nets.

In a Timed Petri Net, transitions are fired according to
the maximal-step rule [13], i.e. in each marking a maximal
set of firable transitions fires at once. This semantics can be
ambiguous in the case of conflict between transitions ; for
example for 2 simultaneous transitions with the same duration
and the same input place such that the firing of one disabled
the other one. However, in a Timed Marked Graph, since
every place has only one outgoing arc, there can not be any
conflict. Hence, Timed Marked Graph, where transitions are
fired according to the maximal-step firing rule, is a well-fitting
model for logical circuits and their timing properties.

In the literature, the optimal-cost problem has been ad-
dressed for Priced Timed Petri nets in [14] and Cost Time
Petri Nets [15] where the rate cost of a place p is the sojourn
cost (per time unit) of each token in place p.

Contribution

We first recall the extension of Timed Marked Graph
proposed in [10], with delayable transitions and a particular
reset transition, that allows to model the flip-flop (register)
placement. The state space of this model will give most of
possible pipelines of the circuit. Moreover, we extend this
model with a function giving a cost to each marking, and
thus, allowing to compute the cumulated cost of the states

after each reset transition, and to compare the different runs.
We give the translation rules allowing to build a model from
a circuit, and some heuristics for a smart placement of the
delayable transitions. From the model, we give a state-space
exploration algorithm aiming to minimize this cost function.
The approach is fully implemented and uses propagation delay
estimations provided by FloPoCo.

An informal definition of Cost Reset Timed Petri Net is
provided in Section II. Section III gives the translation rules
from a pipelining problem to a Cost Reset Timed Petri Net. We
present the state-space exploration algorithm in Section IV and
we present the experimental results in Section V. Conclusion
and future works are presented in Section VI.

II. A MODEL FOR PIPELINED SYNCHRONOUS CIRCUITS

N and R≥0 are respectively the sets of integer and non-
negative real numbers. For vectors of size n, the usual opera-
tors +,−,×, <,≤, >,≥ and = are used on vectors of Nn and
Rn≥0 and are the point-wise extensions of their counterparts in
N and R≥0. Let 0̄ be the null vector of size n.

A. Timed Petri Net with reset and delayable transitions

An extension of Timed Petri Nets with a reset action
(RTPN) has been proposed in [10] for pipelined synchronous
circuit design. The authors give a formal definition of this
model, decidability and complexity results and an efficient
state space abstraction algorithm.

Informally, with each transition of the Net is associated a
clock and a delay. The clock measures the time since the
transition has been enabled and the delay is interpreted as a
firing condition: the transition may and must fire if the value
of its clock is equal to the delay. Moreover, some transitions
are delayable and may fire if the value of its clock is greater or
equal to the delay. But, a fired set of transitions must always
contain at least one transition whose clock is equal to its delay.
Finally, the clocks can be reset (let reset be the corresponding
action) and the delay between two successive resets is set
within an interval Ireset.

Formally:
Definition 1 (RTPN): A Timed Petri Net with reset and

delayable transitions is a tuple (P, T,•(.), (.)•, δ, Ireset,M0)
defined by:
• P = {p1, p2, . . . , pm} is a non-empty set of places;
• T = {t1, t2, . . . , tn} is a non-empty set of transitions;
• TD ⊆ T is the set of delayable transitions;
• •(.) : T → NP is the backward incidence function;
• (.)• : T → NP is the forward incidence function;
• M0 ∈ NP is the initial marking of the Petri Net;
• δ : T → N is the function giving the firing times (delays)

of transitions;
• Ireset is the reset time interval with lower (I↑reset) and

upper (I↓reset) bounds in N.
A marking M is an element of NP such that ∀p ∈ P , M(p)

is the number of tokens in place p.
Transitions are fired according to the maximal-step firing

rule (among non-delayable firable transitions), and thus must



fire simultaneously. From a marking M , the simultaneous
firing of a set τ ⊆ T of transitions leads to a marking
M ′ = M + Σt∈τ

(
t• −•t

)
.

A marking M enables a transition t ∈ T if M ≥• t. A
transition t′ is said to be newly enabled by the firing of a set of
transitions τ , if M+Σt∈τ

(
t•−•t

)
enables t′ and (M−Σt∈τ

•t)
does not enable t′. If t remains enabled after its firing then t
is newly enabled.

A state is a pair (M, v) where M is a marking and v ∈
R
T∪{reset}
≥0 is a time valuation of the system, i.e. the value of

the clocks. v(t) is the time elapsed since the transition t ∈ T
has been newly enabled. v(reset) is the time elapsed since
the last reset. 0̄ is the valuation assigning 0 to every transition
and reset. The initial state of the RTPN is q0 = (M0, 0̄).

