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Abstract
Purpose – This paper aims to model a three-dimensional twisted geometry of a twisted pair studied in an
electrostatic approximation using only two-dimensional (2D) finite elements.
Design/methodology/approach – The proposed method is based on the reformulation of the weak
formulation of the electrostatics problem to deal with twisted geometries only in 2D.
Findings – The method is based on a change of coordinates and enables a faster computational time as well
as a high accuracy.
Originality/value – The effectiveness of the adopted approach is demonstrated by studying different
configurations related to the IEC 60851-5 standard defined for the measurement of the electrical properties of
the insulation of the winding wires used in electrical machines.
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1. Introduction
Using twisted wires in electrical engineering goes back to the late 19th century, when Bell
introduced them to mitigate the crosstalk between the first telephone and a telegraph



(Bell, 1876). They soon became commonplace in many electric and electronic applications
and are in particular used as a means to test the aging of the insulation of electrical machines
(Guastavino and Dardano, 2012) and to extract the electrical properties of their insulation
(IEC, 2019).

Several studies have investigated the effect of twisted wires on the surrounding
environment (Moser and Spencer, 1968), a nearby single wire (Paul and Jolly, 1982) or the
ground (Pignari and Spadacini, 2011), by using predictive models. However, the accurate
calculation of the distributed capacitances or the local electromagnetic fields, e.g. the local
electric field strength for realistic configurations, requires costly three-dimensional (3D)
simulations (Acero et al., 2014; Lyly et al., 2012). While a method based on several two-
dimensional (2D) simulations (on slices of the 3D geometry) was proposed in Gustavsen et al.
(2009), it introduces an intrinsic modeling error because of the performed averaging and
cannot recover the true 3D local fields.

In this paper, following the approach originally derived in Nicolet et al. (2006, 2007a), we
propose to reformulate the 3D problem in helicoidal instead of Cartesian coordinates
(Waldron, 1958), leading to a 2D formulation with an adapted metric, easy to implement in
existing 2D finite element codes. For purely helicoidal and infinitely long 3D geometries, the
proposed 2D formulation is exact. The gains are twofold: the geometrical modeling and
meshing of the potentially complex multi-layer conductors usually with large aspect ratios
can be performed on a 2D slice instead of in 3D; and the finite element solution is greatly
reduced.

The paper is organized as follows. After describing the geometrical configuration of
twisted pairs in Section 2, the 3D electrostatic problem is reformulated in helicoidal
coordinates in Section 3, leading to a 2D finite element formulation with an adapted metric –
the “2D twisted” model. This 2D twisted model is verified against the full 3D model in
Section 4 by computing the conductor charges in function of the number of turns in a
twisted pair of enameled wires. Next, the improvement in accuracy of the 2D twisted model
compared to the usual 2D (straight) model is analyzed in Section 5 in function of the number
of turns, the conductor diameter and the insulation thickness. The effectiveness of the
approach is finally demonstrated by studying different configurations related to the IEC
60851-5 standard for themeasurement of the electrical properties of winding wires.

2. Geometry of twisted wires
The twisted geometry is defined by a number of turnsNturns over a swirl length ‘s (Figure 1).
One spatial period of the twisted pair is depicted in Figure 2, where the extrusion length ‘e
(i.e. the linear length of the spatial period) and the length of the helix ‘h (i.e. the length of the
mean fiber of each twisted conductor) are defined as follows:

Figure 1.
An example of a
twisted pair with
Nturns turns over a

swirl length ‘s



‘e ¼ ‘s
Nturns

‘h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p d þ 2‘ið Þð Þ2 þ ‘2e

q
8>><
>>: (1)

with d and ‘i being the diameter of the conductors and the insulation thickness, respectively.
Finally, the torsion of the twisted pair is defined as a ¼ 2p

‘e
.

3. Twisted electrostatic model
To study the capacitive coupling between the twisted wires using the finite element method,
we first derive a weak form of Maxwell’s equations in the electrostatic approximation.

