
HAL Id: hal-03464263
https://hal.science/hal-03464263v1

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Aircraft Behavior from Real Air Traffic
Arcady Rantrua, Eric Maesen, Sébastien Chabrier, Marie-Pierre Gleizes

To cite this version:
Arcady Rantrua, Eric Maesen, Sébastien Chabrier, Marie-Pierre Gleizes. Learning Aircraft Behavior
from Real Air Traffic. The Journal of Air Traffic Control, 2015, 57 (4), pp.10-14. �hal-03464263�

https://hal.science/hal-03464263v1
https://hal.archives-ouvertes.fr

To link to this article :
URL :

http://www.atca.org/Uploads/Awards/2015%20Conference%20Proceedings/Learning%2
0Aircraft%20Behavior%20from%20Real%20Air%20Traffic%20.pdf

To cite this version : Rantrua, Arcady and Maesen, Eric and Chabrier,
Sébastien and Gleizes, Marie-Pierre Learning Aircraft Behavior from
Real Air Traffic. (2015) The Journal of Air Traffic Control, vol. 57
(n° 4). pp. 10-14. ISSN 0021-8650

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 17047

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

!"#$%&%'()&$*$#+,(-".#/&0$(
+$01(2"#3()&$(4$#++&*(

Arcady Rantrua1,2, Eric Maesen1, Sebastien Chabrier1, Marie-Pierre Gleizes2

{firstname.lastname}@soprasteria.com

{firstname.lastname}@irit.fr
1 R&D Dept, Sopra Steria, Toulouse, France

2 SMAC Team, Paul Sabatier University, IRIT, Toulouse, France

Abstract. What if we could observe the real world to teach our simulation how to work? There

would be no need for physics computation, no need to describe what kind of entities exists in the

world. Everything would be observed, learned and made usable for simulation. This is the goal of

EVAA.

56(70%,"8,(#%9(:$0;3"1<(

The process of creating a scenario for an Air

Traffic Generator (ATG) is often a tedious

task. Many parameters have to be entered

manually in a very iterative and long process.

Moreover they heavily rely on the flight plan

to generate the trajectory of the plane. But,

after taking off, the plane's trajectory rapidly

differs from its original flight plan. It may be

because of the weather, because the controller

gave an ATC order to separate aircrafts, or

because he or she gave a clearance to take a

more direct route because the traffic was

light. For those reasons we propose a new

way of generating traffic based on behavioral

learning.

The behavior of an aircraft is difficult to

simulate because it's defined by many

parameters related to the aircraft and to its

current environmental conditions. The

information necessary to realistically simulate

the flight of an aircraft is often either

insufficient or unavailable. In addition, we

said above that the flight plan might be

changed during the flight, the whole flight is

full of changes, change of speed, change of

altitude, … ATCO (Air Traffic COntroller)

orders are given and actions are taken. For

any action of the plane there can be many

reasons and we cannot discriminate between

them. For these reasons any machine learning

method based on a complete knowledge of the

environment is not applicable.

With EVAA we present a learning algorithm

able to use incomplete data using cooperative

multi-agent systems [1] to produce

autonomous and self-adaptive behaviors for

aircraft in a simulated environment. Through

a large volume of real flight data we build a

network of agents, each tasked to learn a

piece of the aircraft's behavior. Those agents

communicate with each other to build the

global behavior that can be used later for a

simulation.

=6(!"#$%&%'(0%(2"#3(>3&'.,(
?#,#(

When we observe real aircrafts flying, they

emit through their ADS-B transponder, at any

time, a set of parameters. Those parameters

match real percepts like latitude, longitude or

speed for example and each of them has a

value.

Change Parameter Example of value

* Time
26 Nov 2014
12:07:06

 Callsign AF263PE

* Latitude 45.66

* Longitude -0.3073

* Altitude 25700

* Heading 130

 Departure airport BOD

* Destination airport ORY

 Type of aircraft A321

 Registration number 393320 F-GMZA

* Ground speed 425

* Vertical speed 1664

 Transponder ID 4e6f657

 Squawk 1000

 Radar code F-LFCH2

Table 1 - Observable parameters

The Table 1 shows the exhaustive list of

observable parameters in our system. Some of

those values are static and cannot be changed

during the simulation, others can and are

marked with a “*” in the first column. The

last column shows an example of correct

value for each parameter.

While we observe the real traffic we can

capture the value of each of those parameters

in a snapshot that we call a situation. An

aircraft will fly through many different

situations. Each situation is linked to its

previous one (temporally speaking) creating

multiple situation vectors.

The Figure 1 represents the results of the

learning on one aircraft where each situation

encountered by the aircraft is linked to its

following and so on until the last situation

which gives us a “unary tree”.

