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Empirical deviations of semicircle law in mixed-matrix ensembles

Mehmet Stizen*
(Dated: December 3, 2021)

An algorithm is introduced for sampling a set of matrices from mixed orders random matrix
ensembles, i.e., Mixed Matrix Ensemble Sampling (MMES). The concept of the degree of mizture of
the matrix ensemble provides a balanced sampling of the mixed matrix ensemble. As an application
of MMES, we have shown how the semicircle law deviates from the conventional behaviour in mixed
Gaussian Orthogonal Ensemble (nGOE) as a novel finding.

INTRODUCTION

Random matrix theory (RMT) [1-3] originates from
mathematical statistics [4] and quantum statistical me-
chanics [5-8]. The applications of RMT appear in diverse
fields, such as multivariate statistics [9], quantum chaos
[10], neuroscience [11], and in deep learning
[12]. The primary operation of RMT techniques is fo-
cused on sampling random matrices from a given con-
ventional ensembles, i.e., random matrix generation pro-
cedure. However, it is established that conventional en-
sembles set matrix order to a single value.

Sampling from a mixed matrix ensemble that enables
a balanced sampling over different matrix orders requires
a formal procedure. This procedure should be applicable
to any existing matrix ensemble as an additional step.
Adjustment of how much mixture should there be in the
sample, distribution of different order set of matrices,
should also be available as a free parameter.

In this direction, we have developed a concept of the
degree of mizture. This concept enables us to draw dif-
ferent order matrices from the base non-mixed ensemble
to generate a sample of the mixed ensemble in a more
representative and controlled manner, i.e., Mixed Matrix
Ensemble Sampling (MMES).

Due to different order matrices in the mixed ensemble,
periodic spectra is imposed for each matrix member in
the spectral analysis. Hence, we investigated the devia-
tion of mGOE from the semicircle law and also report the
nearest-neighbour spacing density over different degree of
mixture values, as an application of MMES.

MMES in Statistics and Machine Learning

Apart from the pure theoretical interest in RMT on
how to construct a mixed matrix ensemble, there are
many possible practical usages of MMES procedure that
provides a fair sampling of processes that generates or re-
quires different order matrices. However, an immeditate
usage of MMES algorithm in machine learning appears
to be initialisation and understanding of neural networks
weight matrices [13, 14]. While, different size neural
network layers generates different order weight matrices,
MMES can provide a balanced sampling from a desig-

nated matrix ensemble for initialisation. On the other-
hand, how learned weight matrices would look like struc-
turally compare to a known random matrix ensemble’s
mixed versions is an active interest in Neural Architec-
ture Search (NAS) [15]

As MMES can also be used in any random ma-
trix ensemble’s mixed version, sampling from the mixed
Wishart ensemble in multivariate statistics [9] can be
achived with MMES algorithm as well.

METHODS

The primary contribution of the work is two fold. We
introduce an algoritm for a balanced sampling from a
mixed order matrix ensemble. To demonstrate, the util-
ity of the algorithm, an approach to spectral analysis for
mixed matrix ensembles is placed in a comparable setting
to non-mixed matrix ensemble’s spectral analysis.

MMES Algorithm

A random matrix ensemble is defined as a mixed en-
semble . if its M constituent matrices appear in varying
orders s;, the i-th matrix, s; € [2, N]. Whereby non-
mixed ensemble is the conventional matrix ensembles of
matrix orders of only V.

The degree of the mizture expresses the ratio of differ-
ent matrix orders in M matrices, i.e., m; is the number
of matrices of order s;. This definition brings a con-
straint on the mixing distribution, with distribution of
m;, p"(m;; s;), such that ). m; = M. This definition of
degree of mixture appears as a Binomial process. This
enables a sample of mixed matrix ensemble drawn in a
balanced way given degree of mixture. Hence resulting
set of matrices which are fair representation of the mixed
matrix ensemble.

