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Abstract: Background: The draft genome assemblies produced by new sequencing technologies
present important challenges for automatic gene prediction pipelines, leading to less
accurate gene models. New benchmark methods are needed to evaluate the accuracy
of gene prediction methods in the face of incomplete genome assemblies, low genome
coverage and quality, complex gene structures, or a lack of suitable sequences for
evidence-based annotations. Results: We describe the construction of a new
benchmark, called G3PO (benchmark for Gene and Protein Prediction PrOgrams),
designed to represent many of the typical challenges faced by current genome
annotation projects. The benchmark is based on a carefully validated and curated set
of real eukaryotic genes from 147 phylogenetically disperse organisms, and a number
of test sets are defined to evaluate the effects of different features, including genome
sequence quality, gene structure complexity, protein length, etc. We used the
benchmark to perform an independent comparative analysis of the most widely used
ab initio gene prediction programs and identified the main strengths and weaknesses
of the programs. More importantly, we highlight a number of features that could be
exploited in order to improve the accuracy of current prediction tools. Conclusions: The
experiments showed that ab initio gene structure prediction is a very challenging task,
which should be further investigated. We believe that the baseline results associated
with the complex gene test sets in G3PO provide useful guidelines for future studies.
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Order of Authors Secondary Information:

Response to Reviewers: Dear Editor,

We thank the reviewers for their careful consideration of our manuscript, and have
addressed all the points raised. The modified sections of the main text have been
highlighted in red and detailed responses are provided.

We hope that this revised version of our article will be deemed suitable for publication
in BMC Genomics.

Best regards,
Julie Thompson

Editor Comments:

In addition to the reviewer's comments please strongly consider making available the
raw output of the gene predictors used and the scripts developed to make the
validation.

All outputs of the gene predictors and the scripts developed for the validation are now
available at: http://git.lbgi.fr/scalzitti/Benchmark_study

Reviewer 1: Scalzitti, Jeannin-Girardon, Collet, Poch and Thompson have estimated
and compared the accuracy of five ab initio gene prediction programs on 147 species.
In doing this, they used orthologs of 20 human genes involved in a rare genetic
disease (BBS). The accuracy was measured against the Ensembl gene structures of
Swissprot proteins, filtered for implausibilities in the MSA.

The authors report various accuracy measures for predicting genes in a single-gene
setting, where only one reference genic region and some flanking region upstream and
downstream was given as input. Further, they examine the influence of various
parameters (clade, gene length, confidence in reference annotation) and detail the
accuracy, e.g. by reporting it separately for different types or sizes of exons.

The article is carefully-written and contains many useful statistics that examine the
relative performances of the gene finders and the admissibility of the data set. Such a
benchmark that considers large numbers of species is very timely as well.

We thank the reviewer for these positive comments.

The reported accuracies are low, measured by a) previously published accuracies and
b) by what would actually be needed for including such predictions in a whole-genome
annotation. A plausible explanation may be that Scalzitti et al. did not train the gene
finders on this set of genomes. However, when using an ab initio gene prediction
program as a component for whole-genome annotation, it is good practice to train it on
a set of bona fide genes that are typically available from evidence-based gene finding.
Otherwise, the performance might indeed be poor. For this reason, the absolute
(in)accuracies are of limited interpretability. I think, the "non-training" should be
prominently mentioned where the main accuracy results are reported and overall
discussed as it may mislead readers.

The reviewer is correct in saying that we did not train the gene finders on our data,
mainly because the benchmark sequences come from a very diverse set of organisms
and training for each organisms was not possible. However, we did select the most
pertinent training model to use from the models provided with each gene finder. This
was mentioned in the Methods section, but has now been stated more clearly in the
Results section.

The authors include experiments with "0Kb" flanking region. Firstly, when using such
an unexpected value, the manuscript should explicitly avoid the possible
misunderstanding that it is only 0bp WHEN rounded to full Kb. On first reading, I had
assumed that it surely is not actually 0bp because that would make little sense.
However, the authors indeed use 0bp. This introduces possible strong biases both
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towards and against good accuracy and has no relevance for the genome annotation
application. A HMM may reward the sequence start right at the start codon through
initial probabilities and therefore exploit the implicitly given gene start information.
However, it was not the intention of the authors to assess accuracy when the gene
boundaries are known. On the other hand, another method may require some
upstream region in order to assess translation start signals. It may therefore perform
poorly in the 0Kb setting but the poor results do not generalize to the case where the
translation boundaries are unknown. The 0Kb setting should therefore not be reported.

The results of the tests with 0Kb flanking region have been removed from the text, and
have been replaced with a new test using 150 bases, as requested by reviewer 2.

From the authors' verbal description, it appears that AUGUSTUS was not run with the
softmasking option to treat lower-case characters as repeats, as the authors intended
to. To be specific and to facilitate reproducibility, the authors should include the five
command-lines to run the gene finders in the supplementary files.

The benchmark tests for Augustus have now been done using the softmasking option.
The command lines for each gene finder are now included in the methods section.

The authors rightly state that the merging of neighboring genes is a typical error.
However, the design of the benchmark does not allow to quantify this problem.

It is true that we cannot quantify the number of errors caused by the merging of
neighboring genes since the gene predictors are evaluated with respect to the
benchmark gene sequence only. This is now mentioned in the Discussion section.

GeneMark is another ab initio gene finder that is under active development. Why have
the authors not included it?

We decided not to include any of the GeneMark family software because none of the
available programs met our criteria for inclusion in the study. According to the web site
(http://exon.gatech.edu/GeneMark), two programs are suitable for eukaryotic genomes:
GeneMark-ES and GeneMark.hmm-E. First, GeneMark-ES is a genome-level
annotation tool and requires a large set of input sequences for the initial self-training
step. Since the G3PO benchmark sequences originate from a large set of organisms,
the self-training step is not possible. Second, GeneMark.hmm-E is not a widely used
program (Borodovsky et al. Eukaryotic gene prediction using GeneMark.hmm. Curr
Protoc Bioinformatics. 2003 is cited only 7 times) and we decided to limit the
benchmark study to programs cited at least 100 times.

The presentation of the results with all their variations appears to be of little structure,
more catalog-like than structured or discussed by importance. For example, the first
results are the runtimes (including a graph) and I cannot imagine a group that performs
‘high-throughput analysis’ for which these overall low reported runtimes are of concern.
Another example are the “initial tests” with 0bp flanking sequence that I think should
rather not be reported at all.

The presentation of the results is divided into 3 sections, describing (i) the benchmark
itself, (ii) the overall prediction quality of the programs and (iii) the effects of various
factors on prediction quality. To help the reader, this organization is now described at
the beginning of the results section.
We moved the discussion of program runtimes to the end of section (ii) and removed
the graph in Fig. 5A. The initial tests with 0bp flanking sequence have also been
removed.

The Discussion is repeating a lot of what was done, rather than discussing the findings.
Overall the main part of the manuscript can be dramatically shortened to the benefit of
readability.

The discussion section has been shortened to avoid repetition and to improve
readability.

Minor Comments:
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 - line 98: "Confirmed" is first mentioned here but not explained. Please briefly indicate
what it means here and give a reference to the defining section.
Confirmed and Unconfirmed are now defined on line 98, and a reference is provided to
the corresponding methods section.

 - line 100: "more realistic" than what?
"more realistic" has been replaced by “realistic”.

 - line 105: You give precise numbers for the rather imprecise event "badly predicted".
Please reformulate.
"badly predicted" has been replaced by “not predicted with 100% accuracy”.

 - The beginning of the Results section left me asking: How many genes are there at
most per species and family? Is it one? By mere definition of orthology it could be
substantially more than one.
We selected the best ortholog for each species and each family to be included in the
benchmark. This has been specified in the Methods section.

 - line 154 "three times less exons" -> "three times fewer exons"
This has been changed.

 - It remains unclear to me what UDT means? Is it defined in ENSEMBL? Is it defined
by the authors as any sequence that contains at least one n? Are these typically
assembly gaps and therefore more likely to be outside of exons? The authors say they
are "generally due to genome sequencing or assembly errors", the latter strikes me as
odd. Do you have a reference for that? Regardless of the definition, there is a bias to
be expected for longer sequences to rather contain UDTs (or anything for that matter)
and therefore I don't see a strong argument in the manuscript against removing them
from the analysis and thereby introducing a bias towards shorter genes.
We defined UDT as a sequence segment consisting of a run of n’s, where the n
characters represent ambiguous nucleotides according to the IUPAC code. This is now
specified in the methods section.
"generally due to genome sequencing or assembly errors" has been changed to
“generally due to genome sequencing errors or gaps in the assembly.”
It is true that longer sequences are more likely to contain UDTs, and they have been
included in the benchmark as they represent one of the typical problems faced in a
realistic genome annotation project. This is now mentioned in the Discussion section.

 - line 589. The statement is somewhat vague. Does that mean that you chose a
closest relative in each case?
The statement has been clarified by adding the following text:
“As the benchmark contains sequences from a wide range of species, we selected the
most pertinent training model for each target species, based on the taxonomic
proximity between the target and model species. For each program, we compared the
taxonomy of the target species with the taxonomy for each model species available,
where taxonomies were obtained from the NCBI Taxonomy database
(https://www.ncbi.nlm.nih.gov/taxonomy). We then selected the model species that was
closest to the target in the taxonomic tree.”

