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Abstract

Purpose. Motion-mask segmentation from thoracic CT images is the process of extracting the

region that encompasses lungs and viscera, where large displacements occur during breathing. It

has been shown to help image registration between different respiratory phases. This registration

step is, for example, useful for radiotherapy planning or calculating local lung ventilation. Knowing

the location of motion discontinuity, i.e., sliding motion near the pleura, allows a better control of

the registration preventing unrealistic estimates. Nevertheless, existing methods for motion-mask

segmentation are not robust enough to be used in clinical routine. This article shows that it is

feasible to overcome this lack of robustness by using a lightweight deep-learning approach usable

on a standard computer, and this even without data augmentation or advanced model design.

Methods. A convolutional neural-network architecture with three 2D U-nets for the three

main orientations (sagittal, coronal, axial) was proposed. Predictions generated by the three U-

nets were combined by majority voting to provide a single 3D segmentation of the motion mask.

The networks were trained on a database of non-small cell lung cancer 4D CT images of 43 patients.

Training and evaluation were done with a K-fold cross-validation strategy. Evaluation was based

on a visual grading by two experts according to the appropriateness of the segmented motion mask

for the registration task, and on a comparison with motion masks obtained by a baseline method

using level sets. A second database (76 CT images of patients with early-stage COVID-19), unseen

during training, was used to assess the generalizability of the trained neural network.

Results. The proposed approach outperformed the baseline method in terms of quality and

robustness: the success rate increased from 53% to 79% without producing any failure. It also

achieved a speed-up factor of 60 with GPU, or 17 with CPU. The memory footprint was low: less

than 5 GB GPU RAM for training and less than 1 GB GPU RAM for inference. When evaluated

on a dataset with images differing by several characteristics (CT device, pathology, and field of

view), the proposed method improved the success rate from 53% to 83%.

Conclusion. With 5-second processing time on a mid-range GPU and success rates around

80%, the proposed approach seems fast and robust enough to be routinely used in clinical practice.

The success rate can be further improved by incorporating more diversity in training data via data

augmentation and additional annotated images from different scanners and diseases. The code and

trained model are publicly available.
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I. INTRODUCTION

A. Deformable image registration and motion mask

Various medical applications, such as radiotherapy treatment planning for patients with

lung cancer, ventilation assessment in chronic obstructive pulmonary disease (COPD), or

recruitment quantification in acute respiratory distress syndrome (ARDS), require aligning5

lungs and other thoracic structures in 3D CT images, by means of a deformable registra-

tion method1–4. As deformable image registration is an ill-posed problem, it needs to be

regularized and, usually, algorithms are built on an assumption of motion continuity and

smoothness, i.e., neighboring points are assumed to have similar displacements5,6.

This assumption does not hold in the case of thoracic scans representing different phases10

of the breathing cycle, because lungs and viscera slide along the pleura, so that their dis-

placements are different (generally much larger) than those of the neighboring points of

the rib cage. Regularization penalties and smoothness constraints hence lead to erroneous

displacement-field estimation around regions of discontinuous motion.

To address this problem, several approaches have been proposed, which consider an ini-15

tial segmentation of moving and less-moving regions in the image in order to restrict the

regularization at the boundaries of the sliding areas7–11. As an example, Delmon et al.9 have

proposed a B-Spline-based registration method such that regularization is enforced along

the direction tangential to the segmented boundary and it is relaxed in the normal direc-

tion. Hua et al.11 extended the B-spline approach by incorporating an additional term that20

acts on a subset of control points, for which the boundary intersects the support of their

corresponding basis function. Also a finite-element-based approach has been proposed to

perform lung registration preserving motion discontinuity10. While such methods often use

pre-segmentation of the lungs alone, Vandemeulebroucke et al.12 have developed a so-called

motion mask that encompasses lungs and viscera, and thus delineates a region, in which25

the motion field is supposed to be smooth (Figure 1). Its boundary defines where sliding

– and thus discontinuity in the vector field – occur between the rib-cage and the internal

structures, when breathing. The seminal motion-mask segmentation12 is based on a level-set

framework and involves preliminary automated delineation of several anatomical elements

(patient’s body contour, lung parenchyma, bony structures) followed by growing an ellipsoid30
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within the abdomen to fill the thoracic cavity.