3.1 Electrostatic model
Assuming zero free charge density, and denoting the (static) electric field and the dielectric
permittivity in Cartesian coordinates (x1, x2, x3), respectively, by e(x1, x2, x3) and « (x1, x2, x3),
Maxwell’s equations reduce to:

Figure 2.
(a) One spatial period
of the twisted pair.
(b) The geometrical
parameters of the
cross-section



curlx eð Þ ¼ 0; divx « eð Þ ¼ 0; (2)

where curlx and divx are the classical curl and divergence operators in the Cartesian
coordinates system, respectively. Defining the scalar electric potential v(x1, x2, x3) such that
e=�gradx(v), (2) leads to the second-order equation as follows:

�divx « gradx vð Þð Þ ¼ 0; (3)

where gradx denotes the gradient operator in Cartesian coordinates.
Our aim is to solve (3) in a domain Xx enclosing the twisted pair, with a prescribed scalar

potential on the (boundary of the) conductors. To use the finite element method, Xx is
bounded and an appropriate geometrical transformation is defined in an annular region to
handle the natural extension of fields to infinity (Henrotte et al., 1999; Remacle et al., 1994;
Bossavit, 1998). The annular region (of inner and outer radii Rint and Rout, respectively) is
depicted in Figure 3. The boundary @ Xx of Xx is thus composed of the boundary of the
conductors in the twisted pairCc and the outside boundary of the annular regionCout.

3.2 Weak formulation in Cartesian coordinates
Let us assume that the potential v is fixed to zero on Cout and to a prescribed value vc(x1, x2,
x3) onCc. The weak formulation of (3) writes (Ern and Guermond, 2013): find v [H1(Xx) with
v= vc onCc and v= 0 onCout, such that:ð

Xx

« gradx vð Þ � gradx v0ð ÞdXx ¼ 0 (4)

Figure 3.
Bounded domain

with annular region
with geometrical
transformation to
handle the natural
extension of fields

to infinity



holds for all test functions v0 2 H1
0 Xxð Þ. Here, H1(Xx) denotes the classical Sobolev

space on Xx, and H1
0 Xxð Þ its subspace with functions vanishing on the boundary @ Xx.

For the 3D geometry, periodic boundary conditions along the x3 axis are used.
After discretizing Xx with a finite element mesh, and choosing suitable finite
dimensional subspaces (e.g. with piecewise linear or quadratic shape functions), (4)
becomes: ð

Xx

« gradx vhð Þ� �T gradx v0h
� �

dXx ¼ 0; (5)

where the superscript “T” denotes the transpose, whereas vh and v0h denote the finite
dimensional approximation of v and v0, respectively, leading thus to the classical matrix
system.

Following the approach described in Nicolet et al. (2006, 2007a), we now reformulate the
weak formulation (5) in helicoidal coordinates.

3.3 Helicoidal coordinates
Helicoidal coordinates (z 1, z 2, z 3) are related to the Cartesian coordinates (x1, x2, x3) through
the following relations (Figure 4) (Waldron, 1958):

x1 ¼ z 1cos az 3ð Þ þ z 2sin az 3ð Þ
x2 ¼ �z 1sin az 3ð Þ þ z 2cos az 3ð Þ
x3 ¼ z 3

;

8><
>: (6)

Figure 4.
Definition of
Cartesian and
helicoidal coordinates



or, conversely:

z 1 ¼ x1cos ax3ð Þ � x2sin ax3ð Þ
z 2 ¼ x1sin ax3ð Þ þ x2cos ax3ð Þ
z 3 ¼ x3

:

8><
>: (7)

The Jacobian of the transformation from helicoidal to Cartesian coordinates is defined as follows:

J ¼ @ x1; x2; x3ð Þ
@ z 1; z 2; z 3ð Þ ¼

@x1
@z 1

@x1
@z 2

@x1
@z 3

@x2
@z 1

@x2
@z 2

@x2
@z 3

@x3
@z 1

@x3
@z 2

@x3
@z 3

0
BBBBBBBB@

1
CCCCCCCCA
; (8)

which, using (6), writes:

J ¼
cos az 3ð Þ sin az 3ð Þ az 2cos az 3ð Þ � az 1sin az 3ð Þ
�sin az 3ð Þ cos az 3ð Þ �az 1cos az 3ð Þ � az 2sin az 3ð Þ

0 0 1

0
B@

1
CA: (9)

If gradz denotes the gradient in helicoidal coordinates and J
�T the inverse of the transpose

of J, we have:

gradx vhð Þ ¼ J�Tgradz vhð Þ; (10)

and the weak form (5) in helicoidal coordinates becomes (because dXx = det(J)dXz : find vh
such that: ð