Nevertheless, it would not be realistic to hope

to create a graph with every situation

encountered by the plane. Many sections of

“unary graphs” can be simplified by removing

intermediary node if the changes described

between the first node and the last node of the

section is linear (like an aircraft moving in a

straight line). The remaining situations are

called situations of interest.

Every observed aircraft gives us one “unary

tree”. Since we observe multiple aircrafts,

some node (or situation) can be merged. The

merging process is based on the proximity

between the situations, if the distance between

nodes is below a given threshold they merge

with each other. When all the relevant nodes

are merged we are left with a directed graph

able to guide an aircraft.

The nodes in the final graph represent the

points where the aircraft has acted. It's close

to the notion of navigation point and we could

expect those points to match the waypoints of

Figure 1 - "unary graph", the results of observing one aircraft

the flight plan but our results disprove this

hypothesis by showing that many aircrafts

take shortcut multiple time during the flight.

Hence, there is no perfect matching between

waypoints and nodes.

The scalability and usability of this method

entirely depend on learning. If learning is not

doable on big samples of diverse data then it
cannot simulate diverse data and EVAA is not

a realistic simulator. The graph in Figure 2

shows that the number of situations of interest

increase linearly with the number of aircrafts

observed. It could be a problem but the

merging of situations which enable us to

merge redundant information and increase the

speed of the learning process.

@6()9#A,&/"(4$#++&*(
B"%"$#,&0%(

A traffic generator must be able to compute

the location of an aircraft over time. With the

situation vector mechanism we are able to

compute a set of future locations for the

aircraft: if the current location of the aircraft

matches the initial situation of a vector it

means that the terminal situation of this vector

is a potential future situation.

The traffic will be generated by “agentifying”

the aircrafts. These aircrafts start with a

specific situation which can be the departure

airport (defining latitude, longitude and

altitude) and ready to take off (speed is null,
callsign is set …) or at a specific 3D position

as if it were already flying. From their starting

situation a plane can find what its next action

will be by comparing its current situation with

the initial point of every situation vector in

the area. All of those who are sufficiently

close in a Nth dimension comparison (N

being the number of parameters) are

candidates and the best situation vector

among the candidate is chosen. Now the plane

knows exactly what it should do next:

•! It knows where it should go by

looking at the latitude, longitude,

altitude of the terminal situation of the

situation vector.

Figure 2 - Situations over number of aircrafts observed

•! It knows at which
speed it must go

there by looking at

the time difference

between the initial

and the terminal

situation vector.

This method, applied on

multiple aircrafts and on

long recording of flight, gives us the basis for

learning a realistic behavior.

An agent is launched for every existing

situation vector. Those agents are

geographically located on the map. Any

simulated aircraft start with an initial situation

which is used to find the first objective of this

aircraft. An objective is a situation in which

the aircraft “wants” to be. The first step is to

find this objective. EVAA provides a way to

send a message to any agent in a specific

radius of a location. The aircraft sends an

objective request, a message containing its

current situation, to any situation vector in a

radius R around itself. Each vector has to

decide if its initial situation matches the

current aircraft's situation. This is done with

the Algorithm 1 which is able to compute a

numerical distance between two situations.

The scale function put the difference between

p(initial) and p(current) on the same scale

between 0 and 10. It is necessary because a

difference of 1 unit of heading is not much

whereas 1 unit of latitude/longitude is huge.

Then if the distance if less than a defined

threshold the vector decides that it matches

the current situation and send its initial and

terminal situation to the aircraft.

Then the aircraft receive responses to its

request and do a certain amount of checks and

verifications on every potential vectors. Those

which don't pass those tests are discarded. An

example of sanity check is: if a vector advice

to go from 0 to 36000 ft in 1 second this

message will be discarded. Also an aircraft

will prefer to change it's heading than its

altitude unless it's close to its arrival airport.

Among the remaining vectors, the aircraft

will choose the one with the smallest distance

to its current situation as its new objective.

Once the objective is reached the process

starts again with the new current position.

By following this process the aircraft is able

to follow a realistic trajectory with realistic
parameters in the virtual sky of EVAA

without any human help whatsoever.

"#$%&'()*(+,,)'%-!#'#%#&./0!

! "#$%!1!23!

! 45,!6!#'!6&,&7)%),$0!

! ! #4!#$8+7),#(*6/0!

! ! ! "#$%!1!"#$%!9!$(&.)*6-!:!6*#'#%#&./!;!6*(+,,)'%/!:!/!

! !).$)!#4!6*#'#%#&./!<1!6*(+,,)'%/0!

! ! ! "#$%!1!"#$%!9!=223!