This approach, already exploited in previous studies9,13, has recently been evaluated and

clinically used in our institution for radiation therapy of locally advanced non-small cell

lung cancer14. More than forty patients with 4D thoracic CT, of 10 breathing phases each,

were included. Motion masks were automatically extracted for all images (n > 400) with35

the same set of parameters. Average computation time per motion mask was about 12

minutes (including above-mentioned pre-processing steps and level-set algorithm), and up

to 16 GB of RAM was required. Each extracted mask was visually assessed and, if needed,

manually corrected before use. Approximately half of the automatically segmented masks

required such manual correction, which was often time-consuming. Hence, the motion-mask40

extraction based on level sets has been useful, but is not robust enough to be routinely used

in the clinical context.

In the present study, we investigate a more robust and faster motion-mask segmentation

method, while considering the level-set approach as a baseline. As image-segmentation meth-

ods have dramatically evolved with the advances of deep-learning (DL) algorithms based on45

neural networks15, we have chosen to tackle our problem using the DL approach, which –

to the best of our knowledge – has not yet been attempted in motion-mask segmentation.

The goal here was to assess whether or not a lightweight DL method, trained on acceptable-

quality motion masks extracted by level sets, can perform more rapidly and robustly than

the baseline method. Therefore, the next section summarizes useful notions from literature50

on DL-based medical-image segmentation, which guided our choices.

B. Deep-learning segmentation

The general approach to image segmentation by DL techniques is based on the use of three

elements: (1) a model devised to produce a segmentation mask given an input image, (2) a

dataset composed of images and their associated reference segmentation masks, and (3) an55

optimisation strategy designed to train the model. The most common models successfully

used for medical image segmentation15 are deep convolutional neural networks based on

U-net architecture16. This architecture is made of an encoding part and a decoding part.

The encoding part projects the input image onto a smaller latent space through several

layers of convolution generating so-called feature maps, each followed by a pooling layer to60
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downscale the resulting feature maps. The decoding part up-scales the projection from latent

space to image space, thus predicting a segmentation mask at the same scale as the input

image. Skip-connections between the encoding and decoding pathways ensure that details

that might be lost during the encoding step can be recovered during the decoding step.

Thus, the more abstract concepts encoded in the latent space (multi-scale feature maps)65

still have access to the finer details of the input image when reconstructing a segmentation

mask in the decoding part of the model. The aim of the training procedure is to adjust the

parameters of the model so that it can predict which voxels belong to the segmented class,

here the area included in the motion mask.

Models based on U-net architecture, which uses 2D convolutions, usually perform very70

well, but one of their current challenges is to scale them in 3D, i.e., using 3D convolutions

with volumetric images as input. Although several teams have proposed successful 3D scaling

of the U-net17–21, each specific application seeks a trade-off between spatial resolution and

computational power, since the number of model parameters, as well as the intermediate

feature maps have a large impact on memory usage, requiring expensive infrastructures for75

both training and inference.

In order to tackle the problem with limited computational resources without losing com-

plementary information brought by the 3D context, several approaches have considered

extending 2D deep learning models to multi-planar methods (also referred to as 2.5D meth-

ods), which take as input several planes extracted from a 3D volume. These approaches can80

be considered as a sub-category of the multi-stream methods, as described by Litjens et al.15.

In the sequel we focus on the multi-planar methods, as they help reduce the computational-

power requirements and improve the applicability of the developed DL methods in clinical

routines. Depending on the respective orientation and/or position of the considered planes,

three main strategies can be observed: (1) using the classic three orthogonal planes (axial,85

sagittal, coronal)22–24, (2) using multiple parallel planes that can form a slab if they are

adjacent25,26 and (3) using multiple planes (usually more than 3) of random orientation27,28.

Regardless of the orientations/positions, the scope of the extracted input planes has

varied across the publications, considering either the whole slice extent25–27 or a patch (e.g.,

a sub-part of size 32× 32 cropped from a full slice of size 256× 256)22–24,28. While full slices90

take into account a larger context, the patch-based approach lightens the computational

load, but requires multiple data-augmentation operations27,28 to compensate for the loss of
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context information and improve robustness.

Information from different planes can be merged at several stages of the segmentation

pipeline : (1) when the multiple planes are set as multiple channels input to the network25–28,95

(2) when passing independently each plane through a network before a fusion layer22,24 or

(3) at the very end of the pipeline with a deterministic ensemble strategy23. In (2) and (3),

each stream of information passes through a specific branch, and each branch can be a whole

network (potentially pre-trained), whereas in (1) there are no branches (only one network).

