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Abstract. What if we could observe the real world to teach our simulation how to work? There 

would be no need for physics computation, no need to describe what kind of entities exists in the 

world. Everything would be observed, learned and made usable for simulation. This is the goal of 

EVAA.
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The process of creating a scenario for an Air 

Traffic Generator (ATG) is often a tedious 

task. Many parameters have to be entered 

manually in a very iterative and long process. 

Moreover they heavily rely on the flight plan 

to generate the trajectory of the plane. But, 

after taking off, the plane's trajectory rapidly 

differs from its original flight plan. It may be 

because of the weather, because the controller 

gave an ATC order to separate aircrafts, or 

because he or she gave a clearance to take a 

more direct route because the traffic was 

light. For those reasons we propose a new 

way of generating traffic based on behavioral 

learning. 

The behavior of an aircraft is difficult to 

simulate because it's defined by many 

parameters related to the aircraft and to its 

current environmental conditions. The 

information necessary to realistically simulate 

the flight of an aircraft is often either 

insufficient or unavailable. In addition, we 

said above that the flight plan might be 

changed during the flight, the whole flight is 

full of changes, change of speed, change of 

altitude, … ATCO (Air Traffic COntroller) 

orders are given and actions are taken. For 

any action of the plane there can be many 

reasons and we cannot discriminate between 

them. For these reasons any machine learning 

method based on a complete knowledge of the 

environment is not applicable. 

With EVAA we present a learning algorithm 

able to use incomplete data using cooperative 

multi-agent systems [1] to produce 

autonomous and self-adaptive behaviors for 

aircraft in a simulated environment. Through 

a large volume of real flight data we build a 

network of agents, each tasked to learn a 

piece of the aircraft's behavior. Those agents 

communicate with each other to build the 

global behavior that can be used later for a 

simulation. 
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When we observe real aircrafts flying, they 

emit through their ADS-B transponder, at any 

time, a set of parameters. Those parameters 

match real percepts like latitude, longitude or 

speed for example and each of them has a 

value.

Change Parameter Example of value 

* Time 
26 Nov 2014 
12:07:06 

 Callsign AF263PE 

* Latitude 45.66 

* Longitude -0.3073 

* Altitude 25700

* Heading 130 

 Departure airport BOD 

* Destination airport ORY 

 Type of aircraft A321 

 Registration number 393320 F-GMZA 

* Ground speed 425

* Vertical speed 1664 

 Transponder ID 4e6f657 

 Squawk 1000 

 Radar code F-LFCH2 

Table 1 - Observable parameters 

The Table 1 shows the exhaustive list of 

observable parameters in our system. Some of 

those values are static and cannot be changed 

during the simulation, others can and are 

marked with a “*” in the first column. The 

last column shows an example of correct 

value for each parameter. 

While we observe the real traffic we can 

capture the value of each of those parameters 

in a snapshot that we call a situation. An 

aircraft will fly through many different 

situations. Each situation is linked to its 

previous one (temporally speaking) creating 

multiple situation vectors. 

The Figure 1 represents the results of the 

learning on one aircraft where each situation 

encountered by the aircraft is linked to its 

following and so on until the last situation 

which gives us a “unary tree”. 

Nevertheless, it would not be realistic to hope 

to create a graph with every situation 

encountered by the plane. Many sections of 

“unary graphs” can be simplified by removing 

intermediary node if the changes described 

between the first node and the last node of the 

section is linear (like an aircraft moving in a 

straight line). The remaining situations are 

called situations of interest. 

Every observed aircraft gives us one “unary 

tree”. Since we observe multiple aircrafts,

some node (or situation) can be merged. The 

merging process is based on the proximity 

between the situations, if the distance between 

nodes is below a given threshold they merge 

with each other. When all the relevant nodes 

are merged we are left with a directed graph 

able to guide an aircraft. 

