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Abstract 
In this paper, we devise a machine learning protocol to tackle a complex sociological task: to 
create a research sample from a few examples of interest, but in the absences of a clear definition 
of the target subset. As an example, we create a sample of organisational leaders starting from a 
list of nominees for the Bureau of the Intergovernmental Panel on Climate Change. The 
difficulty in this task lies in the impossibility to spell out the characteristics that define leadership 
in a complex and highly distributed organization like the IPCC. To bypass this lack of explicit 
definition, we use a series of techniques for anomaly detection to identify IPCC contributors with 
profiles similar to official Bureau nominees. We find that we can construct a precise (albeit 
implicit) model of IPCC leadership despite its social and political complexity, and that we can 
usefully use this model to expand our initial sample. 

Introduction 
This paper presents an experiment in the use of machine learning to tackle a complex social 
phenomenon: the identification of informal leaders in a highly distributed international 
organisation (the Intergovernmental Panel on Climate Change, IPCC). We found that we can 
build a model capable of an accurate reading of IPCC leadership despite the social and political 
intricacy of this organisation. Accuracy, however, is not our prime goal. Despite recurring claims 
that computational methods will revolutionize social sciences [1–5], the rolling out of such 
methods is still hindered by the mismatch between their functional requirements and the actual 
conditions of social research, e.g. the lack of large and well-structured datasets [6] and the focus 
on interpretation [7–9]. For computational methods to realize their full sociological potential, it 
is therefore crucial to investigate their usage in vivo. 
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This is precisely what we try to do in this paper, by putting ourselves in a situation that is 
common in social sciences but in many ways opposite to the one generally chosen for machine 
learning: we deal with a task that is highly disputed among human experts; we rely on a small 
dataset (the 5,676 individuals who have contributed to the IPCC main reports); we exploit 
artificial intelligence (AI) techniques available in free packages and compatible with a normal 
laptop; and, finally, we aim at sociological relevance rather than technical efficiency. 

Contemporary AI techniques do not aim at in-depth understanding [10], [11]. Quite the opposite, 
their success derives largely from their capacity to give up some of interpretability in exchange 
for better performances [12], [13]. Being deliberately devised a black boxes, it is not surprising 
these techniques are at odds with the ultimate goal of social research, that is to advance our 
capacity to make sense of collective life [14]–[16]. This does not mean, however, that AI cannot 
be helpful. The black boxed nature of machine learning, in particular, can come in handy to 
perform research tasks whose contours are inherently vague or implicit. In this paper, we 
exemplify such use of AI for social research by proposing a technique of similarity sampling 
based on a protocol to teach the machine to recognise individuals with outlying leadership 
profiles. 

Implicit similarity sampling 
In order to understand our methodological proposition, it is important to notice that our 
technique departs deliberately from the conventional approach of random sampling, which aims 
at selecting items whose features can be generalized to the population it represents [17]. Instead, 
we propose here a form of purposive sampling [18], also known as non-probabilistic or 
judgement sampling [19] because it “involves the pursuit of the kind of person in whom the 
researcher is interested” [20 p. 137]. This type of sampling is preferred when the objective is to 
yield “insights and in-depth understanding rather than empirical generalizations” [21 p.1] and 
when the target of the research is not the whole population but a particularly important subgroup. 

In this paper, we are interested in identifying IPCC informal leaders. While leadership is a 
classic topic in International Relations (cf. among others, [22]–[25]), most research tends to 
focus on formal leaders – i.e. individuals who hold specific chairs in international organisations 
[26] – and struggles to identify “informal leaders” [27] whose influence is palpable but not 
explicitly defined. In the IPCC, for example, the formal leadership is clearly represented by the 
Bureau, an organ that is elected at the beginning of each assessment cycle and that coordinates 
the activities of the organisation. Yet, sitting in the Bureau is not the only way to be influential in 
the IPCC. In an organisation whose activities are based on voluntary work and whose mandate is 
to serve as an interface between different national and disciplinary communities, individuals who 
have been around for a longer time, or played key facilitating roles, or represented powerful 
countries or disciplines may have considerable sway, whether or not this is officially 
acknowledged. 

The difficulty of identifying IPCC informal leaders exemplifies the difficulty of purposive 
sampling when the contours of the target subgroup cannot be explicitly defined. In the absence of 
a clear condition or rule, techniques such as criterion sampling, typical (or deviant) case 
sampling, intensity sampling are impracticable [18], [28]. Snowball sampling can help extend the 



 3 

sample to the individuals who are most connected to official leaders, but often (as in our case) no 
data is available on the connections between individuals. 