A non-delayable (resp. delayable) transition is firable if it
is enabled and its clock is equal (resp. greater or equal) to
its delay. A maximal-step is a set of transitions τ ⊆ T ,
which contains all the non-delayable transitions that can be
fired simultaneously from a given state. In a Marked Graph
where every place has one incoming arc, and one outgoing arc,
there can not be conflict and the firing of a transition cannot
disable another transition. But in the general case, there can
be conflicts, and thus there can be several maximal-steps τ
from a given state. The firing of a maximal-step τ ⊆ T from
a state (M,v) is denoted (M, v)

τ−→ (M ′, v′). It leads to the
new marking M ′ = M + Σt∈τ

(
t• −• t

)
, and reset the clocks

of all newly enabled transitions. τ must contain at least one
transition t such that v(t) = δ(t) (its clock is equal to its
delay), therefore we prevent infinite waiting when there is a
delayable transition.

A waiting of a delay d ∈ R≥0 from a state (M,v) is denoted
(M,v)

d−→ (M,v′). It leads to the new valuation v′ such that
for all enabled transitions t, v′(t) = v(t)+d. A delay transition
is possible only if the clock of all non-delayable transition
t ∈ T \ TD does not exceed its delay v′(t) ≤ δ(t), and the
clock of the reset does not exceed the upper bound of Ireset,
v′(t) ≤ I↓reset.

Finally, the reset action from (M,v) is denoted
(M,v)

reset−−−→ (M,v′). It leads to v′ such that for all t ∈ T ,
v′(t) = 0. It is possible when the clock of the reset is in the
reset time interval v(reset) ∈ Ireset.

The firing of maximal-steps and the reset action are called
discrete transitions, whereas the waiting is called delay tran-
sition. A run of a RTPN is a possibly infinite sequence ρ =

q0
d1−→ qd1

τ1−→ qτ1 . . .
dn−→ qdn

τn−→ qτn of alternating di delay
(possibly null) and τi discrete transition where either τi ⊆ T
or τi = {reset}. Let a run ρ = q0

α1−→ q1 . . .
αn−−→ qn, we write

ρ′ = ρ
αn+1−−−→ qn+1 if ρ′ = q0

α1−→ q1 . . .
αn−−→ qn

αn+1−−−→ qn+1

is a run of the RTPN .

B. Graphical representation and example

A Petri net is a directed bipartite graph, in which the transi-
tions are represented by boxes (or bars), places are represented
by circles and backward forward incidence functions (pre
and post conditions) of transitions are represented by arrows.

Moreover, we use the following notations : the delay of a
transition is in red and a delayable transition is in blue (the
values in green will be used for a further cost extension).

Let us consider the RTPN of Fig. 1 (notice that this
particular example is a Marked Graph). A state is a pair
(M,v). To simplify the notation we will note a marking as
a set of marked places instead of a vector and we will give
the valuation v only for the enabled transitions. For example,
in the initial state, we have tokens in places p0 and p1, and
only two enabled transitions t0 and t1 then the initial state is

noted q0 =

{p0, p1}
v(t0) = 0
v(t1) = 0
v(reset) = 0

t0

t1

t2

t35

9

4

2

p0

p1

p2

p3

p4

p5

p6
8

8

8

4

1

4

8

Ireset = [6, 10]

Fig. 1: A Cost Reset Timed Petri Net example

According to the semantics, the runs of the RTPN of Fig. 1
between the initial state q0 until the occurrence of the reset
action are given in Fig. 2. We do not draw all the possible reset
actions here, because whatever the delay before the reset, it
always leads to the same state. But in the general case, a reset
can be done at any time, so there exists an infinite number of
runs.

{p0, p1}
v(t0) = 0
v(t1) = 0
v(reset) = 0

{p0, p1}
v(t0) = 5
v(t1) = 5
v(reset) = 5

{p1, p2, p3}
v(t1) = 5
v(t2) = 0
v(t3) = 0
v(reset) = 5

{p1, p2, p3}
v(t1) = 6
v(t2) = 1
v(t3) = 1
v(reset) = 6

{p1, p2, p3}
v(t1) = 0
v(t2) = 0
v(t3) = 0
v(reset) = 0

{p1, p2, p3}
v(t1) = 7
v(t2) = 2
v(t3) = 2
v(reset) = 7

{p1, p2, p3}
v(t1) = 9
v(t2) = 4
v(t3) = 4
v(reset) = 9

{p3, p4, p5}
v(t3) = 4
v(reset) = 9

{p4, p5, p6}
v(reset) = 9

{p1, p2, p6}
v(t1) = 7
v(t2) = 2
v(reset) = 7

{p1, p2, p6}
v(t1) = 0
v(t2) = 0
v(reset) = 0

{p3, p4, p5}
v(t3) = 0
v(reset) = 0

{p4, p5, p6}
v(reset) = 0

{p1, p2, p6}
v(t1) = 9
v(t2) = 4
v(reset) = 9

5 {t0} 1

{reset}2
4

{reset}

{reset}
{t3}

{t1, t2} {t1, t2, t3}

{reset}

{reset} {reset}
2

{reset}

{t1, t2}

q0 q1
q2 q3

q4q5q6

q7 q8
q9

q10

q11 q12 q13

Fig. 2: State graph of RTPN of Fig. 1 from initial state to the
first occurrence of reset (green framed states).