The nodes in the final graph represent the 

points where the aircraft has acted. It's close 

to the notion of navigation point and we could 

expect those points to match the waypoints of 

Figure 1 - "unary graph", the results of observing one aircraft 



the flight plan but our results  disprove this 

hypothesis by showing that many aircrafts 

take shortcut multiple time during the flight. 

Hence, there is no perfect matching between 

waypoints and nodes. 

The scalability and usability of this method 

entirely depend on learning. If learning is not 

doable on big samples of diverse data then it 
cannot simulate diverse data and EVAA is not 

a realistic simulator. The graph in Figure 2 

shows that the number of situations of interest 

increase linearly with the number of aircrafts 

observed. It could be a problem but the 

merging of situations which enable us to 

merge redundant information and increase the 

speed of the learning process. 
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A traffic generator must be able to compute 

the location of an aircraft over time. With the 

situation vector mechanism we are able to 

compute a set of future locations for the 

aircraft: if the current location of the aircraft 

matches the initial situation of a vector it 

means that the terminal situation of this vector 

is a potential future situation. 

The traffic will be generated by “agentifying” 

the aircrafts. These aircrafts start with a 

specific situation which can be the departure 

airport (defining latitude, longitude and 

altitude) and ready to take off (speed is null, 
callsign is set …) or at a specific 3D position 

as if it were already flying. From their starting 

situation a plane can find what its next action 

will be by comparing its current situation with 

the initial point of every situation vector in 

the area. All of those who are sufficiently 

close in a Nth dimension comparison (N 

being the number of parameters) are 

candidates and the best situation vector 

among the candidate is chosen. Now the plane 

knows exactly what it should do next: 

•! It knows where it should go by 

looking at the latitude, longitude, 

altitude of the terminal situation of the 

situation vector. 

Figure 2 - Situations over number of aircrafts observed



•! It knows at which 
speed it must go 

there by looking at 

the time difference 

between the initial 

and the terminal 

situation vector.

This method, applied on 

multiple aircrafts and on 

long recording of flight, gives us the basis for 

learning a realistic behavior. 

An agent is launched for every existing 

situation vector. Those agents are 

geographically located on the map. Any 

simulated aircraft start with an initial situation 

which is used to find the first objective of this 

aircraft. An objective is a situation in which 

the aircraft “wants” to be. The first step is to 

find this objective. EVAA provides a way to 

send a message to any agent in a specific 

radius of a location. The aircraft sends an 

objective request, a message containing its 

current situation, to any situation vector in a 

radius R around itself. Each vector has to 

decide if its initial situation matches the 

current aircraft's situation. This is done with 

the Algorithm 1 which is able to compute a 

numerical distance between two situations. 

The scale function put the difference between 

p(initial) and p(current) on the same scale 

between 0 and 10. It is necessary because a 

difference of 1 unit of heading is not much 

whereas 1 unit of latitude/longitude is huge. 

Then if the distance if less than a defined 

threshold the vector decides that it matches 

the current situation and send its initial and 

terminal situation to the aircraft.

Then the aircraft receive responses to its 

request and do a certain amount of checks and 

verifications on every potential vectors. Those 

which don't pass those tests are discarded. An 

example of sanity check is: if a vector advice 

to go from 0 to 36000 ft in 1 second this 

message will be discarded. Also an aircraft 

will prefer to change it's heading than its 

altitude unless it's close to its arrival airport. 

Among the remaining vectors,  the aircraft 

will choose the one with the smallest distance 

to its current situation as its new objective. 

Once the objective is reached the process 

starts again with the new current position. 

By following this process the aircraft is able 

to follow a realistic trajectory with realistic 
parameters in the virtual sky of EVAA 

without any human help whatsoever. 
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Algorithm 1 – Distance between two situations 

Figure 3 - Pseudo pilot interface 



The Adaptive Multi-Agent System (AMAS) 

[2] [3] technology provides a way to deal with 

unpredictable events (like ATCO tactical 

orders) that aircrafts encounter during their 

flight. Those events are the reason very few 

aircraft follow their original flight plan. Using 

AMAS means that we have to follow a set of 

principles if we want to benefit from those 

advantages. 