The failure of classic sampling to cope with the elusiveness of organisational leadership suggests 
a possible sociological use of machine learning. While we cannot formulate an explicit definition 
of IPCC informal leadership, we know from fieldwork [29] that the Bureau nominees are 
generally chosen among the informal leaders of the organisation. As a consequence, we can 
reasonably assume that informal leaders resemble Bureau candidates even though the specific 
dimensions of this similarity cannot be made explicit. This suggests an avenue for the 
sociological exploitation of AI techniques, as one of the tasks in which these techniques are most 
efficient is the extrapolation from a learning dataset. Several techniques originally conceived for 
prediction (e.g., to anticipate crime outbursts, [30]) or categorization (e.g., to improve marketing 
campaigns, [31]) can therefore be repurposed for social sciences [32] as methods for similarity 
sampling. 

The IPCC leadership 
The case of IPCC leadership is interesting for the key role that the organisation plays in the 
climate regime [33]. Founded in 1988, the IPCC produces regular assessments of climate change 
research. Its reports are meant to offer a scientific foundation to the negotiation in the United 
Nations Framework Convention on Climate Change (UNFCCC). For its “efforts to build up and 
disseminate greater knowledge about man-made climate change”, the IPCC was awarded the 
Nobel Peace Prize in 2007 and has since become a model for several other international expert 
organisations, notably the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services (IPBES) and possibly the future International Panel on Artificial 
Intelligence (IPAI). The IPCC is a remarkable organisation for the cooperation it establishes 
between its authors who write the reports and its national delegates who supervise the 
assessments work and approve its outcomes. While this dual nature allows the IPCC to serve as 
an interface between science and politics, the cohabitation of scientists and diplomats is not 
always easy and tensions may arise in relation to the distribution of power in the organisation 
[34], and particularly in its Bureau.  

Elected by the member states at the beginning of each assessment cycle, the Bureau coordinates 
and oversees all IPCC activities. The composition of the Bureau (which comprises 34 members 
in AR6) is the result of complex voting procedures and of intense behind-the-scenes negotiations 
[29]. The election of the IPCC Bureau is based on a complicated combination of scientific and 
diplomatic constraints meant to assure that its composition reflects a “balanced geographic 
representation with due consideration for scientific and technical requirements”, Principles 
Governing the IPCC Work1, paragraph 5). To guarantee both the geographical equilibrium and 
the scientific value, the IPCC established complex set of rules detailed in seven-page document 
the “Procedures for the election of the IPCC Bureau”2. Rule 19, for instance, stipulates that 
governments “should refrain from nominating non-nationals without the consent of the 
nominee’s national government”. The rule was introduced after a major controversy broke out in 

 
1 https://www.ipcc.ch/site/assets/uploads/2018/09/ipcc-principles.pdf  
2 https://archive.ipcc.ch/pdf/ipcc-principles/ipcc-principles-elections-rules.pdf 
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2002, when the sitting Chair Robert Watson was nominated by Portugal and New Zealand 
against the will of his own country (the United States), which ended up supporting the election of 
the Indian economist Rajendra Pachauri.  

Being nominated for election in the IPCC Bureau is an extremely subtle social and political 
process which signals the influence achieved by someone within the organisation but in ways 
that cannot be straightforwardly measured or explicitly defined. And this is where machine 
learning can come in handy, offering a series of techniques to define a sample of informal 
leaders similar to the Bureau nominees without having to explicitly define the nature of this 
similarity.  

Featurization 
The first step of our protocol is the definition of the features that will be used to create a model 
of IPCC leadership. In this paper, we draw on a database of IPCC authors and delegates that we 
started to collect in two previous research projects (ANONYMISED)3 and extended and updated 
since. The database contains the names of all the individuals who have contributed to the first 
five assessment reports (ARs) of the IPCC (and the members and candidates of the Bureau)4. 
Great effort was invested to disambiguate homonyms and merge different names of the same 
person, but errors may remain. In total, we have counted 5,676 individual contributors to the 
IPCC. Our database, furthermore, separates the different roles held by the same individual, thus 
containing about 18,000 rows, each corresponding to the contribution by a given individual in a 
given role (delegate, Bureau member, coordinating lead author, lead author, review editor, 
contributing author). For each of the contributions we also collected the national affiliation 
declared by the contributor. All the features employed in this machine learning model described 
in this paper are, more or less directly, extracted from this database. 