In the sequel, a multi-planar DL-based strategy for motion-mask segmentation is pro-100

posed, as a trade-off between accuracy, computational resources, and speed. Three slightly

modified 2D U-nets, each using conventional orthogonal planes (axial, coronal, sagittal) are

separately trained, and then merged by majority vote to provide a volumetric binary mask.

The results demonstrate the feasibility of this solution, which reasonably compares with a

3D U-net, but other DL architectures may be explored for further improvement.105

II. MATERIALS AND METHODS

A. Datasets and expert annotations

Before specifying the method proposed to automatically compute a motion mask from

thoracic 3D CT scans, we first describe the data available for training and evaluation.

We used datasets from two clinical trials: ClinicalTrials NCT01635270 and NCT04377685.110

The first one14 included 43 patients with locally advanced non-small cell lung cancer treated

with radiation therapy. For each patient, a 4D thoracic CT scan composed of ten phases was

acquired during free breathing with a Brillance Big Bore (Philips Medical System, Cleveland,

OH) and the Pneumo Chest bellows belt used for breathing synchronisation. Images were

reconstructed with voxel size ranging from 0.92×0.92×2 mm to 1.37×1.37×3mm. For three115

patients, an additional 4D CT acquisition was available. For the current study, we selected

from each acquisition 3D CT scans corresponding to the end-exhale and end-inhale phases,

i.e., a total of 92 volumes, size 512× 512× [88− 218]. This dataset will be referred to as S1.

The second dataset, S2, included 38 early-stage COVID-19 patients, with two breath-hold

3D CT scans acquired at end-exhale and end-inhale on a Siemens Somatom. These scans120

were of size 512× 512× [300− 400] voxels, with voxel sizes ranging from 0.7× 0.7× 1mm
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to 0.9× 0.9× 1mm. For each volume, in both datasets, a motion mask was computed using

the baseline level-set method with fixed parameter settings recommended in the seminal

publication12.

A subset of masks from S1 was used to train the proposed network, while all the data125

from S2 were used to evaluate the network’s generalizability. To train the network only on

correct masks (defined hereafter), two experts in deformable image registration using motion

masks (M.O. and D.S.) independently labelled the available S1 masks segmented by level

sets. The correct masks (usable for training) were labelled as either Full Success (FS) or

minor Error (mE), while incorrect masks (not usable for training) were labelled as Major130

Error (ME) or Full Failure (FF). This first visual assessment session will be referred to as

B1, as each expert was blinded to the other expert’s labels.

The experts assigned the FS label to masks perfectly fitting the expected motion dis-

continuities (e.g., Figure 1), whereas the mE label was assigned when small under- or

over-segmentation (e.g., Figure 2a) occurred in non-critical areas, as segmentation errors135

in regions with small magnitude of lung motion – e.g., near the apex – have less impact on

registration. Conversely, ME label was assigned to masks that would require manual editing

before use in clinical context, due to their more critical location, large extent (e.g., Fig-

ure 2b), inclusion of bones, or exclusion of tumors – or other consolidations – located within

the lungs. Eventually, FF label designated completely unusable masks confined in a small140

portion of the lung (e.g., Figure 2c) or leaking throughout all the volume, generally due

to a failure in the initial anatomical segmentation used by the level-sets algorithm. The

same criteria were subsequently used to label baseline masks from S2, as well as the masks

segmented by the DL-based methods, as described in Section IIC.

After an independent blinded assessment session B1, the two experts jointly adjusted145

the labels by consensus, session C1, for the cases where initial disagreement had occurred.

Thus obtained four-grade labels were subsequently used to split the 43 patients from S1

into subsets SA
1 (27 patients with at least one correct mask, namely, 14 FS and 35 mE) and

SB
1 (16 remaining patients with no correct mask). The former was used for training and

validation purposes, as specified in Section II B 3, while the latter made part of the testing150

subset, as specified in the section IIC 1. Data splitting was done on patient basis, as different

images of the same patient may not be simultaneously used for training and testing.
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B. Segmentation method

1. Multi-planar U-net framework (majority voting U-nets)

Our motivation was to associate the high speed, low memory load, and limited parameter155

number of conventional 2D U-nets with 3D consistency. The proposed approach achieves this

goal by merging information from three orthogonal planes, namely, the three (entire) slices

from the classic orthogonal directions. The rationale of this approach is that, thanks to the

3D context brought by the orthogonal views, each U-net predicting segmentation in a given

slice orientation, e.g., axial, can not only learn a certain regularity of 2D shapes within160

the slices, but also a regularity along the direction orthogonal to the slices. Predictions

performed independently for each slice would not enforce the regularity along the direction

orthogonal to the slices.