 - line 596: You state that you used the standard t-test. Does that mean you treated the
predictions of different programs on the same region as independent? I presume it
should rather be a test for paired samples.
A paired t-test was used and this has been corrected in the Methods section.

 - line 645: percent identity: That evaluation error could be misunderstood to have the
alignment length in the denominator, e.g. as reported by BLAST. Please clarify the
denominator at first use of that measure and not only here.
Percent identity is now defined the first time it is used in the Results section: Evaluation
metrics.

 - line 691: For reproducibility it would be preferable, if you could also post a file with
the "exon maps" that you used.
 The exon maps are now provided at http://git.lbgi.fr/scalzitti/Benchmark_study
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Reviewer 2: Ab initio gene finders are essential tools for automatic genome annotation
pipelines.  Improving the accuracy of these tools has been an intriguing challenge.
Most successful gene finders are known to apply Generalized Hidden Markov
Model(GHMM) [Kulp 1996, Burge 1997, Stanke 2003]. Although independent research
groups working with the same problem use the same mathematical framework
(GHMM), each small difference in development decisions provides different results with
gene prediction with different accuracies. Unfortunately, it still a challenge to make a
fair comparison between these tools [Zhang, 2002]. To better understand the
systematic bias of all programs, it is essential to have a set of genes that we can use
as a gold standard.

This paper describes a new benchmark, called G3PO (a benchmark for Gene and
Protein Prediction PrOgrams). G3PO has an appealing feature that it is
phylogenetically validated using 147 organisms. It shows the factors that can influence
the results of the gene finders, such as, the length of flanking sequences, exon map
complexity, protein products, number of exons, and others.

I believe that this paper is original and provides a valuable contribution to genomics. It
is well written, and I will be happy to accept it after clear some points out.

We thank the reviewer for these positive comments.

 1. Zhang 2002 describes the type of exons we can observe in a eukaryotic gene. He
explains that some exons can have untranslated regions. However, gene finders do a
reasonable job in predicting the coding segment (CDS) of the gene, and they are not
able to predict untranslated-exons. I would like to know if G3PO contains exons with
the untranslated region.

We included all the exons defined in Ensembl, including the 5’ and 3’ untranslated
regions when available. This is now specified in the Methods section.

2. Another factor that is important to investigate is the GC content of the gene. For
example, P. falciparum has a genome with high AT content (80.6%), and predicting a
coding gene in this scenario is relatively more straightforward in this genome than in
genome with GC content near 50%.  Can I use G3PO to see how the GC content
influences gene finders?

We included the GC content of the gene as one of the factors describing the
sequences in G3PO. An analysis of how this GC content influences gene finders is
included in the Supplementary data (Fig. S6). As might be expected, genes with high
GC content are predicted better than genes with high AT content. The GC content of
the genome is more difficult to test independently of the other factors, but could
contribute to the species-dependent differences observed, shown in figure 12.

3. I would like to see the accuracy of each signal: (i) start codon; (ii) stop codon; (iii)
acceptor sites; (iv) donor sites. It can facilitate to visualize where the prediction is
failing.  It would be nice to provide in supplementary material the performance of initial
exon, internal exon, and terminal exons.

The accuracy of the different signals is now shown in figs 5 and 8, and the
performance of the different exons is specified in the Supplementary table S10.

4. The length of the inputted sequence can significantly influence the performance of
the prediction. Predicting multiple genes in a chromosome is much harder than
predicting a single gene in a short sequence. We can observe that the number of
viable gene structures grows exponentially with the size of the input. The smaller the
sequence, the lower the amount of viable gene structure, and the higher the accuracy
tends to be. I would like to know if this rationale is correct and if it can help to explain
why a shorter flanking sequence provides better results.

We agree that the length of the flanking sequence influences the performance of the
gene finders, as shown in fig 7. However, as pointed out by reviewer 1, we cannot
quantify the number of errors caused by the merging of neighboring genes since the
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gene predictors are evaluated with respect to the benchmark gene sequence only. This
is now mentioned in the Discussion section.

5. When I was working with gene finders, I observed that a flanking sequence of length
150 is the best choice to predict the structure of the gene. The 0kb dataset can not
provide a small UTR-region that the start codon signal sensors need to work correctly.
And the 2kb database is too large. I am curious if my observation is correct or not. I will
be happy to see the results using a dataset with a short flanking sequence, for
example, with only 150 bases before the ATG and after the stop codon (TAA, TAG,
TGA).

The results of using flanking sequences of length 150 bases are now provided in Fig. 5
and 7.

6. Table 1.  Augustus uses the Interpolated Markov Model of order 4 to model.
Augustus also has a short intron model, and an improved methodology to treat genes
with different Isochores. I think this small improvement can explain why this predictor
has performed better than the others.

Table 1 has been modified to include these points.

7. It seems that the paper does not cite alternative splicing events. Why?

Alternative splicing events are not currently considered in G3PO, since only the
‘canonical’ Uniprot sequences were considered in order to ensure that the protein
sequences in the benchmark were of high quality. However, we agree that this is an
important problem and the question of alternative splicing isoforms is included in the
Discussion section.

8. Is it possible to rank the organisms by the number of errors in the annotated protein?

A new table (Table S4) has been included in the supplementary data, where the
organisms are ranked by the number of errors.

9. It would be nice to have the scripts that the authors used to execute the validation. It
will facilitate the reproduction of the results, and it will assist others in running different
programs. The availability of the output of the programs is also essential.

The output of the programs and the scripts used in the evaluation are now available at
http://git.lbgi.fr/scalzitti/Benchmark_study

Additional Information:

Question Response

Has this manuscript been submitted
before to this journal or another journal in
the <a
href="https://www.biomedcentral.com/p/th
e-bmc-series-journals#journallist"
target="_blank" >BMC series</ a>?

No
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Abstract 10 

Background: The draft genome assemblies produced by new sequencing technologies 11 

present important challenges for automatic gene prediction pipelines, leading to less accurate 12 

gene models. New benchmark methods are needed to evaluate the accuracy of gene prediction 13 

methods in the face of incomplete genome assemblies, low genome coverage and quality, 14 

complex gene structures, or a lack of suitable sequences for evidence-based annotations.  15 

Results: We describe the construction of a new benchmark, called G3PO (benchmark for 16 

Gene and Protein Prediction PrOgrams), designed to represent many of the typical challenges 17 

faced by current genome annotation projects. The benchmark is based on a carefully validated 18 

and curated set of real eukaryotic genes from 147 phylogenetically disperse organisms, and a 19 

number of test sets are defined to evaluate the effects of different features, including genome 20 

sequence quality, gene structure complexity, protein length, etc. We used the benchmark to 21 

perform an independent comparative analysis of the most widely used ab initio gene 22 

prediction programs and identified the main strengths and weaknesses of the programs. More 23 

Manuscript Click here to access/download;Manuscript;main text
revised.docx
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importantly, we highlight a number of features that could be exploited in order to improve the 24 

accuracy of current prediction tools. 25 

Conclusions: The experiments showed that ab initio gene structure prediction is a very 26 

challenging task, which should be further investigated. We believe that the baseline results 27 

associated with the complex gene test sets in G3PO provide useful guidelines for future 28 

studies. 29 

Keywords: genome annotation, gene prediction, protein prediction, benchmark study.  30 

 31 

Background 32 

The plunging costs of DNA sequencing [1] have made de novo genome sequencing widely 33 

accessible for an increasingly broad range of study systems with important applications in 34 

agriculture, ecology, and biotechnologies amongst others [2]. The major bottleneck is now the 35 

high-throughput analysis and exploitation of the resulting sequence data [3]. The first 36 

essential step in the analysis process is to identify the functional elements, and in particular 37 

the protein-coding genes. However, identifying genes in a newly assembled genome is 38 

challenging, especially in eukaryotes where the aim is to establish accurate gene models with 39 

precise exon-intron structures of all genes [3-5]. 40 

Experimental data from high-throughput expression profiling experiments, such as RNA-41 

seq or direct RNA sequencing technologies, have been applied to complement the genome 42 

sequencing and provide direct evidence of expressed genes [6,7]. In addition, information 43 

from closely related genomes can be exploited, in order to transfer known gene models to the 44 

target genome. Numerous automated gene prediction methods have been developed that 45 

incorporate similarity information, either from transcriptome data or known gene models, 46 

including GenomeScan [8], GeneWise [9], FGENESH [10], Augustus [11], Splign [12], 47 

CodingQuarry [13], and LoReAN [14].  48 
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The main limitation of similarity-based approaches is in cases where transcriptome 49 

sequences or closely related genomes are not available. Furthermore, such approaches 50 

encourage the propagation of erroneous annotations across genomes and cannot be used to 51 

discover novelty [5]. Therefore, similarity-based approaches are generally combined with ab 52 

initio methods that predict protein coding potential based on the target genome alone. Ab 53 

initio methods typically use statistical models, such as Support Vector Machines (SVMs) or 54 

hidden Markov models (HMMs), to combine two types of sensors: signal and content sensors. 55 