Engagement features (ENG-) 

A first set of features is meant to measure the level of engagement of IPCC contributors and can 
be extracted directly from the database. 
1. The number of plenary sessions to which an individual has participated as a member of a 

national delegation (ENG-CountSessions)  
2. The number of chapters authored by an individual (ENG-CountSignatures) 
3. The responsibility roles hold by an individual (ENG-ClaSpmSyrBureau) – i.e. Contributing 

Leading Authors (CLA), author of Summary for Policymakers (SPM) or the Synthesis Report 
(SYR), or member of the Bureau in an earlier AR. 

4. The last AR to which a participant has participated (ENG-LastActive), assuming that 
individuals active in closer ARs have more chances to be nominated for the Bureau. 

 
3 ANONYMISED 
4 The database includes authors that have contributed to the IPCC Assessment Reports (AR), and not to the Special 
Reports (SP).  
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Networks features (NET-) 

While the features above capture the level of engagement in the organisation, they do not 
consider the nature of the IPCC as a ‘network organisation’. Unlike other international 
organisations, the IPCC has no permanent organs and no stable employees (except for the dozen 
people of its Secretariat). The 5,676 individuals who contributed to its assessments did it 
voluntarily and on the payroll of other institutions. Rather than by hard institutionalization, the 
IPCC is kept together by the networking activities of its participants. To account for the 
relational features of IPCC participants, we turn our database into a bipartite network of 
individuals5 and capacities, defined as the 24 different roles in which IPCC members may have 
contributed to the organisation6 (see the table below) 

Table 1. temporal, functional and thematic divisions of the IPCC and the roles they form 

 

The edges of the graph in Figure below represent the contribution of each individual. An 
individual, for instance, is connected to “AR4-author-WG1” if during AR4 he/she has authored 
one of the chapters of the report of Working Group I. Edges are weighted according to the 
number of times that each individual has served in the same capacity (for example by authoring 
two or more chapters in the same AR and WG). 

Figure 1. Bipartite network of the IPCC contributors (dark grey) and the capacities in which they have served 
(coloured according to their functional and thematic division) in the first five assessment reports. 

 
5 It is important to remark that, as far as the authors are concerned, our network only includes contributing lead 
authors, lead authors or review editors (i.e. the authors with roles of coordination and responsibility and who are 
directed selected by the IPCC Bureau). We have not considered contributing authors who are not selected by the 
Bureau (but invited by the selected authors), who generally do not participate in the meetings and whose 
contribution is in most cases limited to specific paragraphs or topics. 
6 The main role division in the IPCC corresponds to the functional separation between the scientists that review the 
scientific literature on climate change and write the assessment reports (i.e. "the authors") and the diplomats who 
serve in the national delegations overseeing the work of the organisation (i.e. "the delegates"). The authors are then 
subdivided in three Working Groups with different thematic specialisations: WGI focuses on the physical bases of 
climate change; WGII on impacts, adaptation and vulnerability and WGIII on mitigation. We also include 
participation to the writing of the Synthesis Report, which brings together the conclusions of the three WGs. Finally, 
the work of the IPCC is temporarily articulated in Assessment Cycles each lasting several years. 
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We also transform the bipartite network above in a monopartite network of individuals who have 
served in the same capacities7. From the two networks, we derive the following features (NET-) 
1. The number of different capacities occupied by an individual (NET-Degree). 
2. The betweenness centrality of an individual, as the number of shortest paths passing through 

his/her node in the monopartite network (NET-Betweenness) 
3. The closeness centrality of an individual, as the sum of shortest-paths distance of his/her node 

to all the other nodes (NET-Closeness) 
4. The eigen-centrality of an individual, as a recursive measure the connectivity of nodes, their 

neighbours, the neighbours of their neighbours, etc. (NET-Eigen). 

Bridgeness features (BR-) 

While the network features capture the relational connectedness and centrality of individuals, 
they do not consider the specificity of the IPCC network. In particular, they do not take into 
account that some roles are easier to cumulate, while others are more difficult. As Figure 1 
suggests, some capacities are more “distant” than others and connecting them is then more 
valuable in the IPCC. The organisation itself acknowledges this point and identifies a group of 

 
7 To generate a monopartite network from our bipartite graphs, we create a matrix in which each couple of 
individuals is connected by an edge if the Pearson correlations between the list of capacities they have occupied is 
positive. For all capacities occupied by two contributors x and y, the Pearson correlation divides the sum of their 
frequencies in x and y minus their respective mean frequencies m(x) and m(y) by the square root of the squares of (x 
– m(x)) and (y – m(y)). As illustrated by the figure below (relative to the first five ARs), the distribution of the 
Pearson correlation for each couple of individuals is highly uneven and this is why we chose zero as 