Xz

« J�T gradz vhð Þ
� �T

J�Tgradz v0h
� �

det Jð Þ dXz ¼ 0

)
ð
Xz

« gradz vhð ÞTJ�1 J�T gradz v0h
� �

det Jð Þ dXz ¼ 0
(11)

where Xz refers to the domain of study in helicoidal coordinates. Equation (11) can be
further simplified as follows:

)
ð
Xz

« gradz vhð ÞT T�1 gradz v0h
� �

dXz ¼ 0; (12)

with T�1 the symmetric matrix:

T�1 z 1; z 2ð Þ ¼ T�T z 1; z 2ð Þ
¼ J�1J�Tdet Jð Þ

¼
1þ a2z 2

2 �a2z 1z 2 �az 2

�a2z 1z 2 1þ a2z 2
1 az 1

�az 2 az 1 1

0
BB@

1
CCA;

(13)



thus making (12) become:ð
Xz

«T�1 gradz vhð Þ
� �T

gradz v0h
� �

dXz ¼ 0: (14)

Formally, comparing (5) to (14), the dielectric material represented by the scalar permittivity
« in Cartesian coordinates is thus replaced in helicoidal coordinates by an equivalent
anisotropic and inhomogeneous permittivity tensor density «T�1 (Nicolet et al., 2007a,
2007b). The matrix T�1(z 1,z 2) being independent of z 3, (14) can be reduced to a 2D problem
in terms of coordinates z 1 and z 2, on a “slice” of the 3D geometry with constant z 3 = x3,
without information loss.When expressed in polar coordinates (r ,f ) defined as follows:

z 1 ¼ rcos fð Þ
z 2 ¼ rsin fð Þ ;

(
(15)

with f ¼ 2arctan z 2

z 1þ
ffiffiffiffiffiffiffiffiffiffi
z 2
1þz 2

2

p
� �

; T�1 can be rewritten as follows:

T�1 z 1; z 2ð Þ ¼ R fð Þ
1 0 0
0 1þ a2r 2 ar
0 ar 1

0
@

1
AR �fð Þ; (16)

whereR(f ) is the rotation matrix:

R fð Þ ¼
cos fð Þ �sin fð Þ 0

sin fð Þ cos fð Þ 0

0 0 1

0
B@

1
CA: (17)

As mentioned in Section 3.1, the domain of study is bounded by an annular region of inner
and outer radii Rint and Rout, respectively, to handle the natural extension of fields to infinity.
The matrix is thus piecewise defined, with (16) being valid for r # Rint. The expression of
the matrix for r [ ]Rint, Rout] is presented next.

3.4 Infinite transformation
In the annular region r [ ]Rint, Rout], a geometrical transformation is applied to handle the
natural extension of the fields to infinity (Henrotte et al., 1999; Remacle et al., 1994), and the
matrixT�1 writes:

T�1 z 1; z 2ð Þ ¼ R fð Þ

r
drr

0 0

0 1þ a2r2ð Þ drr
r

adrr

0 adrr
drr
r

0
BBBBBBB@

1
CCCCCCCA
R �fð Þ:

The parameters r and dr are the transformed radial cylindrical coordinates and the
derivative of r, respectively:



r ¼ r rð Þ ¼ Rint � Routð Þ
r � Rout

r

dr ¼ dr rð Þ ¼ @r
@r

¼ �Rout
Rint � Rout

r � Routð Þ2
:

8>>><
>>>:

(18)

The infinite transformation can be seen as a change in the physical properties of the “infinite
air,” thus an anisotropic and piecewise defined tensorial permittivity is used in the 2D finite
element implementation.

4. Verification of the two-dimensional twisted model
Given the spatial periodicity of the geometry, only one spatial period referred to as the 3D
geometry, with its cross section defining the 2D geometry is studied. For all geometries,
created and meshed using Gmsh (Geuzaine and Remacle, 2009), an “infinite” transformation
is applied in an annular region as described in Section 3.4. The 3D geometry was used to
solve (5) and the 2D to solve (14). The finite element computations were performed using the
open source finite element solver GetDP (Dular et al., 1998a).