Hence, the proposed segmentation method is composed of three identical models based

on the 2D U-net16 architecture. The differences with respect to the original U-net are: the165

number of filters per layer is decreased by a factor of four (to reduce the number of param-

eters) and batch normalization is performed after each convolution (for training stability).

The three U-nets, θa, θs, and θc, are individually trained on 2D slices corresponding to one

of the orthogonal planes v ∈ {a, s, c}, where a, s, and c respectively stand for axial, sagittal,

and coronal. The set of three trained 2D U-nets will be referred to as Θ ≡ {θa, θc, θs}. In the170

sequel, lower-case letters represent 2D slices and upper-case letters represent 3D volumes.

Using a N3-sized 3D CT scan X ∈ RN3
as input, each U-net θv is sequentially fed with

batches of N2-pixel slices xn
v ∈ RN2

, n = 1 . . . N, along the associated direction v. For each

2D slice, the U-net model θv predicts a N2-sized 2D segmentation mask ỹnv . The training

process adjusts the weights of θv so as to minimize the dissemblance between ỹnv and the175

corresponding reference mask ∗ynv , measured by a loss function L(ỹv,
∗yv) based on the Dice

similarity coefficient (see section II B 3). In the experiments, N = 256 was used in agreement

with data resampling strategy detailed in the section II B 2.

In the inference phase, three 3D segmentation masks Ỹa, Ỹs, and Ỹc are built from the

respective θv U-net outputs by concatenating the obtained 2D masks ỹnv , n = 1 . . . N . These180

three masks are eventually combined to compute the final prediction Ỹf with 3D consistency.

They can be merged in different ways: union, intersection or majority vote. While union
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and intersection could respectively lead to over- or under-segmentation, majority vote allows

one mask to fail without downgrading the final results in the areas where the other two are

successful. Hence we have chosen the majority vote strategy, i.e., a voxel located at (i, j, k)185

in Ỹf is set to one if at least two out of the three U-nets have predicted one for this location:

Ỹf (i, j, k) =

 1 if
∑

v Ỹv(i, j, k) ≥ 2

0 otherwise.
(1)

2. Pre-processing

All images were resampled and resized to obtain isotropic volumes of 256 × 256 × 256

voxels with 2mm resolution consistent with the average slice spacing in the dataset S1.

Missing axial slices, if any, were padded with −1000HU value corresponding to the air.190

3. Training

Considering the number of annotated data usable for training (27 patients in SA
1 ), we

applied K-fold cross-validation scheme (K = 9) to train the model with as many images

as possible, while leaving out a subset of annotated data for final evaluation. Indeed, using

K = 9 allowed us to equally split SA
1 into groups of 27/9 = 3 patients. Hence, in each of the195

9 folds, data from 7 × 3 = 21 patients, were used for actual training, data from 3 distinct

patients were used for validation, and data from 3 other patients were left out for testing.

The models Θ were trained during 20 epochs with a fixed batch size of 32 slices. Their

parameters (weights) were updated by the Adam optimizer29 with 1×10−3 learning rate that

was fixed after a grid search with tested values {1×10−3, 5×10−4, 1×10−4, 5×10−5, 1×10−5}200

for the learning rate and {32, 64, 128} for the batch size. The loss function was L = 1−D,

where D stands for the Dice similarity coefficient frequently used to measure the overlap

between segmentation results30; its values range from zero (no overlap) and one (perfect

overlap).
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C. Evaluation method205

1. Models and respective test sets

With the 9-fold cross-validation strategy the segmentation predicted by the proposed

method was evaluated exactly once for each image from the subset SA
1 containing mostly

correct baseline masks. To also evaluate the predictions on images where the baseline seg-

mentation failed, we complemented each testing set by two patients drawn from SB
1 , so that210

each segmentation predicted for this subset was also evaluated exactly once. Thus, within

the data used in a given fold, the training, validation, and testing sets respectively repre-

sented around 70%, 10%, and 20%, and each scan from the testing set was segmented by Θ

trained on 21 patients.