Notice that, as the transition t3 is delayable, it can be fired
either alone when v(t3) = 2 (in q5), or it can wait to be fired
with t1 and t2 when v(t3) = 4 (from q6). But when its delay



is missed v(t3) > δ(t3), and no other transition can be fired
at its delay, then t3 can no more be fired (until the next reset).
This would have been the case, if we have decided to elapse
time from q7.

C. Cost Reset Timed Petri Net

Cost Reset Timed Petri Net extends RTPN with a cost
associated with each place and a marking cost function.

Definition 2 (CRTPN): A Cost Reset Timed Petri Net is a
tuple (N , C, ω) where:
• N = (P, T,•(.), (.)•, δ, Ireset,M0) is a RTPN;
• C : P → N is the place cost function;
• ω : NP → N is the marking cost function (recall that a

marking M ∈ NP ).
In the case of one-bounded (safe) Petri Net, the marking of

a place M(p) can only take its value in {0, 1}, which can
be interpreted both as a boolean and as an integer value.
Therefore, in the following we will use both arithmetical
operators (in {+, ∗}) and the logical or operator ∨, in the
definition of the marking cost function ω.

For example, let ω(M) = (M(p1)∨M(p2))∗4+M(p2)∗10,
and assume that M1(p1) = M1(p2) = 1, then ω(M1) = (1 ∨
1) ∗ 4 + 1 ∗ 10 = 14.

A classical marking cost function is ω(M) =
∑
p∈P M(p)∗

C(p) which is the sum of marked places weighted by their cost.
Definition 3 (Cost of a run): The cost Ω(ρ) of a run ρ

is the cumulated marking cost of the states after each reset
transition over the run, starting with the cost of the initial
marking. It is inductively defined on a run ρn = ρn−1

αn−−→ qn,
with qn = (Mn, vn) by:
• Ω(q0) = ω(M0)

• Ω(ρn) =

{
Ω(ρn−1) + ω(Mn) if αn = {reset}
Ω(ρn−1) otherwise

Let now suppose that the example of Fig. 1 is a CRTPN,
where the cost associated to each place is labelled in green. If
we consider the marking cost function ω(M) =

∑
p∈P M(p)∗

C(p), then the minimal cost following a reset is for the marking
M1 = {p3, p4, p5} since ω(M1) = 4+1+4 = 9. This marking
is obtained in state q11 of Fig. 2, by firing the transitions t0, t1
and t2. The cost of the marking M2 = {p4, p5, p6} (state q12)
where all the transitions are fired is ω(M2) = 1 + 4 + 8 = 13.

D. Complexity of model-checking problem

Temporal logics were introduced by Pnueli [16] as spec-
ification languages to express the behaviours of sequential
and concurrent programs. Since the early 1990s, classical
temporal logics have been extended with timing constraints.
While temporal logics only express constraints on the order of
events, their timed extensions can add quantitative constraints
on delays between those events. TCTL, introduced in [17], is a
real-time extension of the branching-time temporal logic CTL
and Weighted CTL [18] extends CTL with cost-constrained
modalities.

In the sequel we only consider bounded Nets.
Theorem 1: Model checking of Weighted CTL for bounded

CRTPN is PSPACE-complete.

Proof: PSPACE-hardness: Reachability for bounded
timeless Petri Nets with the interleaving semantics is PSPACE-
hard [19], and so for the maximal-step semantics (we can
simulate the interleaving semantics by adding a self loop from
all places of the net). The class of Timeless Petri Nets with
maximal-step semantics is simulated by CRTPN with TD = ∅,
∀t ∈ T ′, δ(t) = 0 and I↑reset > 0 then reachability is PSPACE-
hard for CRTPN, and so is the Weighted CTL model checking.

PSPACE membership: For RTPN (as for CRTPN), the
differences between all valuations v(t) of transition t can be
break into simple diagonal constraints v(reset) − v(t) = c
where c ∈ N and 0 ≤ c ≤ I↓reset (as illustrated in section II-E),
meaning that the transition t has been enabled c time units
after the last reset. In other words, there exists a fixed offset
between v(reset) and v(t), and therefore we can define a
timed abstraction fully defined by the value of v(reset).
Hence, we can apply the PSPACE algorithm proposed in
[18] for model-checking Weighted CTL on one clock Priced
Timed Automata showing that Weighted CTL is PSPACE
under “single clock” assumption.