•! Agent should be autonomous and the 

network between them should be self-

organizing. 

•! Agents should base their decision only 
on local knowledge. 

•! Agents should cooperate with each 

other. Not to a point where they would 

be altruistic but they should try to help 

their neighbors if it improves the local 

state. 

We saw that the learning phase 

uses the self-organization 

principle when situation 

vectors build their networks on 

the fly. We use the locality 

principle when an aircraft only 

asks its potential objective to 

the vectors in its neighborhood. 

The fact that situation vectors, 

when they receive an objective 

request, can judge themselves 

as non-pertinent (and do not 

send a response) shows 

cooperation. 
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When using traffic generation 

you might want the aircrafts to 

follow a specific route. In 

EVAA, aircrafts with their flight plan 

specified can switch between adaptive mode 

and flight plan mode with a single click. 

This functionality is necessary because, in a 

controlled zone, every aircraft must follow its 

flight plan unless it has been said otherwise 

by the air traffic controller. 

More over, any aircraft can be remotely 

piloted with high-level orders through a 

generic message-based API. 

Figure 3 shows an interface we developed to 

show the capabilities of EVAA. In (1) you can 

see the list of aircrafts. If one of them is 

selected then its information are displayed in 

(3). You can also search a plane using the 

auto-complete field in (2) and then send it a 

control order with the panel (4). 

Figure 5 - Trajectories of 

simulated aircrafts 

Figure 4 - Trajectories of real 

aircrafts!
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In this section we will compare the results of 

our simulation with the reality between 

French national airports. 

The Figure 4 shows a set of 50 real 

trajectories (here Toulouse to Paris Orly) and 

the Figure 5 shows a set of 50 simulated flight 

for the same ADEP/ADES air line. We can 

see that the trajectories are very similar in 

shape and that many different kinds of 

trajectory are available in the simulation 

providing diversity and realism. 

The Figure 6 shows the altitude profile of 25 

real aircrafts between Toulouse and Paris 

airports. We see that the aircrafts start by 

climbing, then reach their cruise level, then 

descend to reach another flight level to finally 

land on ADES. 

The Figure 7 shows the altitude profile of 100 

Figure 6 - Altitude profile of real aircrafts over time!

Figure 7 - Altitude profile of simulated aircrafts over time 



EVAA ATG simulated flights. We can see the 

same succession of phases than in the real 

world with a little less variety. 

The Figure 8 is a box plot of the time it takes 

for an aircraft to fly from its departure to its 

arrival (The time scale for simulated flight has 

been multiplied by a coefficient to fix a 

problem with our platform. The coefficient is 

the same for each route). Those calculations 

have been made on 500 flights (50 flights for 

each route). We compared multiple air routes 

and the fact that the box (difference between 

first quartile and third quartile) is smaller in 

simulation than in reality shows a lack of 

diversity in the flights produced by EVAA. 

Nevertheless, we can see that our simulation 

always respects the minimum and maximum 

boundaries of travel time. 

In most cases the statistical distributions of 

simulated flight are included into and 

statistically close from its real flight 

counterpart. 
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EVAA is using machine learning, multi agent 

systems and real trajectories observation to 

generate behaviors of aircrafts. Since those 

behaviors are based on what happen in the 

real world, the resulting trajectories will be 

very realistic. It is also possible to simulate 

supervised aircrafts, which will follow their 

flight plan (or the orders of a pseudo-pilot). 

This enables EVAA to be usable in many 

situations such as pilot and controller training, 

generating autonomous surrounding traffic 

generation, fully human controlled traffic or 

any combination you can imagine. 
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Figure 8 - Statistical distribution of travel time for aircrafts on multiple air routes in reality and in 

simulation 