Subsequently, we trained Θ on all images from the SA
1 subset with baseline masks an-215

notated as correct. Thus trained models, referred to as Θall, were used in three additional

experiments. In the first experiment Θall were used to segment all images from SB
1 and thus

assess to what extent the performance of the proposed framework is affected by increasing

the training set (from 21 to 27 patients). The second experiment aimed to evaluate the

generalizability of the proposed segmentation framework by applying Θall to all images from220

S2.

The last experiment aimed at comparing the proposed approach with a 3D U-net31. The

3D U-net was also trained on all images from the SA
1 subset with baseline masks annotated as

correct, and then applied onto all images from SB
1 . For a fair comparison, the same hardware

was used for training and inference, and the hyper-parameters were set accordingly: same225

image size and resolution (2563 voxels, 2mm resolution), batch size of 1 (limited by memory

constraint) compensated by an increased number of epochs (160) to ensure an equal total

number of iterations.

2. Evaluation process

In the absence of ground truth segmentation for all the considered testing data, the230

evaluation was mainly based on labels assigned by the two experts according to the criteria

described in Section IIA. Similarly to the visual-assessment sessions B1 (blinded) and C1

(consensus) for baseline motion masks alone, additional sessions were performed for both
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baseline and predicted masks, as follows. During a second blinded session (B2) each observer

independently labelled the masks segmented by both methods, baseline and proposed, in all235

images from the set S1. Labels assigned during B2 to the baseline masks were compared to

those assigned during B1, so as to assess each expert’s intra-observer variability by means of

the Cohen’s kappa coefficient32, while labels independently assigned by different observers

within the same session were used to assess the inter-observer variability. The session B2

was followed by a consensus session (C2), during which the observers agreed on initially240

discordant labels for the masks predicted by the proposed method. Thus obtained consensus

labels were unique for all images from the set S1 and were compared to the consensus labels

assigned to the baseline masks during C1. In each session, the masks were presented in a

random order and the observer was not informed by which method the mask was segmented.

The observer freely scrolled the axial, sagittal, and coronal slices of the original CT scan245

with an adjustable-density translucent mask superimposed onto the image gray levels.

The same procedure was followed during two additional sessions, blinded (B3) and con-

sensual (C3), to label masks segmented by both methods in the images from the dataset S2.

Eventually, the masks segmented in the images from the SB
1 subset by the proposed method

using Θall and by the 3D U-net were labelled according to the same procedure during a250

blinded session (B4) and a consensus session (C4).

In addition to the above-described semi-quantitative (categorical) comparisons, a quan-

titative comparison was carried out to assess the benefits of the majority voting. In the

absence of ground truth, we used as reference the subset of CT scans from SA
1 , for which

the motion mask segmented by the baseline method was labelled as full success (consensus255

label FS, n = 14). We used the Dice score, the average symmetric surface distance (ASSD),

and the Hausdorff distance measuring the largest gap between the surfaces. These measures

were calculated for the masks Ỹf predicted by majority voting and for the masks Ỹa, Ỹs, and

Ỹc separately predicted by each of the 2D U-nets.

III. RESULTS260

We first present the results of the proposed method compiled from nine testing subsets of

the 9-fold cross-validation, evaluated on S1. Then we describe the results of the DL-based

methods obtained using the models (Θall and 3D U-net) trained on all patients from SA
1 and
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evaluated on SB
1 ; we also report the generalizability of Θall evaluated on S2. Eventually,

experts’ evaluation variability, as well as memory and time requirements are reported.265

A. Nine-fold cross-validation

Figure 4 displays the evolution of the training loss function (cyan curve) for the θs U-net.

The validation loss was evaluated at the beginning of the training process and at the end

of each epoch (blue dots). The fact that the values of the training and evaluation losses are

very close indicates that the proposed model did not lead to overfitting on the training data.270

A fast decrease during the two first epochs and stabilization around the fifth epoch can be

observed. The same behavior was observed for θa and θc, their corresponding graphs as well

as more details can be found in the Supplementary Material (Section Training loss graphs,

Figures S.1 and S.2).