 7 

contributors of particular relational importance. The so-called “bridge authors” are authors who 
deal “with cross-cutting topics across WGs8.” In a previous paper (ANONYMIZED), we extend 
this notion, by calculating three distinct types of bridgeness9 as well as their sum: 
1. Thematic bridgeness, characterising the individuals, who have participated in different 

working groups during the same AR (BR-Thematic). 
2. Functional bridgeness, characterising the individuals who have been both author and delegate 

during the same AR (BR-Functional). 
3. Temporal bridgeness, characterising the individuals who have served in the same capacity 

across different ARs (BR-Temporal). 
4. The sum of all the bridgeness above (BR-BridgenessSum). 

National feature (NAT-) 

Finally, as in all international organisations, the composition of the IPCC leadership is decided 
not only by the individual profiles, but also by the power equilibrium between countries. While 
IPCC Bureau Election Procedures demand a “balanced geographic representation”, this 
provision only stipulates that the five regions of the world (according to the classification of the 
World Meteorological Organisation) should be represented in the Bureau but does not specify 
which countries should represent each region. As a consequence, the most influential and active 
countries in the organisation (e.g., the US, the Russian Federation, Japan, Brazil, China, the UK, 
Canada, Saudi Arabia, India, Germany or France) are also more present in its Bureau. 

To account for the national affiliation of IPCC members, we add to our feature list the average 
percentage of gross domestic product of the country dedicated to research and development 
between 1996 and 2017 according to the World Bank (NAT-GDPRD)10. We choose this 
particular feature for its capacity to capture both the richness of countries and their technical and 
scientific power. 

 
8 https://archive.ipcc.ch/scoping_meeting_ar5/doc10.pdf, p. 10. 
9 To quantify the bridging function in the IPCC, we develop a metric called “bipartite-bridgeness” [37], which we 
define as the summation of the number of indirect connections created by a node weighted by the importance of 
such connections and by their rarity. More precisely, the bipartite-bridgeness of a node 𝛼 of partition A is equal to 
the number of pair of nodes in partition B bridged by 𝛼, each weighted by: 
● the total number of A-nodes to which the two B-nodes are connected (i.e. the union of their neighbours) 
● and the inverse of the number of A-nodes bridging the same pair (i.e. the intersection of their neighbours) 

BB(n)	=	∑(i,j)	[		|neighbours(i)	∪	neighbours(j)|	/	|neighbours(i)	∩	neighbours(j)|		]	

	BB(n)	=		∑(i,j)	[	1	/	Jaccard	(neighbors(i),neighbors(j))	]	

As the intersection of two sets divided by their union is commonly known as their Jaccard coefficient, the bipartite-
bridgeness can be defined as the summation of the inverse Jaccard coefficient of the neighbourhoods of all pairs of 
neighbours of ‘n’. Because the Jaccard coefficient is a measure of similarity between sets, bipartite-bridgeness 
grows not only with the number of couples bridged but also with their relational diversity. 

In the case of our networks of contributors and capacities, the bipartite-bridgeness of an individual is then defined as 
the summation of all the pair of capacities in which she has served weighted by their importance and the rarity of 
their connection. 
10 The last four features are extracted from the official data or the World Bank (https://data.worldbank.org). 
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Taking time into account 

A final issue in data preparation is related with time. To train our model, we use the list of the 
Bureau nominees in AR5 and AR6, as well as its elected members in AR411. Because these 
individuals have been nominated for the Bureau at a specific moment in time, we have to make 
sure that our model considered their features at that moment. While considering the AR4 Bureau, 
therefore, we should only use data from the three earlier reports (AR1, AR2 and AR3). For the 
AR5 Bureau, we can add the information about AR4 as well. And finally, for the AR6 Bureau, 
we can consider information about the five previous reports. In practice, this means that all the 
individual features above (ENG-, NET- and BR-) need to be calculated at three different 
moments in time and using only the data concerning IPCC participation that occurred before the 
Bureau election under consideration. 

Model training 
After having extracted and normalized our 13 features, we train our model to recognise good 
candidates for the IPCC Bureau. The problem is that out of the 11,742 rows in our dataset, only 
148 rows (or 1.3% of the base), correspond to Bureau’s members or candidates. As a 
consequence, any model that simply assumes that no individual is a Bureau candidate will 
achieve the stunning accuracy of 98.7%. This “accuracy paradox” prevents us from relying 
straightforwardly on accuracy as a metric to evaluate and improve our predictive model, thus 
excluding most basic machine learning approaches. However, as suggested by the figure below, 
the distribution of values for most of our features is highly uneven and with several outlying 
values, many of which correspond to Bureau candidates. Individuals nominated to the Bureau 
seem to have a special profile that sets them apart from all other IPCC contributors and this 
encourages us to rely on anomaly detection algorithms to identify them and their likes. 