The WCTL allows us to verify properties such that, the
reachability of a given marking constraint Goal, with a cost
lower or equal than k, which is written EF≤k(Goal). As an
illustration in our specific pipeline problem, consider, in the
Fig. 1, the property EF≤9(M(p3) = M(p4) = M(p5) = 1).
This reachability property is verified by the run ρ = q0 →
q1 → q2 → q6 → q7 → q11 of Fig. 2. The full grammar of
WCTL is even more expressive, and is defined in [18].

Although the WCTL is very powerful, it is not well suited
for the search of optimal. For this reason, in section IV we
define a proper algorithm to directly look for the minimal cost.

E. Symbolic state space

A timed abstraction based on simple diagonal constraints
v(reset)−v(t) = c allows to construct an abstract state graph
of the model. The elapsing of time is captured and included
in the symbolic states and the edges of the graph correspond
to the discrete firings of transitions. For example, the states
q2, q3, q5 and q6 of the state graph of Figure 2 belong to the

same following symbolic state: S2 =

{p1, p2, p3}
v(reset)− v(t1) = 0

v(reset)− v(t2) = 5

v(reset)− v(t3) = 5

5 ≤ v(reset) ≤ 9

In practice, this symbolic abstraction is much more efficient
than the regions one and our algorithm is based on it. One can
notice that a firable set of transitions τ contains at least one
transition t ∈ τ , such that v(t) = δ(t), with δ(t) ∈ N. Then,
the firing of transitions is done from an integer point, i.e. a
valuation that assign an integer value to each transition. In this
paper, for the sake of clarity, instead of symbolic state graph,
we represent the elapsing of time explicitly as in Figure 2.

III. FROM A CIRCUIT TO A COST RESET TIMED PETRI NET

This section presents the translation rules required to model
a circuit with a Cost Reset Timed Petri Net. The historical



model of Leiserson and Saxe [1] is recalled as an element of
comparison.

An example of circuit is presented on Fig. 3a, involving
some operators opi and some signals sj transmitted by con-
nections (data size in bits depicted in green). The pipeline of
this circuit is already available and pipeline registers are shown
with blue rectangles. The propagation delay of each operator
is shown in red.

s0(7:0)
op0

s1(7:0)
op1

op2

op3

s2(3:0)

s3(7:0)

s4

op4

op5

5 6

1

6

3

7
s5(7:0)

s6(15:0)

s7

(a) Pipelined circuit (with frequency f ≥ 1
8

)

v0 v2

v1

v3

v4

v55

6

1

6

3

7

e0
1

e01
1

e02
0

e03
1

e2
1

e3
2
e4

1

e6
1

e7
2

e5
2

(b) Leiserson and Saxe model

op0 b1

op1

op2

op3

op4

op5

5 0

6

1

6

3

7

s0 s1

s11

s12

s13

s2

s3

s4

s5

s6

s78 8

4

8

1

8

16

1

8

Ireset = [4, 8]

(c) Cost Reset Timed Petri Net

Fig. 3: A pipelined circuit example.

Leiserson and Saxe formalize a circuit abstraction, using
a weighted directed graph, where the vertices are basically
the atomic functional elements (the operators) and the edges
are the connections in between. An illustration of this model
is given in Fig. 3b, where each operator has an associated
propagation delays (in red), and each connection has an
associated numbers of registers (in blue). It does not take into
account the size of the signals, but a workaround is to add
as many edges in parallel as the data size (not drawn in the
figure).

As stated in the introduction, this model is in fact a Marked
Graph, and many works have shown its utility for solving
pipelining relating problems [4]–[7]. We therefore propose to
use the extension of Marked Graph presented in section II.

In this model, nodes represent both operators and branching
points and the weight of edges represent the size of signals.
Then, we first define a circuit as a weighted directed graph
G = (V,E, d, w) where the set V = Op ∪ B of nodes is the
union of the set Op of operators with the set B of branching
points and the set E ⊆ V 2 of directed edges is the set of
signals. For each operator op ∈ Op, d(op) is the propagation
delay of op. For each signal s ∈ E, w(s) is the size of the
signal in bits (in green). For an edge s = (v, v′) ∈ E, we say
that s is an outgoing signal of v and an incoming signal of
v′. The incoming signal s of a branching point b and all its
outgoing signals have the same size w(s).

CRTPN is fundamentally different from a weighted directed
graph as it doesn’t hold the fully pipelined circuit in its state
but only one stage at a time. A complete pipeline is built from
a run of the model, i.e. a path in the state graph.

Then, such approach allows to build a pipeline from a non-
pipelined circuit. Moreover, it has the advantage to permits the
comparison between the pipeline stages on-the-fly when they
are created.

Translation rules

The CRTPN ((P, T,•(.), (.)•, δ, Ireset,M0), C, ω) produced
from the circuit of Fig. 3a, is represented on Fig. 3c and is
obtained using 7 translation rules.