The Table I represents the confusion matrix allowing a semi-quantitative (categorical)275

comparison between the consensus labels (session C1 vs. session C2) assigned to the motion

masks segmented from the S1 dataset by the baseline level-set algorithm (columns) and by

the proposed method (rows). The proposed method yielded 79% of correct masks (21% of

FS labels and 58% mE labels) against only 53% (15% FS and 38% mE) for the baseline algo-

rithm. Green color highlights 44 improvements (48%), i.e., images for which the predicted280

motion mask received a better label than the baseline one; 33 out of them had incorrect

(unusable for registration, i.e., labels FF or ME) baseline masks, while correct masks were

predicted by the proposed method. Conversely, 16 predicted masks received a worse label

than the baseline one (17%, red color). Nine of them passed from correct to incorrect cat-

egory. Labels remained unchanged for 32 images (35%). There was no FF in the predicted285

masks, while the baseline method failed in 17 CT scans. Among these, the proposed method

predicted 13 masks considered as usable for registration (2 FS and 11 mE).

Figure 5 shows side-by-side orthogonal slices from motion masks predicted by each indi-

vidual U-net θv and by majority vote. It can be seen that each individual U-net predicted

consistent segmentation in the planes in which it was specialized, but inconsistencies (holes290

or disconnected extra regions) can be observed in the remaining planes. The multi-planar

strategy, merging by majority voting the segmentation produced by three orthogonal U-nets,

allowed the correction of these inconsistencies. Table II confirms the improvement resulting
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from the majority voting as compared to the predictions made by each 2D U-net separately.

It also shows an overall good agreement – in terms of overlap and average surface distance –295

between the predicted motion masks and those obtained by the baseline method and labelled

as full success. A relatively high Hausdorff distance corresponds to localized small outliers.

More details can be found in the Supplementary Material (Section Quantitative comparison

between majority vote and each 2D U-net, Figures S.5 through S.7).

B. Models trained on all available correct masks300

1. Evaluation on the subset where the baseline method failed

The training curves of the models Θall and 3D U-net are provided in the Supplementary

Material (Section Training loss graphs, Figures S.3 and S.4, respectively). Let us remind

that these models were evaluated on the subset SB
1 (36 CT scans), on which the baseline

method failed (no correct label). In comparison with these baseline labels, Θall performed305

better on 34 scans (94.4%), of which 33 changed the labels from incorrect to correct, and

the 2 remaining labels were unchanged (ME).

Compared with the masks obtained for the same subset (SB
1 ) during the testing phase of

the 9-fold cross-validation (Section IIIA), the results obtained with Θall were improved in

9 scans (25%), unchanged in 26 scans (72.2%), and degraded in 1 scan (2.8%) from FS to310

mE. This result shows the improvement brought by increasing the training set (from 21 to

27 patients).

Among the labels obtained by the 3D U-net, 31 (86.1%) were improved and 5 (13.9%)

remained unchanged (ME) in comparison with the baseline; for 24 scans (66.7%) the label

changed from incorrect to correct. Details can be found in the Supplementary Material315

(Section Proposed method Vs. 3D U-net, Figure S.8).

2. Generalizability

Table III summarizes the semi-quantitative results (session C3) evaluating the generaliz-

ability of Θall when applied on S2 (different disease, different hospital). The only full failure

was produced by the baseline method, which was successful in 40 CT scans (53%). The320

proposed method obtained an improvement for 34 scans (of which 25 passed from incorrect
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to correct category) and a deterioration for 4 scans (of which 2 became incorrect), so that

83% of the masks predicted by the proposed method were correct. Masks obtained with

both methods received the same labels in 50% of scans (38 masks).

C. Experts’ variability, memory and time requirements325

To assess the agreement between the experts’ annotations, the intra-observer variability

was computed between B1 and B2 evaluation sessions on the masks produced by the baseline

method (n = 92). This resulted in a Cohen’s kappa of 0.69 (confidence interval32 [0.54, 0.84])

and 0.66 (CI [0.50, 0.83]) for Experts 1 and 2, respectively. As for the inter-observer vari-

ability, it was computed with the evaluations by both experts on the union of labels from330

B1, B2 , B3, and B4 sessions on the masks produced by the baseline and proposed methods

(n = 500). The result was a Cohen’s kappa of 0.54 (CI [0.45, 0.62]). The confusion matrices

underlying the computation of Cohen’s kappa are provided in the Supplementary Material

(Tables S.I through S.III).