Figure 2. Boxplots of the distribution of the values of the 13 features described above. 

 
 

11 Unfortunately, you could not find the names of the candidates for AR4. 
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As our main anomaly detection algorithm, we used isolation forests as implemented in the open-
source H2O platform [35]. This technique is a special case of random forests, in which the 
machine represents the training dataset through a series of tree-like structures with the objective 
of isolating the members of the target class with as few branches as possible. At each branching, 
the records of the dataset are divided in two classes according to a threshold on one of the 
features (e.g., separating the class of individuals who have occupied more than N capacities and 
then the subclass of those who had been active in the last AR, etc.). Averaging over many trials 
(hence the name of 'forest'), the machine learns which features are most important to identifying 
the target class. An isolation forest is an unsupervised version of the random forest, which tries 
to single out not a target class but each individual item. Being distinctively different from other 
nodes, outliers tend to be closer to the root and require fewer splits to be isolated. The final 
outlier score is the average number of splits needed to create a leaf for a given entry across all 
the trees in the isolation forest. In our case, the lower this number is for an individual, the more 
likely she or he is to be an anomaly and thus a Bureau candidate. 

To improve our results while avoiding overfitting to the training datasets, we first run a grid 
search with cross-validation to find the optimal hyperparameter range for our isolation forest. 
Finding the ideal structure is called “hyperparameter tuning” and is a crucial albeit trial-and-error 
process. In our case, we looked for the overall number of trees in the forest, their maximum 
depth and the optimal encoding of the capacities. The result is that the best forest has trees of 
maximum depth 30 (mean depth of ~16 and a minimum depth of 9), with a densely populated 
forest of up to 10,000 trees. We split our corpus into a training set and a test set with a 75-25 
split (taking care that the distribution of bureau candidates is similar in both sets and thus having 
37 nominees in the test set). 2,935 entries are thus held back to evaluate how the model reacts to 
unseen data. 

With a default scoring option, our anomaly detection algorithm cannot overcome the accuracy 
paradox. A straightforward application of the isolation forest method (see table 2) achieves an 
accuracy of ~0.95 but, while it performs very well in excluding non-Bureau individuals and 
avoiding false positives (specificity = 0.96), it is incapable to identify almost half of the Bureau 
candidates (accuracy = 0.49). 

Table 2. Confusion matrix (for the test set) showing the results of the isolation forest with default scoring. 

 actual “not-bureau” actual “bureau” total 
predicted “not-bureau” 2775 (true neg) 19 (false neg) 2794 
predicted “bureau” 123 (false pos) 18 (true pos) 141 
total 2898 37 2935 

Our task is therefore to find an approach that maximises the relation of specificity and sensitivity 
without sacrificing too much accuracy. To counter the accuracy paradox, we thus change our 
scoring function to over-reward the identification of bureau candidates and over-penalize their 
missing. The metric we are aiming to maximise is thus the ‘harmonized mean’ of sensitivity and 
specificity: 

𝑆𝑐𝑜𝑟𝑒 = 	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 ∗ 	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 + 	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 
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As intended, this approach sacrifices some accuracy (which drops to ~92%), but our confusion 
matrix results looked more appropriate to the task of predicting bureau candidates. The 
sensitivity is now improved to 0.65 while specificity is still a strong 0.93.  

Table 3. Confusion matrix (for the test set) of the isolation forest with customized scoring function. 

 actual “not-bureau” actual “bureau” total 
predicted “not-bureau” 2683 (true neg) 13 (false neg) 2794 
predicted “bureau” 215 (false pos) 24 (true pos) 141 
total 2898 37 2935 

We can further improve our performance by combining our isolation forest (which identifies 
anomalous contributors but does not exploit the existing information on who is a bureau 
candidate and who is not) with a semi-supervised version of autoencoder neural network [36]. 
Autoencoders aim at reducing the dimensionality of the data, discarding noise by determining the 
most important latent features of the dataset (or 'deep features') generated as black box 
combinations of the initial features. Our semi-supervised approach consists in generating our 
autoencoders using exclusively the data from the 'normal' non-bureau individuals, which will 
make it easier to detect the bureau candidates as outliers. By building an isolation forest on top of 
the second hidden layer of the autoencoder and using our custom scoring function, we are able to 
keep a high accuracy of 92% but at the same time maximise the relationship between sensitivity 
(0.92) and specificity (0.92). Only 3 bureau candidates are now missed from the test data. 