The Binomial distribution can be used to define the
degree of the mixture p € [0,1.0] naturally obeying the
mentioned constrained. The success probability would
play the role of degree of mixture. Given number of suc-
cess would be the matrix order of the non-mixed ensem-
ble M. Hence, Binomial distribution’s density, p? will
give us the distribution of mys, p™(mg; s;) = pBi(m;),



where m;s are drawn from the Binomial distribution,
m; ~ Bin(u, M),p is the degree of the mixture on the
ensemble size of M. This procedure explicity explained
in Algoritm 1 in detail.

The spectral densities of each element from the mixed
ensemble .# contains different orders of spectra. We
use so called periodic boundary conditions on the spec-
tra of matrices in the mixed ensemble. It implies, given
ith matrix with the order of m; < N and its eigenvalue
spectrum [A1, Aa, ..., Ap,; | will be transformed into vector
of size N by repeating the eigenvalues in a cycle. This
procedure would align all matrices spectrum sizes in the
mixed ensemble and make the size of the collected of
eigenvalues in the ensemble equivalent in sample size to
the standard base ensemble, i.e., M matrices of order N
making eigenvalue collected size of M x N. This concept
introduced earlier [15] in the context of deep learning.

Algorithm 1: Mixed Matrix Ensemble Sampling
(MMES)
Input:
w € [0,1] : Degree of mixture.
N : Maximum matrix order in the mixed matrix
ensemble.
M : Number of matrices to draw.
%(m) : Non-mixed ensemble sampler, draws a
matrix of order m from the base matrix ensemble
Output:
< : A sample from a mixed matrix ensemble
M (2; N), M matrices of variying orders,
s; € [2, N], and varying counts of m; s.t.

/* Mixed Matrix Ensemble Sampler */
1.7+ [] // Initalise vector of mixed order

matrices.
28, m = Binyon—zero(tt, M) // Vectors of size
k , non-zero orders s and corresponding
counts m drawn from Binomial
distribution.
sfor i =0 up to k do
/* Draw m; times an order s; matrices. */
afor j =0 up to m; do
/* Draw order s; matrix from non-mixed
ensemble. */
5S = g(si)
/* Add order s; matrix to mixed sample.
*/
67 < S
7Return .

MIXED GAUSSIAN ORTHOGONAL ENSEMBLE

Gaussian Orthogonal Ensemble (GOE) is oe of the
most common ensemble introduced in RMT studies in
Physics [2]. In this section we study mixed GOE
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FIG. 1. Semicircle law of mixed GOE with different degree
of mixing and non-mixing for N=400 and N=1000 over 100
draws, i.e., ensemble size.

(mGOE), the deviation from the semicircle law and how
nearest-spacing distribution given various values of the
degree of mixtures. Conventional GOE would be gen-
erated with drawing number from Gaussian distribution
for a matrix A of order N, A € N(0,1) then GOE(N) =
%(A + AT), with further adjusting off-diagonal elements
with of fdiag(GOE) € N(0,1/2), resulting a symmetric
real matrix. The usage of A in sampling the ensemble is
crucial, as this guarantees real eigenvalues are outputted
from numerical libraries [2]. We see deviation from the
semicircle law in lower degree of mixture, in the tails,
forming an M shape rather than perfect semicircle, in
Figure 1. This behaviour vanishes where the degree of
mixture approaches the vanishing value of 1.0. For the
nearest-neighbour spacing distribution, we see that dis-
tribution shifts slightly, but this is not prominent, in Fig-
ure 2 for smaller values of the degree of mixture..

CONCLUSION

We have developed a sampling algorithm to draw a
set of matrices from mixed random matrix ensembles.
Introduction of the concept of the degree of the mizture,
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FIG. 2. Nearest-neighbour spacing for mixed GOE with dif-
ferent degree of mixing and non-mixing for N=1000.

how different orders in the ensemble distributed, provides
a robust way of controlling mixture levels. In the spectral
analysis example, the observed deviation from semicircle
law in the mixed setting GOE (mGOE), appeared as an
M-shape, is identified as a novel property of mGOE.

The author expresses gratitude for the tools provided
by the scientific Python community [16, 17], Shanto Roy
for LaTeX instruction for typesetting algorithm environ-
ment and Galin Jones for the suggestion of documenting
the algorithm explicitly.
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