In real applications, enameled conductors are coated in successive thin layers to ensure
correct polymerization and cross-linking. This defines the thermal and electrical
performance of the wire. A classical arrangement is polyester-imide (PEI) as the first layer
and polyamide-imide (PAI) on top. Additionally, for this case study the layers were given
the same thickness. Thus, « is defined as a piecewise function and its values were chosen for
the two layers in 3D to be «PEI = 4.5« 0 and «PAI = 2.4« 0, where « 0 ¼ 1

36p 10�9F m�1 is the
vacuum permittivity, 4.5 and 2.4 being the relative permittivities of PEI and PAI,
respectively. The equivalent anisotropic and inhomogeneous dielectric permittivity for the
2D twisted study is hence easily deduced (Section 3.3). This is portrayed in Figure 5, where a
capacitor is used to illustrate the capacitive coupling between the two conductors.

To verify the 2D twisted model, simulations were run where the quantity of interest is the
charge per meter Q of the system (Dular et al., 1998b). Using finite elements, and for both
geometries, the computation of the charges per meter is done as follows:

3D case : Q3D ¼ 1
‘e

ð
Cc

« gradx vhð Þ � n dCc

2D case : Q2Da
¼

ð
Cc

«T�1 gradz vhð Þ � n dCc

;

8>>><
>>>:

(19)

Figure 5.
Illustration of the

capacitive coupling
between the two

conductors



where n is the outside normal to Cc, Q3D is the charge computed in 3D converted to a 2D
value by dividing by ‘e andQ2Da

is the charge computed by the 2D twisted model.
Finite element computations were performed for a predefined range of Nturns per

meter varying from 64 to 768, for a fixed value of ‘s. In all computations the potential
difference between the two conductors was set to 1 V, and the potential at infinity was
set to 0 V. The results are presented in Figure 6, where the corresponding 3D geometries
were added to illustrate the amount of twist. The relative error used for comparison is
defined as follows:

error %ð Þ ¼ 100:
jQ3D � Q2Da

j
Q3D

:

As depicted in Figure 6(b), the relative error does not exceed 0.06%, which validates the
twisted model. (The remaining small error is because of the small discrepancy between the
3D mesh and the exact twisted geometry.) The computational efficiency of the 3D and 2D
models is reported in Table 1. The number of nodes in the 3D mesh is about 21 times the
number of nodes in 2Dmesh, which explains the large difference in the computational times:
16min for the 3Dmodel and only 8 s for the 2Dmodel.

Figure 6.
(a) Comparison of the
computed charges
per meter for the 2D
and 3D geometries.
(b) The relative error
betweenQ3D

andQ2Da



As noticed in Figure 6(a), the increase of Nturns yields an increase in the computed charge,
which is because of the increase of the capacitive coupling between the different parts of the
studied conductor. This extra capacity, referred to as Cs, is illustrated in Figure 7. The
higher Nturns, the less air there is between the two electrodes of the equivalent capacitance
Cs, the higher is the computed charge. It is also worth mentioning that for very high and
non-physical values of Nturns, the relative error starts to increase, because of the increased
deformation of the 3D mesh. Finally, it should also be noted that in addition to global
quantities like the charge, the 2D model also allows to retrieve local quantities like the
electric field strength.

5. Impact of the twisted geometry on the computed values
To emphasize the importance of using the proposed 2D twisted model instead of simplifying
the study to a 2D straight model, we study the influence of the geometrical parameters
Nturns, d and, ‘i over the computed charges Q2Da

and Q2D0 . The latter is the computed 2D
charge for a straight geometry, i.e. with a = 0.

5.1 Impact of the number of turns
To study the impact of the number of turns Nturns over the computed 2D charges, d was
fixed to 0.8mm, and ‘i to 28 mm. A new variable Q2Dac

is introduced corresponding to a
corrected 2D twisted 2D charge deduced from a straight charge analytically, as follows:

Q2Dac
¼ Q2D0

‘h
‘e

¼ Q2D0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p d þ 2‘ið Þ

‘e

� �2

þ 1

s
; (20)

where ‘e and ‘h are defined in Figure 2. The results are plotted in Figure 8, where error1 and
error2 are computed as in (21):

Table 1.
Comparison of the

computational
efficiencies of the 2D

and 3D models

2D 3D

No. of nodes 47,755 1,002,945
No. of elements 101,188 2,226,182
Computational time 8 s 16 min

Figure 7.
Figure portraying the

new capacitive
couplings Cs a

twisted geometry
presents



error1 %ð Þ ¼ 100:
jQ2Da

� Q2D0 j
Q2Da

error2 %ð Þ ¼ 100:
jQ2Da

� Q2Dac
j

Q2Da

:

8>>><
>>>:

(21)

The higher the value of Nturns, the higher Q2Da
, whereas Q2D0 remains constant because no

twist is geometrically introduced. For Nturns per meter equal to 64, the relative error is
roughly 1.0549% and increases with Nturns because of the emergence of new capacitive
coupling as elaborated in the previous section, increasing thus the discrepancy between the
two.