The first four rules ensure the preservation of all the
elements of the circuit and their interconnections:

rule 1: ∃φs : E 7→ P a bijection, with ∀s ∈ E, C(φs(s)) = w(s);
rule 2: ∃φv : V 7→ T a bijection, with ∀op ∈ Op, δ(φv(op)) =

d(op) and ∀b ∈ B, δ(φv(b)) = 0;
T = TOp ] TB with TOp = φv(Op) and TB = φv(B).

rule 3: If s ∈ E is an incoming signal of v ∈ V , then •t(p) = 1
with t = φv(v) and p = φs(s);

rule 4: If s ∈ E is an outgoing signal of v ∈ V , then t•(p) = 1
with t = φv(v) and p = φs(s);

A signal and its data size are respectively represented by a
place and its associated cost. An operator and its propagation
delay are respectively represented by a transition and its firing
time. As well, each branching point corresponds to a transition
with a zero firing time (b1 on the figure). Its purpose is to allow
one stage of pipeline to be added either prior to branching
(s1), or only on some specific output branches (s11, s12 or
s13). Rules 3 and 4 define the incidences of the transitions so
that the network structure is preserved.

All input signals are considered synchronized, which is
equivalent to have them all on the first stage of the pipeline.
In the model it conforms with the initial marking M0 and is
related to the 5th rule:

rule 5: If s is an input signal (not outgoing from any operator),
then M0(p) = 1 with p = φs(s);

The reset operation corresponds to a transition of a pipeline
stage and resets the clocks of the CRTPN for the next stage.
Rule 6 defines the reset interval maximum bound:

rule 6: I↓reset =
1
f

;

The time elapsed since the last reset is contained in v(reset).
Semantics imposes that a reset can only occur if v(reset) ∈
Ireset, and therefore if the maximum bound is set to 1

f , then



the pipeline produced can run at least at frequency f . Here 1
f ,

and in the following 1
2f , are supposed to be in N, but they

can be rational without changing the results of section II.
The cost function gives the total number of flip-flops

implemented in the current stage of pipeline:
rule 7: We define POp = {p ∈ P | ∃t ∈ TOp, t

•(p) = 1}
and PB(p) = {p′ ∈ P | ∃t ∈ TB ,

•t(p) = 1
and t•(p′) = 1}. Then ∀M ∈ {0, 1}P ,
ω(M) =

∑
p∈POp

C(p) · (M(p) ∨
∨

p′∈PB(p)M(p′)).

Indeed the cost coefficient of a place is the size of the signal,
thus it is the number of flip-flops needed. The calculation of
the cost takes into account the particular case of branching
points, and the possible mutualisation of registers at the output
of a branching point. In Fig. 3c, the register before the opera-
tors op1 and op3 can easily be shared. This is represented with
a dotted green box in which places s11 to s13 share their cost,
as it models signals outgoing from the same branching point.
This explains why the cost of the places after a branching point
transition t following the place p is C(p) ·

∨
p′∈PB(p)M(p′).

Construction heuristics

The CRTPN produced with the translation rules previously
presented, in which all the transitions are set delayable, is able
to find the optimal pipeline, i.e. the pipeline minimizing the
resources while ensuring the operative frequency f . However
in practice, it leads to an explosion of the state space. Thus,
we provide heuristics of construction, handling some crucial
points to save resources, while limiting the size of the state
space.

Delayable transitions are a feature allowing to relax the
constraints on the model, and therefore to explore more states.
We propose two usages of delayable transitions.

heuristic 1: ∀t ∈ TOp, if
∑

p∈P C(p)·
•t(p) <

∑
p∈P C(p)·t

•(p),
then t ∈ TD;

When an operator has a larger bus width at the output than at
the input, then we may want to put the pipeline stage before.
To explore this possibility, setting its corresponding transi-
tion delayable allows the exploration of a pipeline keeping
the register before. In Fig. 3c, operators op2 and op4, are
translated into delayable transitions, because of the size of
their input/output signals.

heuristic 2: ∀t ∈ TOp, if ∃tB ∈ TB , p ∈ P such that
t•B(p) =

• t(p) = 1, then t ∈ TD;

The operators following a branching point can mutualise their
registers (as they use the same signal), in order to save
resources. Their corresponding transitions are therefore set
delayable to allow keeping the register before. The operators
op1, op2 and op3 are translated into delayable transitions, in
Fig. 3c, allowing the mutualisation of register.

The reset interval offers flexibility over a fixed value and
shorter pipeline stages can be defined to allow exploration of
other configurations. However, if the stages are too short, this
increases the number of stages (and thus the cost in registers).
The lower bound of the reset interval can be settles as follows:

heuristic 3: Ireset =
[

1
2f
, 1
f

]

The intuition behind this interval can be seen as the Shannon
sampling theorem where the sampling correspond to the reset:
if we do a reset before 1

2f there will be overlapping of states,
i.e. we will visit the same state (with one more reset) two
times. In any case, this trade-off produces good results while
limiting the combinatorial explosion.

IV. PIPELINE EXPLORATION

This section shows how to generate pipeline configurations
that meet the minimum frequency constraint based on a
CRTPN model of the circuit.