Signal sensors exploit specific sites and patterns such as splicing sites, promotor and 56 

terminator sequences, polyadenylation signals or branch points. Content sensors exploit the 57 

coding versus non-coding sequence features, such as exon or intron lengths or nucleotide 58 

composition [15]. Ab initio gene predictors, such as Genscan [16], GlimmerHMM [17], 59 

GeneID [18], FGENESH [10], Snap [19], Augustus [20], and GeneMark-ES [21], can thus be 60 

used to identify previously unknown genes or genes that have evolved beyond the limits of 61 

similarity-based approaches.  62 

Unfortunately, automatic ab initio gene prediction algorithms often make substantial errors 63 

and can jeopardize subsequent analyses, including functional annotations, identification of 64 

genes involved in important biological process, evolutionary studies, etc. [22-25]. This is 65 

especially true in the case of large “draft” genomes, where the researcher is generally faced 66 

with an incomplete genome assembly, low coverage, low quality, and high complexity of the 67 

gene structures. Typical errors in the resulting gene models include missing exons, non-68 

coding sequence retention in exons, fragmenting genes and merging neighboring genes. 69 

Furthermore, the annotation errors are often propagated between species and the more “draft” 70 

genomes we produce, the more errors we create and propagate [3-5]. Other important 71 

challenges that have attracted interest recently include the prediction of small 72 

proteins/peptides coded by short open reading frames (sORFs) [26,27] or the identification of 73 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 

 

events such as stop codon recoding [28]. These atypical proteins are often overlooked by the 74 

standard gene prediction pipelines, and their annotation requires dedicated methods or manual 75 

curation. 76 

The increased complexity of today’s genome annotation process means that it is timely to 77 

perform an extensive benchmark study of the main computational methods employed, in 78 

order to obtain a more detailed knowledge of their advantages and disadvantages in different 79 

situations. Some previous studies have been performed to evaluate the performance of the 80 

most widely used ab initio gene predictors. One of the first studies [29] compared 9 programs 81 

on a set of 570 vertebrate sequences encoding a single functional protein, and concluded that 82 

most of the methods were overly dependent on the original set of sequences used to train the 83 

gene models. More recent studies have focused on gene prediction in specific genomes, 84 

usually from model or closely-related organisms, such as mammals [30], human [31,32] or 85 

eukaryotic pathogen genomes [33], since they have been widely studied and many gene 86 

structures are available that have been validated experimentally. To the best of our 87 

knowledge, no recent benchmark study has been performed on complex gene sequences from 88 

a wide range of organisms.  89 

Here, we describe the construction of a new benchmark, called G3PO – benchmark for 90 

Gene and Protein Prediction PrOgrams, containing a large set of complex eukaryote genes 91 

from very diverse organisms (from human to protists). The benchmark consists of 1793 92 

reference genes and their corresponding protein sequences from 147 species and covers a 93 

range of gene structures from single exon genes to genes with over 20 exons. A crucial factor 94 

in the design of any benchmark is the quality of the data included. Therefore, in order to 95 

ensure the quality of the benchmark proteins, we constructed high quality multiple sequence 96 

alignments (MSA) and identified the proteins with inconsistent sequence segments that might 97 

indicate potential sequence annotation errors. Protein sequences with no identified errors were 98 
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labeled ‘Confirmed’, while sequences with at least one error were labeled ‘Unconfirmed’. The 99 

benchmark thus contains both Confirmed and Unconfirmed proteins (defined in Methods: 100 

Benchmark test sets) and represents many of the typical prediction errors presented above. 101 

We believe the benchmark allows a realistic evaluation of the currently available gene 102 

prediction tools on challenging data sets. 103 

We used the G3PO benchmark to compare the accuracy and efficiency of five widely used 104 

ab initio gene prediction programs, namely Genscan, GlimmerHMM, GeneID, Snap and 105 

Augustus. Our initial comparison highlighted the difficult nature of the test cases in the G3PO 106 

benchmark, since 68% of the exons and 69% of the Confirmed protein sequences were not 107 

predicted with 100% accuracy by all five gene prediction programs. Different benchmark 108 

tests were then designed in order to identify the main strengths and weaknesses of the 109 

different programs, but also to investigate the impact of the genomic environment, the 110 

complexity of the gene structure, or the nature of the final protein product on the prediction 111 

accuracy. 112 

 113 

Results 114 

The presentation of the results is divided into 3 sections, describing (i) the data sets 115 

included in the G3PO benchmark, (ii) the overall prediction quality of the five gene prediction 116 

programs tested and (iii) the effects of various factors on gene prediction quality. 117 

Benchmark data sets 118 

The G3PO benchmark contains 1793 proteins from a diverse set of organisms (Additional 119 

file 1: Table S1), which can be used for the evaluation of gene prediction programs. The 120 

proteins were extracted from the Uniprot [34] database, and are divided into 20 orthologous 121 

families (called BBS1-21, excluding BBS14) that are representative of complex proteins, with 122 

multiple functional domains, repeats and low complexity regions (Additional file 1: Table 123 
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S2). The benchmark test sets cover many typical gene prediction tasks, with different gene 124 

lengths, protein lengths and levels of complexity in terms of number of exons (Additional file 125 

1: Fig. S1). For each of the 1793 proteins, we identified the corresponding genomic sequence 126 

and the exon map in the Ensembl [35] database. We also extracted the same genomic 127 

sequences with additional DNA regions ranging from 150 to 10,000 nucleotides upstream and 128 

downstream of the gene, in order to represent more realistic genome annotation tasks. 129 

Additional file 1: Fig. S2 shows the distribution of various features of the 1793 benchmark 130 

test cases, at the genome level (gene length, GC content), gene structure level (number and 131 

length of exons, intron length), and protein level (length of main protein product). 132 

 133 

Phylogenetic distribution of benchmark sequences 134 

The protein sequences used in the construction of the G3PO benchmark were identified in 135 

147 phylogenetically diverse eukaryotic organisms, ranging from human to protists (Fig. 1A 136 

and Additional file 1: Table S3). The majority (72%) of the proteins are from the 137 

Opisthokonta clade, which includes 1236 (96.4%) Metazoa, 25 (1.9%) Fungi and 22 (1.7%) 138 

Choanoflagellida sequences (Fig. 1B). The next largest groups represented in the database are 139 

the Stramenopila (172), Euglenozoa (149) and Alveolata (99) sequences. More divergent 140 

species are included in the ‘Others’ group, containing 57 sequences from 6 different clades, 141 

namely Apusozoa, Cryptophyta, Diplomonadida, Haptophyceae, Heterolobosea and 142 

Parabasalia.  143 

 144 

Exon map complexity 145 

The benchmark was designed to cover a wide range of test cases with different exon map 146 

complexities, as encountered in a realistic complete genome annotation project. The test cases 147 

in the benchmark range from single exon genes to genes with 40 exons (Additional file 1: Fig. 148 
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S2). In particular, the different species included in the benchmark present different challenges 149 

for gene prediction programs. To illustrate this point, we compared the number of exons in 150 

the human genes to the number of exons in the orthologous genes from each species (Fig. 2). 151 

Three main groups can be distinguished: i) Chordata, ii) other Opisthokonta (Mollusca, 152 

Platyhelminthes, Panarthropoda, Nematoda, Cnidaria, Fungi and Choanoflagellida) and iii) 153 

other Eukaryota (Amoebozoa, Euglenozoa, Heterolobosza, Parabasalia, Rhodophyta, 154 

Viridiplantae, Stramenopila, Alveolata, Rhizaria, Cryptophyta, Haptophyceae). As might be 155 

expected, the sequences in the Chordata group generally have a similar number of exons 156 

compared to the Human sequences. The sequences in the ‘other Opisthokonta’ group have 157 

greater heterogeneity, as expected due to their phylogenetic divergence, although some 158 

classes, such as the insects are more homogeneous. The genes in this group have three times 159 

fewer exons on average, compared to the Chordata group. The ‘other Eukaryota’ group 160 

includes diverse clades ranging from Viridiplantae and Protists, although the exon map 161 

complexity is relatively homogeneous within each clade. For example, in the Euglenozoa 162 

clades, all sequences have less than 20% of the number of exons compared to human. 163 

 164 

Quality of protein sequences 165 

The protein sequences included in the benchmark were extracted from the public 166 

databases, and it has been shown previously that these resources contain many sequence 167 

errors [22-25]. Therefore, we evaluated the quality of the protein sequences in G3PO using a 168 

homology-based approach (see Methods), similar to that used in the GeneValidator program  169 

[23]. We thus identified protein sequences containing potential errors, such as inconsistent 170 

insertions/deletions or mismatched sequence segments (Additional file 1: Fig. S3 and 171 

Methods). Of the 1793 proteins, 889 (49.58%) protein sequences had no identified errors and 172 

were classified as ‘Confirmed’, while 904 (50.42%) protein sequences had from 1 to 8 173 
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potential errors (Fig. 3A) and were classified as ‘Unconfirmed’. The 904 Unconfirmed 174 

sequences contain a total of 1641 errors, i.e. each sequence has an average of 1.8 errors. 175 

Additional file 1: Table S4 shows the number of Unconfirmed sequences and the total number 176 

of errors identified for each species included in the benchmark. We further characterized the 177 

Unconfirmed sequences by the categories of error they contain (Fig. 3B) and by orthologous 178 

protein family (Additional file 1: Fig. S4A and B). All the protein families contain 179 