The engineering approach adopted to correct the 2D straight values Q2D0 to twisted ones
Q2Dac

thus gives approximate, but not precise, values of the twisted charges. Therefore, the
ratio of lengths is not enough to compute the value of the twisted charge. This proves the
added value of the 2D twisted model and the importance of its usage when it comes to a
twisted geometry. Indeed, the proposed 2D twisted model has the same computational
efficiency as the 2D straight model, does not need a post processing (i.e. correcting the

Figure 8.
(a) Study of the
impact of the number
of turns per meter on
Q2Da

; Q2D0 andQ2Dac
.

(b) The computed
relative error between
Q2Da

andQ2D0 .
(c) The computed
relative error between
Q2Da

andQ2Dac



straight values with the length ratio) and fully considers the impact of the twist over the
computed values.

5.2 Impact of the diameter of the conductor
To study the impact of the diameter of the conductor, Nturns per meter was set to 320 turns and
‘i to 28mm. The diameter was varied from 0.4 to 5.16mm. The results are seen in Figure 9.

As expected, the charges, straight and twisted, increase with the diameter of the
conductor because the surface of the copper increases as well. This is illustrated in Figure. 5
and even though the two conductors are not planar, the formula for plane capacitors can be
used to understand the impact:

Cpp ¼ «A
‘i

; (22)

where A is the surface of the parallel copper plates, which increases with d. Moreover, the
two charges Q2Da

and Q2D0 do not increase in the same manner. This is seen in Figure 7,
where the twisted geometry introduces capacitive coupling between the different parts of
the twisted conductors (Cs): the higher a, the lesser the thickness of the equivalent insulation
of Cs, the higher is the value of the computed charge. The values of Q2Dac

were also
computed and plotted in Figure 9, where the discrepancy betweenQ2Dac

andQ2Da
is because

of the increase of the values of d, which increases the value of the length ratio (‘h increases
with d, whereas ‘e is constant becauseNturns is constant).

5.3 Impact of the insulation thickness
Here, dwas set to 0.8mm andNturns per meter to 320. The insulation thickness ‘i was varied
from 10 to 50 mm. The results are seen in Figure 10 where a 2D geometry is presented to
visualize the impact.

Following the same explanatory approach used in Section 5.2, and by making use of the
parallel plate capacitive coupling analogy, the results can be easily interpreted as well.

Figure 9.
Study of the impact of

the diameter of the
conductor on the

computed charges



The capacitance (or the charge because DV = 1 V) is inversely proportional to the thickness
of the dielectric. Thus, the smaller ‘i, the easier the storage of the charges. For this study
also, the values of Q2Dac

were computed and seem to converge to Q2Da
for very high non-

physical values of ‘i.

5.4 Study of the standard IEC 60851-5
As an application to the developed model, we propose to investigate the twist configurations
in the IEC 60581-5 standard (IEC, 2019), which are summarized in Table 2.

For each diameter range d, a value ofNturns (ultimately a) is defined for ‘s = 0.125m, which is
also fixed by the standard. The higher the value of d, the lesser theNturns and the less twisted the
geometry is. The performed study consists in computing for each d varying from 0.1 to 2.4mm,
ultimately the upper and lower bounds of the specified range, the 2D charges: Q2Da

and Q2D0 .
Their variations according to d are plotted in Figure 11. The relative error was computed as in
(21) (i.e. error1). Here, themaximum number of turnsNturns permeter does not exceed 264 turn per
meter (value computed forNturns = 33) which is inferior to the values chosen in Sections 5.1–5.3.