The CRTPN’s semantics ensures the synchronisation of
signals. Indeed, a transition is enabled only when all its
predecessor places have a token and an operator propagation
delay is counted as soon as all its input signals are available.
Thus, each reachable state of the model represents a possible
pipeline stage of the real circuit.

A reset operation defines a transition from one pipeline
stage to the next one. The full pipeline is retrieved by a
walk along a branching of the state graph, collecting reset
operations.

{s0}
v(op0) = 0
v(reset) = 0

{s0}
v(op0) = 5
v(reset) = 5

{s1}
v(b1) = 0
v(reset) = 5

{s11, s12, s13}
v(op1) = 0
v(op2) = 0
v(op3) = 0
v(reset) = 5

{s11, s12, s13}
v(op1) = 0
v(op2) = 0
v(op3) = 0
v(reset) = 0

{s11, s12, s13}
v(op1) = 6
v(op2) = 6
v(op3) = 6
v(reset) = 6

{s2, s12, s13}
v(op2) = 6
v(op3) = 6
v(reset) = 6

{s2, s12, s13}
v(op2) = 0
v(op3) = 0
v(reset) = 0

{s2, s12, s13}
v(op2) = 1
v(op3) = 1
v(reset) = 1

{s2, s3, s4, s13}
v(op3) = 1
v(op4) = 0
v(op5) = 0
v(reset) = 1

{s2, s3, s4, s13}
v(op3) = 8
v(op4) = 7
v(op5) = 7
v(reset) = 8

{s5, s6, s7}
v(reset) = 8

{s5, s6, s7}
v(reset) = 0

5

{op0}

{b1}

{reset}

6

{op1}

{reset}

1

{op2}

7

{op3, op4
op5}

{reset}

q0

q1

q2

q3 q4

q5

q6 q7

q8

q9 q10

q11

q12

(a) State graph part for one run of the Cost Reset Timed Petri Net of Fig. 3c.
States after a reset are framed in green (q0, q4, q7 and q12)

s0(7:0)
op0

s1(7:0)
op1

op2

op3

s2(3:0)

s3(7:0)

s4

op4

op5

5 6

1

6

3

7
s5(7:0)

s6(15:0)

s7

(b) One possible pipeline of the circuit of Fig. 3a

Fig. 4: Example of the extraction of a pipeline from a run.

One run ρ of the CRTPN of Fig. 3c, is represented on
Fig. 4a. It is the best run achievable by the model, i.e. the
one that minimizes the cost.



The corresponding pipeline on the circuit is presented on
Fig. 4b. The marking of every state after a reset (framed in
dark green in Fig. 4a) gives the position of the registers in the
circuit. Although, if all the signals outgoing from a branching
point are marked, then only one register is needed for the
unique signal that they represent. For example, at state q4,
the marking is M4 = {s11, s12, s13}, but only one register (8
DFFs) is required before the branch.

Let qi = (Mi, vi) (0 ≤ i ≤ 12) be the states of this run
ρ. The run cost is calculated for each reset along the run:
Ω(ρ) = ω(M0) + ω(M4) + ω(M7) + ω(M12) = (C(s0)) +
(C(s1)) + (C(s1) + C(s2)) + (C(s5) + C(s6) + C(s7)) = 53.
This cost matches with the number of flip-flops in the pipeline
of Fig. 4a. Note that on this example, the greedy algorithm
produces the result in Fig. 3a, with a total of 79 flip-flops
(49% more registers are required).

The interest of the heuristic which defines the delayable
transitions just after a branching point is highlighted in the
state q7 where the signals s12 and s13 can mutualise the same
pipeline registers. If the transition related to the operator op3
has not been delayable, the register would have been placed
after it.

The algorithm used to build the state graph is classical, built
around a waiting list and a list of elements already visited. At
each step, the algorithm pops one state out of the waiting list,
adds it to the visited list, computes all its successors not yet
visited, and adds them to the waiting list. It then loops until
the waiting list is empty.

To reduce computation time, the algorithm prunes the state
graph exploration. If it reaches a state already reached — i.e.
a state with the same marking and the same valuation already
exists in the state graph — then it compares their run cost so
far, and it keeps the new state only if it has the lowest cost.
By removing runs that reach the same point in the state graph,
but at an additional cost, it is ensured that no optimal run is
pruned.

V. IMPLEMENTATION AND EXPERIMENTS

FloPoCo is a tool to generate circuits for floating point arith-
metic operators. It splits an operator into numerous elementary
operators and each operator’s delay is estimated by heuristics.
For the experiments, we rely on FloPoCo version 5 (non-stable
version from git) to generate a pipeline that minimizes the
number of flip-flops while ensuring a target frequency for these
arithmetic operators.