Unconfirmed sequences, regardless of the number or length of the sequences, although the 180 

ratio of Confirmed to Unconfirmed sequences is not the same in all families. For example, the 181 

BBS6, 11, 12, 18 families, that are present mainly in vertebrate species, have more Confirmed 182 

sequences (68.5%, 80.0%, 52.3%, 61.1% respectively). Inversely, the majority of sequences 183 

in the BBS8 and 9 families, that contain many phylogenetically disperse organisms, are 184 

Unconfirmed (68.8%, 73.3% respectively). The majority of the 1641 errors (58.4%) are 185 

internal (i.e. do not affect the N- or C-termini) and 31% are internal mismatched segments, 186 

while N-terminal errors (378=23.0%) are more frequent than C-terminal errors (302=18.4%). 187 

At the N- and C-termini, deletions are more frequent than insertions (280 and 145, 188 

respectively), in contrast to the internal errors, where insertions are more frequent (304 189 

compared to 143). 190 

The distributions of various features are compared for the sets of 889 Confirmed and 904 191 

Unconfirmed sequences in Additional file 1: Fig. S2. There are no significant differences in 192 

gene length (p-value=0.735), GC content (p-value=0.790), number of exons (p-value=0.073), 193 

and exon/intron lengths (p-value=0.690 / p-value=0.949) between the Confirmed and 194 

Unconfirmed sequences. The biggest difference is observed at the protein level, where the 195 

Confirmed protein sequences are 13% shorter than the Unconfirmed proteins (p-196 

value=8.75x10-9). We also compared the phylogenetic distributions observed in the 197 

Confirmed and Unconfirmed sequence sets (Fig. 1C and D). Two clades had a higher 198 
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proportion of Confirmed sequences, namely Opisthokonta (691/1283=54%) and Stramenopila 199 

(88/172=51%). In contrast, Alveolata (24/99=24%), Rhizaria (5/21=24%) and 200 

Choanoflagellida (5/22=22%) had fewer Confirmed than Unconfirmed sequences. 201 

 202 

Quality of genome sequences 203 

The genomic sequences corresponding to the reference proteins in G3PO were extracted 204 

from the Ensembl database. In all cases, the soft mask option was used (see Methods) to 205 

localize repeated or low complexity regions. However, some sequences still contained 206 

undetermined nucleotides, represented by ‘n’ characters, probably due to genome sequencing 207 

errors or gaps in the assembly. Undetermined (UDT) nucleotides were found in 283 (15.8%) 208 

genomic sequences from 58 (39.5%) organisms, of which 281 sequences (56 organisms) were 209 

from the metazoan clade (Additional file 1: Fig. S5). Of these 283 sequences, 133 were 210 

classified as Confirmed and 150 were classified as Unconfirmed. 211 

We observed important differences between the characteristics of the sequences with UDT 212 

regions and the other G3PO sequences, for both Confirmed and Unconfirmed proteins 213 

(Additional file 1: Table S5). The average length of the 283 gene sequences with UDT 214 

regions (95584 nucleotides) is 6 times longer than the average length of the 1510 genes 215 

without UDT (15934 nucleotides), although the protein sequences have similar average 216 

lengths (551 amino acids for UDT sequences compared to 514 amino acids for non UDT 217 

sequences). Sequences with UDT regions have twice as many exons, three times shorter 218 

exons and five times longer introns than sequences without UDT.  219 

 220 

Evaluation metrics 221 

The benchmark includes a number of different performance metrics that are designed to 222 

measure the quality of the gene prediction programs at different levels. At the nucleotide 223 
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level, we study the ability of the programs to correctly classify individual nucleotides found 224 

within exons or introns. At the exon level, we applied a strict definition of correctly predicted 225 

exons: the boundaries of the predicted exons should exactly match the boundaries of the 226 

benchmark exons. At the protein level, we compare the predicted protein to the benchmark 227 

sequence and calculate the percent sequence identity (defined as the number of identical 228 

amino acids compared to the number of amino acids in the benchmark sequence). It should be 229 

noted that, due to their strict definition, scores at the exon level are generally lower. For 230 

example, in some cases, the predicted exon boundary may be shifted by a few nucleotides, 231 

resulting in a low exon score but high nucleotide and protein level scores.  232 

 233 

Evaluation of gene prediction programs 234 

We selected five widely used gene prediction programs: Augustus, Genscan, GeneID, 235 

GlimmerHMM and Snap. These programs all use Hidden Markov Models (HMMs) trained on 236 

different sets of known protein sequences and take into account different context sensors, as 237 

summarized in Table 1. Each prediction program was run with the default settings, except for 238 

the species model to be used. As the benchmark contains sequences from a wide range of 239 

species, we selected the most pertinent training model for each sequence, based on their 240 

taxonomic proximity (see Methods). The genomic sequences for the 1793 test cases in the 241 

G3PO benchmark were used as input to the selected gene prediction programs and a series of 242 

tests were performed (outlined in Fig. 4), in order to identify the strong and weak points of the 243 

different algorithms, as well as to highlight specific factors affecting prediction accuracy.  244 

 245 

Gene prediction accuracy 246 

In order to estimate the overall accuracy of the five gene prediction programs, the genes 247 

predicted by the programs were compared to the benchmark sequences in G3PO. At this 248 
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stage, we included only the 889 Confirmed proteins, and used the genomic sequences 249 

corresponding to the gene region with 150 bp flanking sequence upstream and downstream of 250 

the gene (Fig. 4 – Initial tests) as input. Fig. 5(A-C) and Additional file 1: Table S6 show the 251 

mean quality scores at different levels: nucleotide, exon structure and final protein sequence 252 

(defined in Methods).  253 

At the nucleotide level (Fig. 5A), most of the programs have higher specificities than 254 

sensitivities (with the exception of GlimmerHMM), meaning that they tend to underpredict. 255 

F1 scores range from 0.39 for Snap to 0.52 for Augustus, meaning that it has the best 256 

accuracy.  257 

At the exon level (Fig. 5B left), Augustus and Genscan achieve higher sensitivities (0.27, 258 

0.23 respectively) and specificities (0.30, 0.28 respectively) than the other programs. 259 

Nevertheless, the number of mis-predicted exons remains high with 65% and 74% Missing 260 

Exons and 62% and 69% Wrong Exons respectively for Augustus and Genscan. At this level, 261 

GeneID and Snap have the lowest sensitivity and specificity, indicating that the predicted 262 

splice boundaries are not accurate. We also investigated whether the exon position had an 263 

effect on prediction accuracy, by comparing the percentage of well predicted first and last 264 

exons with the percentage of well predicted internal exons (Fig 5B right). The internal exons 265 

are predicted better than the first and last exons. In addition, for all exons, the 3’ boundary is 266 

generally predicted better than the 5’ boundary. To further investigate the complementarity of 267 

the different programs, we plotted the number of Correct Exons (i.e. both 5’ and 3’ exon 268 

boundaries correctly predicted) identified by at least one of the programs (Fig. 6A). A total of 269 

167 exons were found by all five programs, suggesting that they are relatively simple to 270 

identify. More importantly, 689 exons were correctly predicted by only one program, while 271 

5461 (68.4%) exons were not predicted correctly by any of the programs.  272 
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As might be expected, the nucleotide and exon scores are reflected at the protein level (Fig. 273 

5C), with Augustus again achieving the best score, obtaining 75% sequence identity overall 274 

and predicting 209 of the 889 (23.5%) Confirmed proteins with 100% accuracy. GeneID and 275 

Snap have the lowest scores in terms of perfect protein predictions (52.6%, 46.6% 276 

respectively). Again, we investigated the complementarity of the programs, by plotting the 277 

number of proteins that were perfectly predicted (100% identity) by at least one of the 278 

programs (Fig. 6B). Only 32 proteins are perfectly predicted by all five programs, while 108 279 

proteins were predicted with 100% accuracy by a single program. These were mostly 280 

predicted by Augustus (61), followed by GlimmerHMM (17). 611 (69%) of the 889 281 

benchmark proteins were not predicted perfectly by any of the programs included in this 282 

study. 283 

 284 

Computational runtime 285 

We also compared the CPU time required for each program to process the benchmark 286 

sequences (Additional file 1: Table S7). Using the gene sequences with 150 bp flanking 287 

regions (representing a total length of 51,699,512 nucleotides), Augustus required the largest 288 

CPU time (1826 seconds), taking >3.4 times as long as the second slowest program, namely 289 

GlimmerHMM (540 seconds). GeneID was the fastest program and completed the gene 290 

prediction for the 1793 genomic regions, including 10Kb upstream/downstream flanking 291 

nucleotides (total length of 86,970,612 nucleotides), in 260 seconds. 292 

 293 

Analysis of factors affecting gene prediction quality 294 

Based on the results of our initial comparison of gene prediction accuracy, and particularly 295 

the complementarity of the programs highlighted in Fig. 6, we decided to investigate further 296 

the different factors that may influence the performance of the prediction programs. Fig. 4 297 
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provides an overview of the different tests performed, including: i) factors associated with the 298 

input genomic sequence, ii) factors associated with the gene structure, and iii) factors 299 

associated with the protein product. 300 

 301 

Factors associated with the input genomic sequence  302 

We first evaluated the genome context and the effect of adding flanking sequences 303 

upstream and downstream of the benchmark gene sequence used as input to the prediction 304 

programs, using the 889 Confirmed benchmark tests. We added different flanking sequence 305 

lengths ranging from 150bp to 10Kb, and calculated the same quality scores as above, at the 306 

nucleotide, exon and protein levels (Fig. 7 and Additional file 1: Table S8).  307 