In Figure 11, two parameters vary: the diameter d and the number of turns Nturns. To
understand the variations, each sub-range where only one parameter varies will be studied

Figure 10.
Study of the impact of
the insulation
thickness on the
computed charges

Table 2.
IEC 60581-5
Standard

Range of the diameter (mm) Nturns Nturns per meter

0.100# d< 0.250 33 246
0.250# d< 0.355 23 184
0.355# d< 0.500 16 128
0.500# d< 0.710 12 96
0.710# d< 1.060 8 64
1.060# d< 1.400 6 48
1.400# d< 2.000 4 32
2.000# d< 2.500 2 16

Source: IEC (2019)



separately. Taking, for instance, the sub-range of d where Nturns = 4, corresponding to
a diameter varying between 1.4 and 2 mm, increasing d increases simultaneously the
charges (Q2Da

, Q2D0 ) as well as the relative error between the two. This agrees well with
the results of Section 5.2. Moreover, the variation of the slope of the relative error is
because of the decrease of Nturns with the increase of the value of d. The higher the d is,
the less twisted the geometry is, the smaller the value of Cs, the slighter is the
difference between the twisted and straight charges until it eventually nullifies for a
Nturns = 0. It should also be mentioned that in real applications, the insulation
thickness ‘i also varies with the diameter d (IEC, 2013) which was considered constant
for the study of the standard.

6. Conclusion
This paper presents an efficient method to solve a 3D twisted electrostatic problem
using 2D finite elements based on a helicoidal change of coordinates. The object of
study is a twisted pair widely used in different electrical engineering applications.
The low time complexity of the 2D model is highlighted, as well as its high
accuracy, when compared to the 3D model. The importance of using a 2D twisted
geometry instead of a 2D straight geometry to study a 3D twisted problem is
emphasized.

The proposed model, by inserting the correct permittivities of the dielectric
materials used in real application, could efficiently provide the value of the
capacitance between twisted wires. The model may even be used as an alternative to
measurements, enabling the analysis of twisted wires only by simulations. The model
could also be adopted for various other case studies of twisted pairs: a Debye model
could, for example, be used to describe the frequency-dependent behavior of the used
insulation; or the impact of the temperature over the permittivity that could also be
taken into account by using, e.g. an Arrhenius model.

Figure 11.
Study of the standard



References
Acero, J., Lope, I., Burdío, J., Carretero, C. and Alonso, R. (2014), “Loss analysis of multistranded twisted

wires by using 3D-FEA simulation”, In Proc. COMPEL, Santander, Spain, pp. 1-6, doi: 10.1109/
COMPEL.2014.6877168.

Bell, A.G. (1876), “Researches in telephony”, Proceedings of the American Academy of Arts and
Sciences, Vol. 12, pp. 1-10, doi: 10.1109/63.903993.

Bossavit, A. (1998), Computational Electromagnetism: Variational Formulations, Complementarity,
Edge Elements, Academic Press.

Dular, P., Legros, W. and Nicolet, A. (1998b), “Coupling of local and global quantities in various
finite element formulations and its application to electrostatics, magnetostatics and
magnetodynamics”, IEEE Transactions on Magnetics, Vol. 34 No. 5, pp. 3078-3081, doi: 10.1109/
20.717720.

Dular, P., Geuzaine, C., Henrotte, F. and Legros, W. (1998a), “A general environment for the treatment of
discrete problems and its application to the finite element method”, IEEE Transactions on
Magnetics, Vol. 34 No. 5, doi: 10.1109/20.717799.

Ern, A. and Guermond, J.-L. (2013),Theory and Practice of Finite Elements, Springer, Vol. 159.
Geuzaine, C. and Remacle, J.-F. (2009), “Gmsh: a 3-D finite element mesh generator with built-in pre- and

post-processing facilities”, International Journal for Numerical Methods in Engineering, Vol. 79
No. 11, pp. 1309-1331, doi: 10.1002/nme.2579.

Guastavino, F. and Dardano, A. (2012), “Life tests on twisted pairs in presence of partial discharges:
influence of the voltage waveform”, IEEE Transactions on Dielectrics and Electrical Insulation,
Vol. 19 No. 1, pp. 45-52, doi: 10.1109/TDEI.2012.6148501.

Gustavsen, B., Bruaset, A., Bremnes, J.J. and Hassel, A. (2009), “A finite-element approach for
calculating electrical parameters of umbilical cables”, IEEE Transactions on Power Delivery,
Vol. 24 No. 4, pp. 2375-2384.

Henrotte, F., Meys, B., Hedia, H., Dular, P. and Legros, W. (1999), “Finite element modelling with
transformation techniques”, IEEE Transactions on Magnetics, Vol. 35 No. 3, pp. 1434-1437,
doi: 10.1109/20.767235.