The pipeline algorithm in FloPoCo is a greedy algorithm
(explained in [2]). This algorithm associates (c, τ) to each
signal production date, where c is an integer that counts the
number of stages and τ is a real number that represents the
critical delay since the last pipeline register. When a new signal
is handled by the algorithm, the following formula is applied1:

(c, τ) + δ =

(
c+

⌊
τ + δ

δobj

⌋
, δobj ·

(
τ + δ

δobj
−
⌊
τ + δ

δobj

⌋))
1There is a typo in the original paper, section III.D

TABLE I: Results of both greedy and the Cost Reset Timed
Petri Net based algorithms on some floating point operators
generated by FloPoCo. Operator parameters are input data
sizes in bits (exponent, mantissa). (s,del) gives the number of
states analysed and the number of delayable transitions. When
both heuristic 1 and 2 are enabled, the number of delayable
transition is limited manually.

FPAdd(8,23) FPMult(8,23) FPDiv(8,23) FPSqrt(8,23)
500 MHz 500 MHz 500 MHz 500 MHz

circuit size (ops, signals) (108,165) (151,237) (116,197) (189,316)
Pipeline stages 16 7 30 25

Greedy Time (s) 0.01 0.01 0.01 0.01
Nb FF 2080 671 3480 2085

CRTPN Time (s) 0.06 0.02 0.10 0.06
(without states analysed 418 110 1711 215
delayable) Nb FF 1999 671 3182 2082

Improvement (%) 3.9% 0.0% 8.6% 0.1%

CRTPN Time (s) 1.35 0.47 0.44 4.12
(with s - del 8368 - 8 2001 - 7 4711 - 13 15946 - 51
heuristic 1) Nb FF 1852 437 3158 1595

Improvement (%) 11.0% 34.9% 9.3% 23.5%

CRTPN Time (s) 270.8 170.48 325.5 238.76
(with s - del 410513 - 25 223741 - 23 489423 - 55 362375 - 70
heuristic 1+2) Nb FF 1815 437 2816 1590

Improvement (%) 12.7% 34.9% 19.1% 23.7%

δ is the delay of the operator producing the signal, δff is
the delay of a flip-flop register and δobj = 1

f − δff is the
maximal delay inside a pipeline stage to reach frequency f .

However, this algorithm makes an approximation which
allows to insert a pipeline stage inside an elementary operator.
This is not possible on the final circuit, and this leads to not
being able to ensure a target operating frequency. We have
adapted the greedy algorithm that preserves the atomicity of
the operators with the following formula:

(c, τ) + δ =

(
c+

⌊
τ + δ

δobj

⌋
, τ ·

(
1−

⌊
τ + δ

δobj

⌋)
+ δ

)
Note that this formula only works if

⌊
τ+δ
δobj

⌋
∈ {0, 1}, other-

wise it means that δ > δobj and the pipeline is not feasible.
This algorithm ensures the operating frequency and there-

fore allows a comparison with pipeline generation based
on CRTPN modelling. The CRTPN has an input frequency
f ′ = 1

δobj
, to take into account the propagation delay of a

pipeline register.
Our sample is composed of four single-precision float

operators (Adder, Multiplier, Divider and Square root). The
results are summarised in the table I. These arithmetic op-
erators contain many elementary operators (108 to 189) and
internal signals (165 to 316) which define the granularity of
the model. This shows the scalability of the approach. The
target frequencies chosen are close to the maximum frequency
achievable by the circuit, with the FloPoCo’s estimation on a
Xilinx Virtex 6 target. The purpose is to show the interest of
our approach on time-constrained circuits, with a maximum
number of pipeline registers.

Both algorithms produce the same number of pipeline
stages. The CRTPN approach reduces the number of flip-flops
from 12% up to more than 34%, and never gives a worse result



than the greedy algorithm. This was expected as the greedy
algorithm is one run of the CRTPN state graph.

Heurisic 1 adds a delayable transition when an operator
has a larger signal size at the output than at the input. This
heuristic gives very good results for a relatively small number
of delayable transitions (except for the FPSqrt operator).
This leads to a very fast pipeline generation and a significant
reduction in the number of flip-flops (between 9.3% and
34.9%) compared to greedy. The FPSqrt operator has more
delayable transitions, but this doesn’t appear to influence much
the calculation time. This is due to its very sequential structure.

Heuristic 2 allows mutualising signals at a branching point.
Numerous transitions become delayable and this relaxation
results in an explosion of the state space, and therefore of
the associated computation time. If a delayable transition is
placed at the beginning of the circuit, then the different runs
generated will propagate through the state space exploration.
The best results are obtained when combined with the first
heuristic and are those detailed in the table. We deliberately
limit the number of delayable transitions in order to find a
compromise that allows to add enough delayable transitions
while limiting the calculation time to a few minutes. The
results are always improved, even if the results are relatively
heterogeneous. The FPDiv operator seems well adapted to
signal pooling by significantly reducing the number of flip-
flops (from 3158 to 2816).