Table 5. Confusion matrix (test set) of the isolation forest with customized scoring and autoencoded features. 

 actual “not-bureau” actual “bureau” total 
predicted “not-bureau” 2683 (true neg) 3 (false neg) 2794 
predicted “bureau” 215 (false pos) 34 (true pos) 141 
total 2898 37 2935 

Results and discussion 
So far, following the conventions of predictive analytics, we presented the results of our model 
in terms of false positives and false negatives. Our objective, however, has never been to predict 
which individuals were going to be nominated as IPCC chairs and vice chairs, but to exploit our 
existing knowledge on the Bureau nominations to identify other individuals with similar 
'leadership potential' or, to say it with other words, similar ways to be exceptional in the 
organisation. We can therefore abandon the binary classifications of the confusion matrices and 
consider our results according to a continuous measure. For each of the individuals (and for each 
AR), our algorithm computes the average number of splits needed to isolate the entry across the 
trees of the isolation forest. This metric, which we call “MeanLength” is our measure of Bureau-
likeness.  

To test MeanLength, we compare it to the thirteen individual features described above to show 
its better capacity to identify 'leader-like' individuals. To gauge such a discriminating capacity, 
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we rank all the individuals in our dataset according to each of the features and according to the 
MeanLength and we calculate the average ranking of Bureau candidates and of all other IPCC 
participants and then simply subtract these two averages. The idea behind this test is that, as 
Bureau nominees are the people that the organisation itself recognises as its potential leaders, an 
effective measure of organisational leadership should rank them higher than other participants. In 
the best-case scenario, in which the 148 candidates are ranked in the first 148 positions, the 
difference in the average rank between candidates and non-candidates would be equal to 5871. 
We can use this maximum as a benchmark of the discriminating capability of different metrics. 
Figure 3 displays the ranking of Bureau nominees for each individual feature and for the 
MeanLength and table 6 compares their discriminating capacity (as the difference between the 
average ranking of candidates and the average ranking of non-candidates divided by 5871, the 
maximum possible difference). 
 

Figure 3. rank of bureau nominees according to individual features and 
isolationMeanLength 

Table 6. difference between the 
average rank of Bureau nominees 
and all other IPCC participants. 

 

 Feature discriminating 
capacity 

 MeanLength 0.946 

 BR-BridgenessSum 0.573 

 NET-Degree 0.571 

 ENG-LastActive 0.471 

 ENG-CountSignatures 0.452 

 ENG-ClaSpmSyrBureau 0.444 

 NET-Betweeness 0.442 

 BR-Functional 0.434 

 BR-Temporal 0.393 

 ENG-CountSessions 0.357 

 NET-PersonEig 0.166 

 BR-Thematic 0.152 

 NAT-GdpR&D 0.100 

 NET-Closeness 0.007 

The figure and table above demonstrate that the MeanLength is significantly more effective than 
all individual features in identifying IPCC Bureau nominees, being almost twice as good as the 
best features (BR-BridgenessSum and NET-Degree). This suggests that there is a real gain in 
combining features through machine learning instead of using them in isolation. 

To improve our discrimination capacity even more, we can exploit the non-deterministic nature 
of our protocol – i.e., the fact that, if executed several times, it will produce different models and 
different final classifications of the individuals in our corpus. Since each of these 
implementations of our protocol is differently affected by the noise in the data and the chances of 
the training process, their average results should be more robust than the results of any single 
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instance. Indeed, running our protocol ten times and averaging the results we obtain an average 
MeanLength with an even greater discrimination capacity (0.972). But we can do even better. 
Figure 4 shows that Bureau candidates (the triangles) have not only a lower average 
MeanLength, but also that their evaluation is more stable across different runs of our protocol. 

Figure 4. Scatterplot of the average and of standard deviation for the MeanLength of the individuals of our corpus 
across the 10 implementations of our protocol.

 

Drawing on this insight, we combine average and standard deviation in a new variable called 
leadership-score: 

LS = average of the MeanLength + (ε * standard deviation of the MeanLength) 

After exploring all values of ε to identify the one (15.5) that maximises the difference in the 
ranking of bureau candidates and other participants, our new measure achieves an almost perfect 
discrimination capacity (0.9996). Ranking the individuals of our corpus according to the new 
measure, all the 107 highest ranked individuals are Bureau candidates, and all the 148 Bureau 
candidates are ranked among the 184 first individuals (which means that only 36 false positives 
are necessary to identify all the candidates). 