At the nucleotide level, the sensitivity of Augustus, Genscan, GeneID and Snap is not 308 

significantly affected by the addition of the flanking sequences. For GlimmerHMM (p-309 

value=4.8x10-20), a significant increase in sensitivity is observed when 2Kb flanking 310 

sequences are added, compared to the gene sequences with 150bp only. In terms of 311 

specificity, the addition of 2Kb flanking sequences increases significantly the quality of all 312 

the programs (Augustus: p-value=2.87x10-7, Genscan: p-value=1.27x10-9, GeneID: p-313 

value=8.46x10-5, GlimmerHMM: p-value=2.78x10-7, Snap: p-value=1.03x10-17). This is 314 

probably due to the addition of specific signals in the genomic environment of the gene 315 

(further than 150bp from the gene boundaries), such as the promoter, enhancers/silencers, etc. 316 

that are taken into account in the program prediction models. At the exon level, the effect of 317 

the flanking sequences is not the same for the different programs. For example, the sensitivity 318 

of Augustus (p-value=4.06x10-4), Genscan (p-value=1.59x10-8) and GeneID (p-319 

value=2.98x10-2) is highest when the input sequence has 150bp flanking regions and 320 

significantly decreases when 2Kb flanking nucleotides are added, while for GlimmerHMM 321 

(p-value=0.54) and Snap (p-value=0.62) no significant difference is observed. Similar results 322 
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are observed in terms of specificity. At the protein level, for all five programs, the sequence 323 

identity compared to the benchmark protein sequence decreases as the length of the flanking 324 

sequences increases. 325 

For Augustus, Genscan and GeneID, the addition of the flanking sequences also reduces 326 

the number of proteins perfectly predicted (100% identity). This is especially true for 327 

Genscan, where we observe a loss of more than 24% of perfectly predicted proteins between 328 

150 bp and 2Kb. On the other hand, for GlimmerHMM and Snap, the number of perfectly 329 

predicted proteins increases, especially when 2-4Kb flanking DNA is provided. 330 

Since the greatest effect of adding upstream/downstream flanking sequences was generally 331 

observed for a length of 2Kb, the remaining analyses described in this work are all based on 332 

the gene sequences with 2Kb upstream/downstream flanking regions.  333 

Next, we studied the relative robustness of the programs to the presence of UDT regions in 334 

the genomic sequences, generally due to genome sequencing errors or assembly gaps. This 335 

test was limited to the Confirmed sequences from the metazoan clade, since the sequences 336 

with UDT regions were almost exclusively found in this clade. Of the 675 metazoan 337 

sequences, 133 were found to have UDT regions. We therefore compared the 542 Confirmed 338 

sequences without UDT (-UDT) regions with the 133 Confirmed sequences with UDT 339 

regions (+UDT). Fig. 8 and Additional file 1: Table S9 show the average scores obtained for 340 

these two sequence sets, at the nucleotide, exon and protein levels. As might be expected, a 341 

reduction in sensitivity and specificity was observed at the nucleotide and exon levels for 342 

almost all programs (except exon level specificity and 5’/3’ internal exon boundaries of 343 

Augustus) for the +UDT sequences, and at the protein level, very few +UDT proteins are 344 

predicted with 100% accuracy. Overall, Augustus and Genscan perform better, although 345 

GlimmerHMM predicts the highest number of proteins with 100% accuracy for the +UDT 346 

sequences.  347 
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Since the UDT regions affected the programs to different extents, the analyses described in 348 

the following sections are all based on the set of 756 Confirmed sequences that have no UDT 349 

regions.  350 

Finally, we investigated how the GC content of the genes influences the gene finders 351 

(Additional file 1: Fig. S6). As might be expected, genes with high GC content are predicted 352 

better than genes with high AT content. The GC content of the genome is more difficult to 353 

test independently of the other factors, but could contribute to the species-dependent 354 

differences observed, shown in figure 12. 355 

 356 

 Factors associated with the gene structure 357 

We first evaluated the effect of the Exon Map Complexity (EMC), represented by the 358 

number of exons in the Confirmed benchmark tests (Additional file 1: Fig. S7). Fig. 9 shows 359 

the quality scores at the exon and protein levels, for sequences with the number of exons 360 

ranging from 1 to 20. Overall, we observed a tendency for the five programs to achieve better 361 

sensitivity and specificity for the genes with more exons. This may be because most of these 362 

more complex sequences are from well-studied vertebrate genomes. For very complex exon 363 

maps (≥20 exons), all the programs seem to perform less well, although this may be an 364 

artifact due to the small number of these sequences in the benchmark (Additional file 1: Fig. 365 

S7A). For single exon genes, all the programs tend to perform worse, although the 3’ internal 366 

exon boundary of the cDNA is predicted better than the 5’ internal exon boundary. Similarly, 367 

the 3’ internal exon boundaries are generally predicted better than the 5’ internal exon 368 

boundaries by all the programs, for genes with a small number of exons. At the protein level, 369 

Augustus and GlimmerHMM achieve higher sequence identity for genes with ≤7 exons, while 370 

Augustus and Genscan are more accurate for genes with more exons. Most of the perfectly 371 

predicted proteins (with 100% sequence identity) have less than 3 exons. 372 
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 We then assessed the effect of exon lengths on the prediction quality of the five programs, 373 

using the 756 Confirmed sequences without UDT regions. Fig. 10A and Additional file 1: 374 

Table S10A show the proportion of Correct exons (both 5’ and 3’ exon boundaries correctly 375 

predicted) depending on the exon length. The short exons (<50 nucleotides) are generally the 376 

least accurate, with the best program, Augustus, achieving only 18% Correct short exons. 377 

Medium length exons (50-200 nucleotides) are predicted better than longer exons (>200 378 

nucleotides) for Augustus and Genscan.  379 

To further investigate the exon prediction, each exon predicted by a gene prediction 380 

program was classified as ‘Correct’ if both exon boundaries were correctly predicted, ‘Wrong 381 

(5’)’ or ‘Wrong (3’)’ if the 5’ or 3’ exon boundary was badly predicted respectively,  and 382 

‘Wrong’ if both boundaries were badly predicted. In some cases, the predicted exon has good 383 

5’ and 3’ exon boundaries, however they correspond to 2 different benchmark exons, so these 384 

exons are classed as ‘Wrong (Fusion)’. Fig. 10B and Additional file 1: Table S10B show the 385 

number of Correct, Wrong, Wrong (5’), Wrong (3’) and Wrong (Fusion) exons, according to 386 

the exon lengths. Overall, there are more ‘Wrong’ exons than ‘Correct’ exons for all exon 387 

lengths and for all the programs. Interestingly, the number of predicted exons with only one 388 

boundary correctly predicted, i.e. Wrong (5’) or Wrong (3’), is small for all exon lengths, 389 

except for exons with >200 nucleotides.  390 

 391 

Factors associated with the protein product 392 

In this section, prediction accuracy is measured at the protein level and is estimated by the 393 

percent sequence identity of the predicted protein compared to the benchmark protein.  394 

First, we investigated the effect of protein length on protein prediction quality. We divided 395 

the 756 Confirmed sequences without UDT regions into five groups, with different protein 396 

lengths ranging from 50 to 1000 amino acids (Additional file 1: Fig. S8). Note that the very 397 
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large proteins (>1000 amino acids) in the benchmark are all classified as Unconfirmed and are 398 

therefore not included in this study. Fig. 11 and Additional file 1: Table S11 show the mean 399 

accuracies obtained by the five programs for the different length proteins. The prediction 400 

accuracy generally decreases for shorter proteins and for protein lengths >650 amino acids. 401 

For proteins with <100 amino acids, GlimmerHMM achieves the best results with 68% 402 

sequence identity and five (25%) perfectly predicted proteins (100% identity), while Augustus 403 

obtains only 57% sequence identity and four perfectly predicted proteins.  404 

We then studied the phylogenetic origin of the proteins and the availability of suitable 405 

species models in the different programs. Fig. 12 and Additional file 1: Table S12 show the 406 

performance of the five gene prediction programs for the sequences in the different clades in 407 

G3PO. The accuracy of each program is highly variable between the different clades, 408 

probably due to the availability of suitable prediction models for some species. For the 409 

sequences in the Craniata clade, Augustus and Genscan achieve the highest accuracy (72% 410 

and 70% respectively), while Snap has the lowest accuracy (33%). In contrast, Augustus 411 

obtains lower accuracy (21%) for Fungi proteins, compared to the highest accuracy obtained 412 

by GlimmerHMM (58%). The proteins in the Euglenoezoa clade are predicted with the 413 

highest accuracy by all the programs, although this might be explained by their low EMC. 414 

Choanoflagellida and Cnidaria proteins are the least well predicted (except for Genscan), but 415 

these clades contain only a few sequences (5 and 6 sequences respectively) and this result 416 

remains to be confirmed.  417 

 418 

Effect of protein sequence errors 419 

Finally, we investigated the performance of the prediction programs for the 904 420 