The training of Θ was performed with a NVIDIA Tesla V100 GPU, using approximately335

3.7 GB of graphic memory and 2.6 GB of RAM (vs. 9GB of graphic memory and 3.5GB of

RAM to train the 3D U-net). One fold training for each model (θa, θs, and θc) took about

15 minutes. The overall training of all three models on the 9 folds (21 patients per fold)

took almost 7 hours. The training of Θall (on 27 patients) required 45 × 3 = 135 minutes

(2 hours 15 minutes), while the training of the 3D U-net on the same data took 62 hours.340

For the inference, computing a 3D motion mask with the proposed method required 0.8GB

of graphic memory and was completed within 5 seconds using a Quadro P2000 GPU or 35

seconds using only the CPU (Intel©CoreTM i5-8500 CPU @ 3.00GHz x 6). The storage of

each model θv weights required 13MB, i.e., 39MB for the entire model Θ. With the 3D

U-net, the inference was completed within 6 seconds on GPU and 10 seconds on CPU and345

required 4GB of graphic memory, while the storage of the model weights needed 25MB.

IV. DISCUSSION

The goal of the work herein presented was to assess whether or not the motion-mask

segmentation can be achieved by a relatively lightweight DL method more rapidly and
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robustly than with the baseline level-set method. To this purpose, we placed ourselves in350

an application-driven perspective: mid-range GPU for training, no manual expert-made

segmentation available for training, no data augmentation nor heavy model design, so as to

fit the inference-time and memory constraints required by a usage in clinical routines (even

without GPU available).

A multi-planar U-net framework was proposed to automatically segment motion masks355

from thoracic CT scans. It was compared with a standard 3D U-net on a subset of the avail-

able data. Overall, both DL-based solutions received similar scores and outperformed the

baseline level-set method12. Specifically for the proposed multi-planar framework, combin-

ing predictions of different U-nets by majority vote was shown to be beneficial compared to

the separate U-net predictions (see Figure 5 and Table II). The proposed solution was more360

robust than the baseline level-set method12, when applied to unseen data from S1: correct

motion masks represented 79% of the masks predicted vs. 53% for the baseline method, and

the proposed solution produced no full-failure mask vs. 19% for the baseline method. In the

experiments conducted on the dataset S2 (unlike S1, no subset of S2 was used for training),

the proposed method also outperformed the baseline one, with respectively 83% vs. 53% of365

correct motion masks. Let us emphasize that the two datasets, S1 and S2, were different

in terms of disease analyzed (lung cancer vs. COVID), scanner (Philips vs. Siemens), and

acquisition protocol, e.g.: 4D (S1) versus dual breath-hold (S2), larger field-of-view for S1

compared to S2.

These comparisons were based on labels assigned by two experts whose average intra-370

observer agreement assessed by the Cohen’s kappa coefficient was in the range 0.60 - 0.79,

which means that both experts were moderately consistent32 in their individual evaluations.

Their inter-observer agreement before consensus was relatively weak (0.52), which justified

the use of the consensus step.

In terms of memory, both DL-based solutions are sufficiently lightweight to segment a375

256× 256× 256 voxel image on a standard computer with a mid-range GPU board (5GB of

graphic memory) or even without it, but the proposed multi-planar U-net required five times

less graphic memory than the 3D U-net. The inference times of both DL-based solutions

were very similar to each other and outperformed the baseline method (≥ 120 times and

≥ 20 times faster using GPUs and CPUs, respectively).380

Also, the baseline method12 needed three masks as inputs: lung mask, rough bony
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anatomy and patient’s body outline. Although the two latter are relatively simple to provide,

the lung mask can be more difficult to obtain in presence of dense regions within the lungs.

The DL-based methods do not need any pre-segmentation as input and are self-contained.

The work herein presented can be considered as a proof of concept. To the best of385

our knowledge, there is no publication reporting the use of DL models for motion-mask

segmentation. Our goal was to make a step forward with respect to the reference method,

based on level sets and representing the state-of-the art, rather than to seek the best-

performing DL architecture. Interested teams can propose improvements with respect to

thus established benchmark (part of the training datasets can be accessed upon request).390

The improvement potential of the proposed multi-planar method can also be foreseen within

the same framework. First, increasing the number and accuracy of annotated data should

enhance the robustness of the trained model. In the present work, only 49 correct masks were

available in total – and split between training, validation, and testing – and only 14 of these

could be considered as actual reference (full success), while the remaining 35 contained minor395

errors. The model should be re-trained upon availability of more reference masks carefully

drawn or corrected by experts. Adding annotated data from S2 and from other datasets,

upon their availability, should reinforce the robustness of the model, as demonstrated by

the noticeable improvement in performance when increasing the training set from 21 to

27 patients (Section III B). In the context of enriching the models using newly expert-400

annotated images, the proposed multi-planar U-nets may be preferred over the 3D U-net, as

the former allows retraining the model within a few hours vs. several days with the latter.