Application to sampling 
Given the complexity of the process for the nomination of the IPCC Bureau, obtaining a metric 
with an almost perfect discriminating capacity is quite a computational feat. By itself, however, 
this achievement is not particularly useful, as being able to predict Bureau candidates has little 
use for IPCC actors and little interest for IPCC scholars. To achieve sociological relevance, we 
still have to demonstrate how our prediction machine can be repurposed into a similarity 
sampling protocol capable of identifying individuals with special leadership profiles. 
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Figure 4 shows a clear separation between candidates and non-candidates, but it also shows that 
some non-candidates have a position that is relatively close to that of Bureau nominees (we 
highlighted them as orange dots). These are the informal leaders that we should add to the formal 
ones to complete our sample of IPCC leaders. To identify them, we focus on the current report, 
AR6. Since our dataset contained 67 candidates for the Bureau of AR6, we decided to use our 
method to double this sample and identify the 67 other individuals who have not been candidates 
for AR6 but are rankest the highest for leadership score in that AR. 16 of these informal leaders 
have been members of the Bureau in one or more of the earlier ARs. We will, therefore, not 
consider them because they could have added easily to the sample because of their previous role. 
51 individuals, however, have never been in the Bureau so their inclusion in the sample is not 
trivial. Their names are listed in the table below. 

Table 7. Informal leaders identified through our similarity sampling protocol. 

Name Country Ran_LS NET 
Degree 

BR 
Temporal 

BT 
Thematic 

BR 
Function 

BR 
Sum 

ENG 
Sessions 

ENG 
Signatur. 

ENG-
ClaSpmS
yrBureau 

 Cramer, Wolfgang P. Germany 120 7 816 194 2061 3071 3 14 3 
 Ishitani, Hisashi Japan 137 3 0 0 236 236 1 5 2 
 Jorgensen, Anne Mettek Denmark 138 5 3824 0 0 3824 25 0 0 
 Mostefa-Kara, M.K. Algeria 141 2 0 0 1523 1523 2 1 1 
 Kashiwagi, Takao Japan 146 3 0 0 236 236 1 4 2 
 Friedlingstein, Pierre France 156 5 121 228 2485 2834 3 9 2 
 Titus, J. USA 164 2 0 307 0 307 0 2 1 
 Melillo, Jerry USA 165 4 61 173 0 234 1 5 2 
 Oquist, Mats Sweden 166 2 71 0 0 71 0 4 2 
 Perrin, Dominique  Belgium 168 3 878 0 0 878 4 0 0 
 Clini, Corrado Italy 171 5 3824 0 0 3824 6 0 0 
 Taniguchi, Tomihori Japan 172 3 0 143 1140 1283 3 3 1 
 Melnikov, P.I. USSR 174 1 0 0 0 0 0 1 1 
 Morand Francis, Pascale Switzerland 176 3 84 0 310 394 6 1 0 
 Ososkova, Tatyana Uzbekistan 178 5 1271 0 255 1526 15 1 0 
 Brown, Sandra USA 186 2 71 0 0 71 0 8 2 
 Kerem, A. Israel 191,5 1 0 0 0 0 1 0 0 
 Morgenstern, Richard Germany 194 2 1485 0 0 1485 6 0 0 
 Mahrenholz, R. Germany 197 3 878 0 0 878 3 0 0 
 Banuri, Tariq USA 200 4 97 122 1046 1265 1 5 3 
 Egbare, Awadi Abi Togo 202 4 1271 0 0 1271 24 0 0 
 Abrol, I. India 203 1 0 0 0 0 0 2 1 
 Braima, Tommy Sierra Leone 207 3 878 0 0 878 5 0 0 
 Kauppi, P.E. Finland 211 2 0 0 0 0 0 4 2 
 Abuleif, Khalid Saudi Arabia 226 5 3824 0 0 3824 9 0 0 
 Penman, Jim UK 232 5 3824 0 0 3824 13 0 0 
 Ada, Fahim Afghanistan 233 1 0 0 0 0 1 0 0 
 Shah, A. USA 238 1 0 0 0 0 0 1 0 
 Styrikovich, M. Russia 243 1 0 0 0 0 0 1 1 
 Pittock, A. Barrie Australia 245 4 32 194 865 1091 1 13 3 
 Jaffe, S. Israel 249 1 0 0 0 0 2 0 0 
 Gilbert, J. NZ 250 2 0 0 310 310 1 2 1 
 Madhava Sarma, K. India 251 1 0 0 0 0 0 1 1 
 Albritton, Daniel L. USA 254 4 50 156 741 947 1 5 3 
 Solomon, Allen M. USA 255 1 0 0 0 0 0 5 2 
 Tokioka, Tatsushi Japan 260 5 1141 0 1220 2361 3 2 0 
 Prentice, I. Colin Germany 261 2 50 0 0 50 0 7 2 
 Xie, Shaoxiong China 264 2 0 0 310 310 1 1 1 
 Callander, Bruce UK 268 4 84 173 1077 1334 6 2 1 
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 Benndorf, Rosemarie Germany 269 3 389 0 0 389 3 0 0 
 Spradley, Julian R. USA 275 3 84 0 310 394 4 1 0 
 Beetham, R. UK 276 2 0 0 310 310 1 1 1 
 Barrell, Susan Lesley Australia 278 4 1271 0 0 1271 8 0 0 
 Ivanov, Teodor Bulgaria 279 3 878 0 0 878 13 0 0 
 Harasawa, Hideo Japan 281 6 648 0 1051 1699 7 7 2 
 Oppeneau, Jean Claude France 282 2 0 0 310 310 3 1 1 
 Tilley, John Australia 285 2 0 0 310 310 1 1 1 
 Sathaye, Jayant USA 288 5 209 143 0 352 0 12 3 
 Yokobori, Keiichi Japan 292 3 84 0 310 394 5 1 1 
 Luxmoore, R.J. USA 303 1 0 0 0 0 0 4 1 
 Hulme, Mike UK 308 2 0 350 0 350 0 8 2 