Unconfirmed sequences, where potential sequence errors were observed in the benchmark 421 

sequences. As mentioned above, the G3PO benchmark sequences were extracted from the 422 
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Uniprot database, which means that many of the proteins are not supported by experimental 423 

evidence. In this test, we wanted to estimate the prediction accuracy of the five gene 424 

prediction programs for the Unconfirmed benchmark sequences. Since the Unconfirmed 425 

sequences could not be used as a ground truth, here we measured prediction accuracy based 426 

on a closely related Confirmed sequence (see Methods). Table 2 shows the prediction 427 

accuracies achieved by each program for the sets of Confirmed and Unconfirmed sequences. 428 

As might be expected, the Unconfirmed sequences are predicted with lower accuracy than the 429 

Confirmed sequences by all five programs. Augustus and Genscan achieved the highest 430 

accuracy (56%, 50% respectively) for the Unconfirmed sequences. For comparison purposes, 431 

we also calculated the accuracy scores for the Unconfirmed benchmark proteins. The 432 

benchmark proteins had higher accuracy (76%) than any of the methods tested here, implying 433 

that the more complex pipelines used to curate proteins in Uniprot can effectively improve the 434 

results of ab initio methods.  435 

 436 

Discussion 437 

Thanks to cheap genome sequencing, consortia such as the Genome 10K [36], Bird 10K 438 

[37], the Cephseq consortium for cephalopods [38], or the Earth Biogenome Project [39], can 439 

now produce eukaryotic genome sequences on a very large scale. Recently, the new 440 

sequencing technologies have also been used to improve genome annotation by providing an 441 

overview of the genome regions that are actively transcribed. Nevertheless, when 442 

transcriptome data is not available or coverage of the transcriptome is shallow, computational 443 

annotation strategies play an important role in genome annotation. 444 

Several recent reviews [3,22-23] have highlighted the fact that automated genome 445 

annotation strategies still have difficulty correctly identifying protein-coding genes. This 446 

failure might be explained by the quality of the draft genome assemblies, the complexity of 447 
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eukaryotic exon maps, high levels of genetic sequence divergence or deviations from 448 

canonical genetic characteristics [36]. Consequently, it is essential to benchmark the existing 449 

different gene prediction strategies to assess their reliability, to identify the most promising 450 

approaches, but also to limit the spread of errors in protein databases [37]. An ideal 451 

benchmark for gene prediction programs should include proteins encoded by real genomic 452 

sequences. Unfortunately, most of the protein sequences in the public databases have not been 453 

verified by experimental means, with the exception of the manually annotated Swiss-Prot 454 

sequences (representing only 0.3% of UniProt), and contain many sequence annotation errors. 455 

It is therefore dangerous to use them to estimate the accuracy of the prediction programs. 456 

G3PO is a new gene prediction benchmark containing 1793 orthologous sequences from 457 

20 different protein families, and designed to be as representative as possible of the living 458 

world. It includes sequences from phylogenetically diverse organisms, with a wide range of 459 

different genomic and protein characteristics, from simple single exon genes to very long and 460 

complex genes with over 20 exons. The quality of the protein sequences in the benchmark 461 

was ensured by excluding sequences containing potential annotation errors, including 462 

deletions, insertions and mismatched segments. We also characterized the test sets in the 463 

benchmark using different features at the genome, gene structure and protein levels. This in-464 

depth characterization allowed us to investigate the impact of these features on gene 465 

prediction accuracy. 466 

One of the main limitations of the benchmark concerns the fact that the protein sequences 467 

were extracted from the Uniprot database, where a ‘canonical’ protein isoform is defined 468 

based on cross-species conservation and the conservation of protein structure and function. 469 

Consequently, programs that predicted more minor isoforms created by alternative splicing 470 

events were penalized in our evaluations. Unfortunately, there is currently no ideal solution to 471 

this. In the future, gene prediction programs will need to evolve to predict all isoforms for a 472 
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gene. Another limitation of the benchmark concerns the evaluation of the gene prediction 473 

results with respect to a single benchmark sequence. It is possible that the flanking regions 474 

used in some tests covered more than one gene, and that some programs successfully 475 

predicted one or more exons from these neighboring genes in addition to the reference gene.   476 

The ab initio gene prediction programs included in the benchmark study are based on 477 

statistical models that are trained using known proteins and genes, and typically perform well 478 

at predicting conserved or well-studied genes [33,38]. However, ab initio prediction accuracy 479 

has been previously shown to decrease in some special cases, such as small proteins [39], 480 

organism-specific genes or other unusual genes [40-42]. Our goal was therefore to identify the 481 

strengths and weaknesses of the programs, but also to highlight genomic and protein 482 

characteristics that could be incorporated to improve the prediction models.  483 

In terms of overall quality, the gene prediction programs were generally ranked in 484 

agreement with previous findings, with Augustus and Genscan achieving the best overall 485 

accuracy scores. However, it should be noted that Augustus is also the most computationally 486 

expensive method, taking over 1 hour to process the 87Mb corresponding to the 1793 487 

benchmark sequences, compared to the fastest program, GeneID, which required only 4 488 

minutes.  489 

We then performed a more in-depth study of the different factors affecting prediction 490 

accuracy. At the genome level, an increase in accuracy was generally observed when at least 491 

2Kb flanking regions were added, reflecting the fact that all the programs try to model in vivo 492 

gene translation systems to some extent by taking into account the different regulatory signals 493 

found within and outside the gene [43]. In contrast, undetermined regions in the gene 494 

sequences had a negative effect on the accuracy of all the prediction programs, even when 495 

they occur outside the coding exons of the genes. Since undetermined or ambiguous regions 496 
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are likely to occur more often in low coverage genomes, this is an important issue that needs 497 

to be addressed by the developers of gene prediction software. 498 

At the gene structure level, we found that the number of exons affects the accuracy of all 499 

the programs and that gene prediction is generally more difficult for complex exon maps, as 500 

might be expected. Concerning the effect of exon length, the programs appear to be optimized 501 

for intermediate length exons (50-200 nucleotides), since none of the programs was able to 502 

reliably predict exons that were shorter (<50 nucleotides) or longer (>200 nucleotides). 503 

Protein length had a similar effect to that observed for exon length, since the programs seem 504 

to be optimized for intermediate length proteins (300-650 amino acids). This result confirms 505 

previous findings that smaller proteins (less than 100 amino acids) are often missed in 506 

genome annotations [39], although we also demonstrated that long proteins are also more 507 

likely to be badly predicted. Finally, the phylogenetic origin of the benchmark sequences had 508 

a large effect on prediction accuracy, with different programs producing the best results 509 

depending on the specific species. The two best scoring programs, Augustus and Genscan use 510 

different strategies, since Augustus includes >100 different species models, while Genscan 511 

has only three models.  512 

Each of the analyses performed here highlights different strengths or weaknesses of the 513 

prediction programs, as summarized in the heat map shown in Fig. 13. The in-depth 514 

characterization of the benchmark sequences and the detailed information extracted from the 515 

analyses provide essential elements that could be used to improve model training and 516 

therefore gene prediction. It may be interesting to further analyze the weaknesses identified, 517 

including small proteins, very long proteins, proteins coded by a large number of exons, 518 

proteins from non-model organisms, etc. 519 

Finally, the Unconfirmed sequences identified in this study represent a goldmine for the 520 

identification of atypical gene features, for example atypical regulatory signals or splice sites, 521 
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that are not fully taken into account in the current prediction models. More than 50% of the 522 

original reference protein sequences extracted from public databases were found to contain at 523 

least one error. They therefore represent very challenging test cases that were not resolved by 524 

the combined ab initio and similarity-based curation processes used to annotate these 525 

proteins. We accurately located the errors within these badly predicted sequences and 526 

classified them into 9 groups. Here, we performed a preliminary analysis using the erroneous 527 

sequences that confirmed our idea that all the prediction programs are less accurate for these 528 

proteins. A more comprehensive analysis of these proteins will be published elsewhere. 529 

 530 

Conclusions 531 

The complexity of the genome annotation process and the recent activity in the field mean 532 

that it is timely to perform an extensive benchmark study of the main computational methods 533 

employed, in order to obtain a more detailed knowledge of their advantages and 534 

disadvantages in different situations. Currently, most of the programs used for gene prediction 535 

are based on statistical approaches and perform relatively well in intermediate cases. 536 

However, they have difficulty identifying more extreme cases, such as very short or very long 537 

proteins, complex exon maps, or genes from less well studied species. Recently, artificial 538 

intelligence approaches have been applied to some specific tasks, for example DeepSplice 539 

[44] or SpliceAI [45] for the prediction of splice sites. The further development of these 540 

approaches should contribute to production of high quality gene predictions that can be 541 

leveraged downstream to improve functional annotations, evolutionary studies, prediction of 542 

disease genes, etc. 543 

 544 
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Methods 545 

Benchmark test sets  546 

To construct a benchmark set of eukaryotic genes, we selected the 20 human Bardet-Biedl 547 

Syndrome (BBS) proteins (Additional file 1: Table S2). Based on this initial gene set, we 548 

extended the test sets using the pipeline shown in Fig. 14 and described in detail below.  549 