IEC (2013), “Specifications for particular types of winding wires – part 0-1: general requirements –

enamelled round copper wire”, Standard IEC60317-0-1.
IEC (2019), “Winding wires – test methods – part 5: electrical properties”, Standard IEC60851-5.
Lyly, M., Zermeno, V., Stenvall, A., Lahtinen, V. andMikkonen, R. (2012), “Finite element simulations of

twisted NbTi conductors”, IEEE Transactions on Applied Superconductivity, Vol. 23 No. 3,
pp. 6000105-6000105, doi: 10.1109/TASC.2012.2228532.

Moser, J.R. and Spencer, R.F. (1968), “Predicting the magnetic fields from a twisted-pair cable”, IEEE
Transactions on Electromagnetic Compatibility, Vol. EMC-10 No. 3, pp. 324-329, doi: 10.1109/
TEMC.1968.302936.

Nicolet, A., Movchan, A.B., Guenneau, S. and Zolla, F. (2006), “Asymptotic modelling of weakly twisted
electrostatic problems”, Comptes Rendus Mécanique, Vol. 334 No. 2, pp. 91-97, doi: 10.1016/j.
crme.2005.12.001.

Nicolet, A., Zolla, F., Agha, Y.O. and Guenneau, S. (2007b), “Leaky modes in twisted microstructured
optical fibers”,Waves in Random and ComplexMedia, Vol. 17 No. 4, pp. 559-570.

Nicolet, A., Movchan, A.B., Geuzaine, C., Zolla, F. and Guenneau, S. (2007a), “High order asymptotic
analysis of twisted electrostatic problems”, Physica B: Condensed Matter, Vol. 394 No. 2,
pp. 335-338.

Paul, C.R. and Jolly, M.B. (1982), “Sensitivity of crosstalk in twisted-pair circuits to line twist”, IEEE
Transactions on Electromagnetic Compatibility, Vol. EMC-24 No. 3, pp. 359-364, doi: 10.1109/
TEMC.1982.304067.

http://dx.doi.org/10.1109/COMPEL.2014.6877168
http://dx.doi.org/10.1109/COMPEL.2014.6877168
http://dx.doi.org/10.1109/63.903993
http://dx.doi.org/10.1109/20.717720
http://dx.doi.org/10.1109/20.717720
http://dx.doi.org/10.1109/20.717799
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1109/TDEI.2012.6148501
http://dx.doi.org/10.1109/20.767235
http://dx.doi.org/10.1109/TASC.2012.2228532
http://dx.doi.org/10.1109/TEMC.1968.302936
http://dx.doi.org/10.1109/TEMC.1968.302936
http://dx.doi.org/10.1016/j.crme.2005.12.001
http://dx.doi.org/10.1016/j.crme.2005.12.001
http://dx.doi.org/10.1109/TEMC.1982.304067
http://dx.doi.org/10.1109/TEMC.1982.304067


Pignari, S.A. and Spadacini, G. (2011), “Plane-wave coupling to a twisted-wire pair above ground”,
IEEE Transactions on Electromagnetic Compatibility, Vol. 53 No. 2, pp. 508-523, doi: 10.1109/
TEMC.2010.2061855.

Remacle, J., Nicolet, A., Genon, A. and Legros, W. (1994), “Comparison of boundary elements and
transformed finite elements for open magnetic problems”, Transactions on Modelling and
Simulation, Vol. 7.

Waldron, R.A. (1958), “A helical coordinate system and its applications in electromagnetic theory”, The
Quarterly Journal of Mechanics and AppliedMathematics, Vol. 11 No. 4, pp. 438-461, doi: 10.1093/
qjmam/11.4.438.

http://dx.doi.org/10.1109/TEMC.2010.2061855
http://dx.doi.org/10.1109/TEMC.2010.2061855
http://dx.doi.org/10.1093/qjmam/11.4.438
http://dx.doi.org/10.1093/qjmam/11.4.438

	2D electrostatic modeling oftwisted pairs
	1. Introduction
	2. Geometry of twisted wires
	3. Twisted electrostatic model
	3.1 Electrostatic model
	3.2 Weak formulation in Cartesian coordinates
	3.3 Helicoidal coordinates
	3.4 Infinite transformation

	4. Verification of the two-dimensional twisted model
	5. Impact of the twisted geometry on the computed values
	5.1 Impact of the number of turns
	5.2 Impact of the diameter of the conductor
	5.3 Impact of the insulation thickness
	5.4 Study of the standard IEC 60851-5

	6. Conclusion
	References