Our analysis stops at this list. However, since the very objective of our protocol is to build an 
extended sample of organisational leaders, this result is where a sociological investigation of 
IPCC leadership could begin. 

Conclusions 
In this paper we presented an experiment with machine learning in which we purposely put 
ourselves in a situation that, while decidedly more difficult than most AI experiments, is closest 
the actual research conditions of the social sciences: we measured ourselves against an elusive 
phenomenon (IPCC informal leadership) and worked with small data and limited computational 
resources. The results show that, even with these constraints, it is possible to train an efficient 
model. By using a combination of autoencoders and isolation forests, we developed a 
surprisingly precise measure of leadership potential. If we had tried to guess the 67 nominees of 
AR6 Bureau by taking the 67 individuals ranking the highest according to our isolation 
MeanLength, we would have predicted 60 of them (quite a stunning result, considering that our 
model was choosing among 5.559 different individuals). 

As social scientists, however, we could not content ourselves with such a result, for prediction is 
rarely a goal in our disciplines and certainly not as the IPCC leadership is concerned. To make 
our protocol sociologically relevant, we then repurpose our model shifting its use from prediction 
to sampling. In this new use, we are not trying to guess which individuals would be nominated 
for the IPCC Bureau, but we use our knowledge about these nominations to find other 
individuals with a similar profile and thus device a protocol for sampling people with a 
leadership profile. Yes, our “leadership-score” metric is a black box because it is based on an 
opaque machine learning algorithm that does not provide us with the exact recipe employed to 
compute it. Yet, opacity is not necessarily a drawback. Because there is no clear or unique 
definition of what makes an IPCC leader, there is no way to develop a transparent algorithm for 
leadership sampling. Still, as we tried to show, this does not mean that it is impossible to devise 
such a sampling if the transparency condition is relinquished. 

The situation in which we carried out our experiment, we believe, is not exceptional. It is 
common for social scientists to be interested in the subset of a population (e.g., the elite of an 
international organisation) that they identify by some prototypical examples (e.g., the official 
leaders of the same organisation) rather than by an exact definition. Because we were 
particularly interested in leaders, who, by definition, occupy an outlying position in their 
organisation, we relied on techniques for anomaly detection, but other techniques of machine 
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learning can be employed in cases in which the sample to be extended does not have the same 
character of exceptionality. 

Beyond the details of our protocol, the crucial point of our demonstration was to show that the 
black box nature of AI does not disqualify its use in social sciences but can be exploited as a 
workaround in situations in which the research is hindered by a lack of explicit definition. In 
these circumstances, it may be desirable to extend one sample by similarity, even if we are 
unable to characterise precisely the nature of such similarity. This is a situation in which 
machine learning can come in handy for its capacity to find resemblance in a multi-dimensional 
space. 
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