(i) For each of the 20 human proteins, orthologous proteins were identified in 147 550 

eukaryotic organisms (Additional file 1: Table S1) using OrthoInspector version 551 

3.0 [46], which was built using proteins from the Uniprot Reference Proteomes 552 

database [34] (Release 2016_11). For each species, we selected one ortholog 553 

sharing the highest percent identity with the human sequence. This resulted in a 554 

total of 1793 protein sequences, of which 65 (3.6%) were found in the curated 555 

Swissprot database. The number of proteins in each BBS family is provided in 556 

Additional file 1: Table S2. BBS 6,10,11,12,15, 16 and 18 are specific to Metazoa 557 

(with some exceptions), and therefore contain fewer sequences than the other 558 

families. 559 

(ii) Since the reference protein sequences extracted from the Uniprot database may 560 

contain errors, we identified potentially unreliable sequences based on multiple 561 

sequence alignments (MSA). MSAs were constructed for each protein family using 562 

the Pipealign2 tool (http://www.lbgi.fr/pipealign) and manually refined to identify 563 

and correct misaligned regions. The SIBIS (version 1.0) program [47] using a 564 

Bayesian framework combined with Dirichlet mixture models and visual 565 

inspection, was used to identify inconsistent sequence segments. These segments 566 

might indicate that different isoforms are defined as the canonical sequence for 567 

different organisms, or they might indicate a badly predicted protein (Additional 568 

file 1: Fig. S3). SIBIS classifies the potential sequence errors into 9 categories: N-569 
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terminal deletion, N-terminal extension, N-terminal mismatched segment, C-570 

terminal deletion, C-terminal extension, C-terminal mismatched segment, internal 571 

deletion, internal insertion and internal mismatched segment. Of the 1793 protein 572 

sequences identified in step (i), 889 proteins had no errors (called “Confirmed”) 573 

and 904 proteins had at least one potential error (called “Unconfirmed”). At this 574 

stage, the BBS14 protein was excluded from the benchmark because the MSA 575 

contained too many misalignments.  576 

(iii) For each orthologous protein, the genomic sequence was extracted from the 577 

Ensembl database [35]. Genomic sequences were extracted with the ‘soft mask’ 578 

option, i.e. repeated or low complexity regions are replaced by lower case 579 

nucleotides. These are generally ignored by gene prediction programs. We also 580 

found regions with ‘n’ characters, which are used to indicate undetermined or 581 

ambiguous nucleotides (IUPAC nomenclature) probably caused by genome 582 

sequencing errors or assembly gaps. A sequence segment with a run of n characters 583 

was defined as an undetermined (UDT) region. Additional file 1: Table S5 584 

summarizes the general statistics of these 283 sequences with UDT regions. 585 

Finally, we identified the Ensembl transcript corresponding to the Uniprot protein 586 

sequence, (generally the ‘canonical transcript’ from APPRIS [48]) in order to 587 

construct the exon map by extracting the positions of all exons/introns, including 588 

the 5’/3’ untranslated regions when available.  589 

(iv) For the baseline tests, we included flanking sequences of length 150 bases upstream 590 

and downstream of the gene. To make the benchmark set more challenging, we also 591 

extracted genomic sequences corresponding to 2Kb, 4Kb, 6Kb, 8Kb, 10Kb 592 

upstream and downstream of the gene sequence.  593 

 594 
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Gene prediction methods  595 

The programs tested are listed in Table 1 with the main features, including the HMM 596 

model used to differentiate intron/exon regions, and the specific signal sensors used to detect 597 

the presence of functional sites. Transcriptional signal sensors include the initiator or cap 598 

signal located at the transcriptional start site and the upstream TATA box promoter signal, as 599 

well as the polyadenylation signal (a consensus AATAAA hexamer) located downstream of 600 

the coding region and the 3’ UTR. Translational signals include the “Kozak sequence” located 601 

immediately upstream of the start codon [49]. For higher eukaryotes, splice site signals are 602 

also incorporated, including donor and acceptor sites (GT-AG on the intron sequence) and the 603 

branch point [yUnAy] [50] (underlined A is the branch point at position zero and y represents 604 

pyrimidines, n represents any nucleotide) located 20–50 bp upstream of the AG acceptor. 605 

The command lines used to run the programs are:  606 

augustus --species=<species> --softmasking=1 --gff3=off <sequence.fasta>  607 

genscan <species> <sequence.fasta>   608 

geneid -A -P <species> <sequence.fasta>  609 

glimmerhmm <sequence.fasta> -d <species> -g  610 

snap -gff -quiet -lcmask <species> <sequence.fasta> --a protein.fasta  611 

 612 

where <species> indicates the species model used and <sequence.fasta> contains the input 613 

genomic sequence. 614 

 615 

All programs were run on an Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40Ghz, 12 cores, 616 

with 256 Go RAM. Each prediction program was run with the default settings, except for the 617 

species model to be used. As the benchmark contains sequences from a wide range of species, 618 

we selected the most pertinent training model for each target species, based on the taxonomic 619 

proximity between the target and model species. For each program, we compared the 620 

taxonomy of the target species with the taxonomy for each model species available, where 621 

taxonomies were obtained from the NCBI Taxonomy database 622 
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(https://www.ncbi.nlm.nih.gov/taxonomy). We then selected the model species that was 623 

closest to the target in the taxonomic tree. 624 

 625 

Evaluation metrics 626 

The performance of the gene prediction programs is based on the measures used in [29], 627 

calculated at three different levels: nucleotides, exons and complete proteins. The significance 628 

of pairwise comparisons of the evaluation metrics was evaluated using the paired t-test. 629 

At the nucleotide level, we measure the accuracy of a gene prediction on a benchmark 630 

sequence by comparing the predicted state (exon or intron) with the true state for each 631 

nucleotide along the benchmark sequence. Nucleotides correctly predicted to be in either an 632 

exon or an intron are considered to be True Positives (TP) or True Negatives (TN) 633 

respectively. Conversely, nucleotides incorrectly predicted to be in exons or introns are 634 

considered to be False Positives (FP) or False Negatives (FN) respectively. We then 635 

calculated different performance statistics, defined below. 636 

Sensitivity measures the proportion of benchmark nucleotides that are correctly predicted: 637 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 638 

 641 

The specificity measure that is most widely used in the context of gene prediction is the 639 

proportion of nucleotides predicted in exons that are actually in exons: 640 

 642 

𝑆𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 643 

  644 

The F1 score represents the harmonic mean of the sensitivity and specificity values:  645 

 646 
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𝐹1 =  2 ∗
𝑆𝑝 ∗ 𝑆𝑛

𝑆𝑝 + 𝑆𝑛
 647 

At the exon structure level, we measure the accuracy of the predictions by comparing 648 

predicted and true exons along the benchmark gene sequence. An exon is considered correctly 649 

predicted (TP), when it is an exact match to the benchmark exon, i.e. when the 5' and 3' exon 650 

boundaries are identical. All other predicted exons are then considered FP. Sensitivity and 651 

specificity are then defined as before. 652 

Since the definition of TP and TN exons above is strict, we also calculated two additional 653 

measures similar to those defined in [29] (Additional file 1: Fig. S9). First, true exons with or 654 

without overlap to predicted exons are considered to be Missing Exons (ME) and the 655 

MEScore is defined as: 656 

 657 

𝑀𝐸𝑆𝑐𝑜𝑟𝑒 =  
𝑀𝐸

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑒𝑥𝑜𝑛𝑠
 658 

 659 

Second, predicted exons with or without overlap to true exons are considered Wrong 660 

Exons (WE). The WEScore is defined as: 661 

 662 

𝑊𝐸𝑆𝑐𝑜𝑟𝑒 =  
𝑊𝐸

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑥𝑜𝑛𝑠 
 663 

 664 

We also determined the proportion of correctly predicted 5’ and 3’ exon boundaries, as 665 

follows: 666 

5′ =  
number of true 5′ exon boundaries correctly predicted ∗  100

number of correct predicted exons +  number of wrong exons
 667 

 668 
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3′ =  
number of true 3′ exon boundaries correctly predicted ∗  100

number of correct predicted exons +  number of wrong exons
 669 

At the protein level, we measure the accuracy of the protein products predicted by a 670 

program. Since a program may predict more than one transcript for a given gene sequence in 671 

the benchmark, we calculate the percent identity between the benchmark protein and all 672 

predicted proteins and the predicted protein with the highest percent identity score is selected. 673 

To calculate the percent identity score between the benchmark protein and the predicted 674 

protein, we construct a pairwise alignment using the MAFFT software (version 7.307) [51] 675 

and the percent identity is then defined as:  676 

 677 

% 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 ∗ 100

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑝𝑟𝑜𝑡𝑒𝑖𝑛
 678 

 679 

Evaluation metric for Unconfirmed benchmark proteins 680 

Since the Unconfirmed proteins in the benchmark are badly predicted and have at least 681 

one identified sequence error, the %Identity score defined above for the Confirmed sequences 682 

cannot be used. Instead, we compare the protein sequences predicted by the programs with the 683 

most closely related Confirmed sequence found in the corresponding MSA. Thus, for a given 684 