! ,)%+,'!"#$%3

Algorithm 1 – Distance between two situations

Figure 3 - Pseudo pilot interface

The Adaptive Multi-Agent System (AMAS)

[2] [3] technology provides a way to deal with

unpredictable events (like ATCO tactical

orders) that aircrafts encounter during their

flight. Those events are the reason very few

aircraft follow their original flight plan. Using

AMAS means that we have to follow a set of

principles if we want to benefit from those

advantages.

•! Agent should be autonomous and the

network between them should be self-

organizing.

•! Agents should base their decision only
on local knowledge.

•! Agents should cooperate with each

other. Not to a point where they would

be altruistic but they should try to help

their neighbors if it improves the local

state.

We saw that the learning phase

uses the self-organization

principle when situation

vectors build their networks on

the fly. We use the locality

principle when an aircraft only

asks its potential objective to

the vectors in its neighborhood.

The fact that situation vectors,

when they receive an objective

request, can judge themselves

as non-pertinent (and do not

send a response) shows

cooperation.

C6(DEA"$/&<"9(
4$#++&*(
B"%"$#,&0%(

When using traffic generation

you might want the aircrafts to

follow a specific route. In

EVAA, aircrafts with their flight plan

specified can switch between adaptive mode

and flight plan mode with a single click.

This functionality is necessary because, in a

controlled zone, every aircraft must follow its

flight plan unless it has been said otherwise

by the air traffic controller.

More over, any aircraft can be remotely

piloted with high-level orders through a

generic message-based API.

Figure 3 shows an interface we developed to

show the capabilities of EVAA. In (1) you can

see the list of aircrafts. If one of them is

selected then its information are displayed in

(3). You can also search a plane using the

auto-complete field in (2) and then send it a

control order with the panel (4).

Figure 5 - Trajectories of

simulated aircrafts

Figure 4 - Trajectories of real

aircrafts!

F6(2"<E3,<(
In this section we will compare the results of

our simulation with the reality between

French national airports.

The Figure 4 shows a set of 50 real

trajectories (here Toulouse to Paris Orly) and

the Figure 5 shows a set of 50 simulated flight

for the same ADEP/ADES air line. We can

see that the trajectories are very similar in

shape and that many different kinds of

trajectory are available in the simulation

providing diversity and realism.

The Figure 6 shows the altitude profile of 25

real aircrafts between Toulouse and Paris

airports. We see that the aircrafts start by

climbing, then reach their cruise level, then

descend to reach another flight level to finally

land on ADES.

The Figure 7 shows the altitude profile of 100

Figure 6 - Altitude profile of real aircrafts over time!

Figure 7 - Altitude profile of simulated aircrafts over time

EVAA ATG simulated flights. We can see the

same succession of phases than in the real

world with a little less variety.

The Figure 8 is a box plot of the time it takes

for an aircraft to fly from its departure to its

arrival (The time scale for simulated flight has

been multiplied by a coefficient to fix a

problem with our platform. The coefficient is

the same for each route). Those calculations

have been made on 500 flights (50 flights for

each route). We compared multiple air routes

and the fact that the box (difference between

first quartile and third quartile) is smaller in

simulation than in reality shows a lack of

diversity in the flights produced by EVAA.

Nevertheless, we can see that our simulation

always respects the minimum and maximum

boundaries of travel time.

In most cases the statistical distributions of

simulated flight are included into and

statistically close from its real flight

counterpart.

G6(70%*3E<&0%(
EVAA is using machine learning, multi agent

systems and real trajectories observation to

generate behaviors of aircrafts. Since those

behaviors are based on what happen in the

real world, the resulting trajectories will be

very realistic. It is also possible to simulate

supervised aircrafts, which will follow their

flight plan (or the orders of a pseudo-pilot).

This enables EVAA to be usable in many

situations such as pilot and controller training,

generating autonomous surrounding traffic

generation, fully human controlled traffic or

any combination you can imagine.

H6(2"+"$"%*"<(
1.! L Panait, S Luke “Cooperative Multi-

Agent Learning : The State of the
Art”, Autonomous Agents and Multi-
Agent Systems 11.3, p. 387–434,
2005.

2.! G Di Marzo Serugendo, M Gleizes, A
Karageorgos, “Self-Organisation and
Emergence in MAS: An Overview”,
Informatica, p. 45–54, 2006

3.! Jean-Pierre GEORGÉ, Marie-Pierre
GLEIZES, Pierre GLIZE (2003).
“Conception of adaptive system with
emergent functionality: The AMAS
theory”

Figure 8 - Statistical distribution of travel time for aircrafts on multiple air routes in reality and in

simulation