Heuristic 3 defines the minimum bound of the reset interval
which is set to 1

2f for all experiments: lower bounds increased
the calculation time, without improving the results.

The current tool is a functionnality-focused single threaded
prototype, and more efficient implementations are hoped for in
the future. First, the symbolic states as presented in section II
can be efficiently represented as DBMs (Difference Bound
Matrices) [20]. Moreover, since we have simplified zones (di-
agonal constraints are equalities), it will probably be possible
to further optimise the classical operations over DBMs.

VI. CONCLUSION

We have proposed a formal approach to generate automat-
ically the pipeline of an arithmetic operator. The Cost Reset
Timed Petri Net model guarantees to produce a pipeline with
a minimum target operating frequency, and with a minimal
resource consumption considering the size of registers and
possible mutualisation on signal branching points.

A state space exploration algorithm guided by cost chooses
among all the possible pipeline combinations the one that min-
imizes the resources allocated to the pipeline. The complexity
of this algorithm is proven to be PSPACE-complete.

We provide heuristics that reduces the state space size, and
so the computation time. Although they do not ensure to obtain
the optimal solution, they target some specific parts of the
circuit where resources can be efficiently saved : operators
with bigger size in input than in output, and operators that
can mutualise registers.

A prototype has been developed to automatically generate
the pipeline, while optimising hardware resources by up to

34% compared to a classical approach using a greedy algo-
rithm, on real use cases.

This first results are encouraging and there is still room
for improvement, for example in our implementation by using
optimised DBM library for the computation of the state space.
We also believe that the representation of the circuit is tight
enough to produce pipeline which handles resource sharing of
functional parts, and thus save even more resources.

REFERENCES

[1] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5–35, Jun. 1991.

[2] M. Istoan and F. de Dinechin, “Automating the pipeline of arithmetic
datapaths,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE 2017), Lausanne, Switzerland, 2017, pp. 704–709.

[3] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[4] D. Bufistov, J. Cortadella, M. Kishinevsky, and S. Sapatnekar, “A general
model for performance optimization of sequential systems,” in 2007
IEEE/ACM International Conference on Computer-Aided Design, 2007.

[5] J. Campos, G. Chiola, J. M. Colom, and M. Silva, “Properties and
performance bounds for timed marked graphs,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 1992.

[6] M. Najibi and P. A. Beerel, “Slack matching mode-based asynchronous
circuits for average-case performance,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design, ser. ICCAD ’13. IEEE
Press, 2013, p. 219–225.

[7] Sangyun Kim and P. A. Beerel, “Pipeline optimization for asynchronous
circuits: complexity analysis and an efficient optimal algorithm,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 25, no. 3, pp. 389–402, 2006.

[8] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “A methodology for correct-by-construction latency insensi-
tive design,” in 1999 IEEE/ACM International Conference on Computer-
Aided Design. Digest of Technical Papers, 1999, pp. 309–315.

[9] L. Josipović, S. Sheikhha, A. Guerrieri, P. Ienne, and J. Cortadella,
“Buffer placement and sizing for high-performance dataflow circuits,”
in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 186–196.

[10] R. Parrot, M. Briday, and O. H. Roux, “Timed Petri Nets with Reset
for Pipelined Synchronous Circuit Design,” in The 42th International
Conference on Application and Theory of Petri Nets and Concurrency
(Petri Nets 2021), ser. Lecture Notes in Computer Science, vol. 12734.
Springer, Jun. 2021.

[11] P. M. Merlin, “A study of the recoverability of computing systems,”
Ph.D. dissertation, Department of Information and Computer Science,
University of California, Irvine, CA, 1974.

[12] C. Ramchandani, “Analysis of asynchronous concurrent systems by
timed Petri nets,” Ph.D. dissertation, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1974, project MAC Report MAC-TR-120.

[13] L. Popova-Zeugmann, Time and Petri Nets. Springer, 2013.
[14] P. A. Abdulla and R. Mayr, “Priced Timed Petri Nets,” Logical Methods

in Computer Science, vol. 9, no. 4, 2013.
[15] H. Boucheneb, D. Lime, O. H. Roux, and C. Seidner, “Optimal-cost

reachability analysis based on time Petri nets,” in 18th International
Conference on Application of Concurrency to System Design (ACSD’18),
Bratislava, Slovakia, Jun. 2018.

[16] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA.
IEEE Computer Society, 1977, pp. 46–57.

[17] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-
time,” Information and Computation, vol. 104, no. 1, pp. 2–34, 1993.

[18] P. Bouyer, K. G. Larsen, and N. Markey, “Model checking one-clock
priced timed automata,” Logical Methods in Computer Science, vol. 4,
no. 2, May 2008.

[19] A. Cheng, J. Esparza, and J. Palsberg, “Complexity results for 1-safe
nets,” Theoretical Computer Science, vol. 147, pp. 117–136, 1995.

[20] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1957.