Second, data-augmentation techniques can also be used: both standard (linear and non-

linear image transformations) and specific (e.g., simulating local condensations within the

lungs). Also, many small outliers responsible for large Hausdorff distances might be cleaned405

by simple post-processing techniques such as retaining the largest connected components,

hole filling, and smoothing. Finally, there are also avenues that can be explored to improve

the framework itself, such as replacing the majority voting by a learned-merging strategy22,24.

A limitation of our evaluation was the absence of reference motion masks segmented by

experts, so that quantitative comparisons (overlap and surface distances) could be carried410

out only on a subset of data for which the masks segmented by the baseline method were

considered fully successful. Thus obtained measures were biased, because it was impossible

to obtain them for the cases where the proposed method performed (visually) better than
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the baseline one.

Nevertheless, the proposed approach has already shown more robust than the baseline415

method and outperformed it in terms of computational cost. It performed comparably to

a 3D U-net in terms of robustness, while requiring less memory and being much faster

to train. The code and weights of the proposed model as well as a practical example for

applying motion-mask segmentation are available to the community at: https://github.

com/emmanuelrouxfr/deep_learning_motion_mask_segmentation.420
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TABLE I: Confusion matrix between consensus labels assigned to baseline (level-sets) and

predicted (U-nets) masks for the dataset S1. In gray, CT scans for which the annotation

remained unchanged. In green, images for which predicted masks received a better label.

In red, images for which baseline masks received a better label.

Majority vote

Level-sets
FS mE ME FF TOTAL

FS 6 7 4 2 19 (21%)

mE 7 20 16 11 54 (58%)

ME 1 8 6 4 19 (21%)

FF 0 0 0 0 0 (0%)

TOTAL 14 (15%) 35 (38%) 26 (28%) 17 (19%) 92 (100%)
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FIG. 1: Example of motion mask represented in 3D (in red color), as well as in translucent

overlay on orthogonal views of a thoracic scan.

FIG. 2: Example errors found in segmented motion masks. Depending on their extent and

location, these were labeled as minor error (a), major error (b), or full failure (c)
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FIG. 3: In the proposed network architecture, the three U-nets θa, θc and θs are trained

with 2D slices extracted from a volumetric image. During the inference, the 2D slices are

concatenated to obtain 3D volumes and then merged using majority voting.

FIG. 4: Training and validation losses for the sagittal U-net (θs). The former are

represented as mean value ± two standard deviations over the folds
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FIG. 5: Comparison of motion masks predicted by 2D U-nets trained on three types of

orthogonal slices (from left to right: axial, coronal, and sagittal) and by majority vote

(right-most), superimposed onto respective slices from one patient: axial (top), coronal

(middle), and sagittal (bottom). Cross-hairs indicate the locations of the remaining slices.

TABLE II: Quantitative comparison between the full-success motion masks segmented by

the baseline method (consensus label FS, n = 14), and those predicted by the 2D U-nets.

Each measure is reported as mean value ± standard deviation, and the best result in each

row is highlighted by a bold font. The last column reports the mean improvement with

respect to the best 2D U-net.

measure axial U-net θa coronal U-net θc sagittal U-net θs majority vote improvement

Dice (%) 98.50± 0.62 98.46± 0.49 98.70± 0.44 98.96± 0.32 0.3%

ASSD (mm) 2.1± 2.4 1.9± 1.7 1.1± 0.4 0.8± 0.2 23.0%

Hausdorff (mm) 87.7± 64.5 104.8± 72.2 61.9± 35.7 37.6± 26.7 39.2%
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TABLE III: Confusion matrix between consensus labels assigned to baseline (level-sets)

and predicted (U-nets) masks for the dataset S2. In gray, CT scans for which the

annotation remained unchanged. In green, images for which predicted masks received a

better label. In red, images for which baseline masks received a better label.

Majority vote

Level-sets
FS mE ME FF TOTAL

FS 2 9 3 0 14 (18%)

mE 2 25 21 1 49 (65%)

ME 0 2 11 0 13 (17%)

FF 0 0 0 0 0 (0%)

TOTAL 4 (5%) 36 (48%) 35 (46%) 1 (1%) 76 (100%)
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