Unconfirmed sequence, E, we calculated the sequence identity between E (excluding the 685 

sequence segments with predicted errors) and all the orthologous sequences in the 686 

corresponding MSA. If a Confirmed orthologous sequence, V, was found that shared ≥50% 687 

identity with E, then the sequence V was used as the reference protein to evaluate the program 688 

prediction accuracy.  689 

As before, a pairwise alignment between the prediction protein and sequence V was 690 

constructed using MAFFT and the %Identity score was calculated. Finally, the accuracy score 691 

was normalized by the sequence identity shared between the E and V benchmark sequences. 692 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
%𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑃, 𝑉)  ∗ 100

%𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝐸, 𝑉)
 693 
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Tables and Figures 871 

 872 

Gene predictor Signal sensors Content sensors Algorithm model 

Organism-

specific 

models 

Genscan 

(version 1.0) 

Promoter (15 bp), cap site (8 bp), TATA 

to cap site distance of 30 to 36 bp, donor 

(−3 to +6 bp)/acceptor (−20 to +3) splice 

sites, polyadenylation, translation 

start/stop sites 

Intergenic, 5’-/3’-UTR, exon/introns in 3 

phases, 

forward/reverse strands 

3-periodic fifth-order 

Markov model (GHMM) 

3 models 

GlimmerHMM 

(version 3.02) 

Donor (16 bp)/ acceptor (29 bp) splice 

sites, start/stop codons 

Exon/intron in one frame,intron length 50- 

1500 bp, total coding length >200 bp 

Hidden Markov model 

(GHMM) 

5 models 

GeneID 

(version 1.4) 

Donor/acceptor splice sites (−3 to +6 bp), 

start/stop codons 

First/initial/last exon, single-exon gene, 

intron, intron length >40 bp, intergenic 

distance >300 bp 

Fifth-order Markov 

model (HMM) 

66 models 

SNAP (version 

2006-07-28) 

Donor (-3 to +6 bp) /acceptor (-24 to +3) 

splice sites, translation start (-6 to +6 bp) 

/stop (-6 to +3 bp) sites 

intergenic, single-exon gene, first/initial/last 

exon, introns in 3 phases 

Fourth-order Markov 

model (GHMM) 

11 models 

Augustus 

(version 3.3.2) 

Donor (-3 to +6 bp) /acceptor (-5 to +1 

bp) splice sites, branch point (32 bp), 

translation start (-20 to +3)/stop (3 bp) 

sites 

intergenic, single exon gene, first/initial/last 

exon, short/long introns in 3 phases and 

forward/reverse strands, isochore boundaries 

 

Fourth-order Interpolated 

Markov model (GHMM) 

109 models 

Table 1. Main characteristics of the gene prediction programs evaluated in this study. GHMM: Generalized hidden Markov model; UTR: 873 

Untranslated regions. 874 
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 879 

 880 

 Confirmed 

proteins                                                                      

(%Identity) 

Unconfirmed 

proteins 

(%Identity) 

Augustus 74.44 56.22 

Genscan 67.13 49.86 

GeneID 52.26 38.52 

GlimmerHMM 59.36 45.60 

Snap 44.20 41.70 

 881 

Table 2. Effect of protein sequence quality measured at the protein level. %Identity indicates 882 

the average sequence identity observed between the predicted and benchmark protein 883 

sequences for the test sets of Confirmed and Unconfirmed proteins. 884 

 885 

 886 

 887 

 888 

 889 
Fig. 1. Phylogenetic distribution of the 1793 test cases in the G3PO benchmark. A) Number 890 

of species in each clade. B) Number of sequences in each clade. C) Number of sequences in 891 

each clade in the Confirmed test set. D) Number of sequences in each clade in the 892 

Unconfirmed test set. The ‘Others’ group corresponds to: Apusozoa, Cryptophyta, 893 

Diplomonadida, Haptophyceae, Heterolobosea, Parabasalia.  894 
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 896 
Fig. 2. Exon map complexity for each species. Each box plot represents the distribution of the 897 

ratio of the number of exons in the gene of a given species (Exon Number Species), to the 898 

number of exons in the orthologous human gene (Exon number Human), for all genes in the 899 

benchmark. Notable clades include Insects (BOMMO to PEDHC), Euglenozoa (BODSA to 900 

TRYRA) or Stramenopila (THAPS to AURAN). 901 

 902 

 903 

 904 

 905 
Fig. 3. A) Number of identified sequence errors in the 1793 benchmark proteins. B) Number 906 

of ‘Unconfirmed’ protein sequences for each error category. 907 
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 915 
Fig. 4. Workflow of different tests performed to evaluate gene prediction accuracy. The initial 916 

tests are based on the 889 confirmed proteins and their genomic sequences corresponding to 917 

the gene region with 150 bp flanking sequences. At the genome level, effect of genome 918 

context and genome quality are tested, and 756 confirmed sequences with +2Kb flanking 919 

sequences and no undetermined (UDT) regions are selected. These are used at the gene 920 

structure and protein levels, to investigate effects of factors linked to exon map complexity 921 

and the final protein product. 922 
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 928 
Fig. 5. Overall performance of the five gene prediction programs, using the 889 Confirmed 929 

sequences with 150 bp flanking sequences, at the (A) nucleotide, (B) exon and (C) protein 930 

levels. Sn=sensitivity; Sp=specificity; F1=F1 score; ME=Missing Exon; WE=Wrong Exon; 5’ 931 

First=percentage of correctly predicted 5’ boundaries of first exons only; 3’ Last=percentage 932 

of correctly predicted 3’ boundaries of last exons; 3’ and 5’ internal are the percentage of 933 

correctly predicted 3’ and 5’ internal exon boundaries. %Identity indicates the average 934 
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sequence identity observed between the predicted proteins and the Confirmed benchmark 935 

sequences.  936 

 937 

 938 

 939 
Fig. 6. Venn diagrams representing A) the number of correct exons predicted by each 940 

program, and B) the number of perfectly predicted proteins by each program. The grey circles 941 

indicate the number of exons/proteins badly predicted by all programs. 942 
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 945 
Fig. 7. Effect of the genomic context based on the different lengths of 946 

upstream/downstream flanking genomic sequences on the performance of the five gene 947 

prediction programs. A) sensitivity and specificity of prediction of coding nucleotides. B) 948 

sensitivity and specificity of exon prediction. C) accuracy of protein sequence prediction (% 949 

identity) and number of proteins correctly predicted with 100% identity. 950 
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 953 

 954 
Fig. 8. Effect of undetermined sequence regions (UDT) on prediction performance of the five 955 

gene prediction programs, using Confirmed benchmark sequences from Metazoa, where 542 956 

sequences have no undetermined regions (-UDT: light colors) and 133 sequences have 957 

undetermined regions (+UDT: dark colors). A) sensitivity and specificity of nucleotide 958 

prediction. B) sensitivity and specificity of exon prediction C) accuracy of protein sequence 959 
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prediction (% identity) and number of proteins correctly predicted with 100% identity. 960 

Sn=sensitivity; Sp=specificity; F1=F1 score; ME=Missing Exons; WE=Wrong Exons; 5’ 961 

First=percentage of correctly predicted 5’ boundaries of first exons only; 3’ Last=percentage 962 

of correctly predicted 3’ boundaries of last exons; 3’ and 5’ internal are the percentage of 963 

correctly predicted 3’ and 5’ internal exon boundaries. %Identity indicates the sequence 964 

identity observed between the predicted proteins and the Confirmed benchmark sequences.  965 
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 968 
Fig. 9. Effect of exon map complexity on prediction quality at the A) exon and B) protein 969 

levels. A 4th degree polynomial curve fitting was used to represent the results more clearly. 970 

Sequences with 21-24 exons were not included, due to the low number of sequences in the 971 

benchmark with these exon counts. 3’ and 5’ are the proportion of correctly predicted 3’ and 972 
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5’ internal exon boundaries respectively. %Identity indicates the sequence identity observed 973 

between the predicted proteins and the Confirmed benchmark sequences. 974 

 975 

 976 

 977 

 978 
Fig. 10. Effect of exon length on exon prediction quality. A) Proportion of benchmark exons 979 

correctly predicted depending on the exon length. B) Number of exons predicted correctly, 980 

with one of the 5’ or 3’ exon boundaries correct, or with both boundaries wrongly predicted, 981 

for each of the five programs. 982 

 983 

 984 

 985 
Fig. 11. Effect of protein length on prediction accuracy: A) average percent identity between 986 

the predicted and the benchmark protein sequences, B) number of proteins perfectly predicted 987 

with 100% sequence identity. 988 
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 993 
Fig. 12. Prediction performance for sequences from different clades. The ‘Other’ group 994 

contains the Apusozoa, Cryptophyta, Diplomonadida, Haptophyceae, Heterolobosea, 995 

Parabasalia clades, as well as Placozoa, Annelida and urchin. % Identity indicates the average 996 

percent identity between the predicted and the benchmark protein sequences. 997 
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 1010 
Fig. 13. Strengths and weaknesses of the gene prediction programs evaluated in this study. 1011 

Heatmap colors are: dark green = best program, light green = 2nd best program, yellow = 3rd 1012 

best program, orange = 4th best program, red = 5th best program. 1013 
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 1018 

 1019 
Fig. 14. Schematic view of the pipeline used to construct the benchmark. 1020 
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