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Dynamic Facial Expression Recognition under
Partial Occlusion with Optical Flow

Reconstruction
Delphine Poux, Benjamin Allaert, Nacim Ihaddadene, Ioan Marius Bilasco, Chaabane Djeraba and

Mohammed Bennamoun

Abstract—Video facial expression recognition is useful for many applications and received much interest lately. Although some
solutions give really good results in a controlled environment (no occlusion), recognition in the presence of partial facial occlusion
remains a challenging task. To handle occlusions, solutions based on the reconstruction of the occluded part of the face have been
proposed. These solutions are mainly based on the texture or the geometry of the face. However, the similarity of the face movement
between different persons doing the same expression seems to be a real asset for the reconstruction. In this paper we exploit this
asset and propose a new solution based on an auto-encoder with skip connections to reconstruct the occluded part of the face in the
optical flow domain. To the best of our knowledge, this is the first proposition to directly reconstruct the movement for facial expression
recognition. We validated our approach in the controlled dataset CK+ on which different occlusions were generated. Our experiments
show that the proposed method reduce significantly the gap, in terms of recognition accuracy, between occluded and non-occluded
situations. We also compare our approach with existing state-of-the-art solutions. In order to lay the basis of a reproducible and fair
comparison in the future, we also propose a new experimental protocol that includes occlusion generation and reconstruction
evaluation.

Index Terms—Facial occlusions, facial expressions, optical flow, facial motion reconstruction.
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1 INTRODUCTION

Facial expression recognition has many applications in
several domains such as healthcare, security, sentiment
analysis, and marketing. Specific applications include facial
expression recognition-based sentiment analysis to moni-
tor students’ learning during e-learning sessions, or the
automatic monitoring of the driver’s temper to avoid car
accidents. In order to bring life to these applications, several
solutions have been proposed to automatically recognize
expressions.

These solutions give really interesting results in a con-
strained environment. However, in real-world situations,
face occlusions caused by the hand of the person or with
accessories (such as a surgical mask, a scarf, a hat, glasses,
...) occur frequently which make the recognition task more
challenging.

In order to handle occlusions, many solutions have been
proposed in the literature. Two categories can be roughly
distinguished : methods that exploit the remaining visible
information and methods that reconstruct the hidden parts
of the face. The great advantage of the reconstruction is the
fact that we get back to an ideal situation with the entire
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face from which the facial expression can be recognized.
These methods are mainly based on texture or geometry.
However, motion has proven its effectiveness for facial
expression recognition [2], [10]. In spite of these results,
most of the solutions to handle occlusions are based on static
images. Recent papers tend, in general, to neglect research
on motion information as seen in the recent CVPR 2019
statistics1. Nevertheless, motion remains an important and
really useful information, as demonstrated for example, by
the ECCV 2020 best paper award2 which proposed a new
deep learning architecture to calculate optical flow [18].

In order to overcome these issues, we propose in this pa-
per a solution that reconstructs the face movement instead
of its texture or geometry. Our idea is based on the fact that,
due to the propagation of the face movement, the motion
information that remains available in the visible face part
can be very useful for the reconstruction of the occluded
parts.

Moreover, there is a strong similarity of the face move-
ment for the same expression produced by different persons,
as illustrated in Fig. 1. This observation highly enhances the
reconstruction of the lost information. This observation of
similarity also tends to show that movement is more suitable
because it is not dependent on the identity of the person
which implies a reduction of the motion variability between
different persons doing the same expression.

The proposed method is based on an auto-encoder ar-
chitecture which has proven its effectiveness on similar

1. https://cvpr2019.thecvf.com/files/CVPR 2019 - Welcome Slides
Final.pdf

2. https://eccv2020.eu/awards/
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Fig. 1: The first line shows the texture of several persons
from the CK+ dataset having an expression of disgust and
the second line shows the corresponding optical flows cal-
culated between the first frame of the sequence and the last
frame (shown in the first line here). This figure illustrates
the great variability in terms of texture of several persons
having the same expression on one hand, and, on the other
hand, the similarity of the corresponding optical flows. To
deal with occlusions, some solutions in the literature try to
reconstruct the texture. In our work, we exploit the move-
ment similarity between several persons, based on optical
flows, and propose the reconstruction of the optical flows in
the occluded regions.

applications. Our solution, illustrated in Fig. 2, is a two-
stage process. The reconstruction module, takes as input an
optical flow calculated from two frames of an occluded face
and restore, using an AE, the optical flow of the occluded
parts. The recognition module takes then the restored op-
tical flow as input in order to predict the expression class.

Fig. 2: The entire process of our approach consists in three
main steps. The first step consists in calculating optical
flows between the frames of a sequence of occluded face.
The second step consists in reconstructing optical flows
corrupted by the occlusion using a trained auto-encoder.
The auto-encoder is trained using pairs of occluded and
non-occluded optical flows. The restored optical flows are
then used directly for the classification step to predict the
expression.

To evaluate the proposed solution, the difficulty encoun-
tered is the variability of the evaluation protocols used in
the literature. Indeed, the methods in the state-of-the-art are
validated using different datasets, different data splitting
protocol, and different occlusions (in terms of position, size
and texture). Thus, we propose here a clear and available
evaluation protocol to make possible a fair comparison with
our method and other methods in the future. To reproduce
the proposed protocol, the code for occlusion generation is

available on demand.
So, our proposal brings two novelties:

1) To the best of our knowledge, this is the first work
that directly reconstructs the movement (optical
flow) for facial expression recognition.

2) We propose a new and reproducible experimental
protocol with a fixed split of dataset for training and
testing, and a clear and precise occlusion generation
process.

The next section gives a review of existing methods in
the literature that handle occlusions. An overview of the
different experimental protocols (datasets, occlusions, etc)
used by researchers is then presented in Section 2. Our
method is then explained and detailed in Section 3. The
evaluation protocol and the results are presented in Section
4. And, we prove that movement reconstruction improve
expression reconstruction in presence of occlusions. Then,
we conclude in Section 5.

2 RELATED WORKS

The state-of-the-art will be addressed according three no-
tions: the methods proposed to handle occlusions, the ex-
perimental protocol used for the evaluations and the facial
expression recognition methods.

2.1 Methods for Facial Expression under Occlusion
In the literature, several methods have been proposed to
handle occlusions. These methods can be classified in two
classes: the methods that exploit the remaining visible re-
gions of the face and the methods that reconstruct the
occluded parts.

Methods that exploit the remaining visible regions of the face.
The attention is focused on the sub-regions that belong to
only the visible part of the face. Liu et al. [13] proposed a
method that divides the face in a grid of six non-overlapping
regions. A classification process is used for each region
based on Weber Local Descriptor (WLD) features and an
argmax decision fusion is applied. Nevertheless, a grid
cutting restricts the algorithm robustness to some specific
type of occlusions. Moreover, by using the decision fusion
strategy, the authors assume that the regions are completely
independent from each others i.e., no correlation between
the different facial regions to distinguish the different facial
expressions. In 2018, Dapogny et al. [4] proposed a method
that calculates features from different regions extracted from
the face. The authors also proposed an auto-encoder trained
to determine a confidence weight, which corresponds to
the occlusion rate, of each region. A weighting scheme is
then used to weight the different region features before
classification. The regions are first classified independently
then a fusion decision is performed. These different solu-
tions are based on still images and do not exploit temporal
aspects. Poux et al. [15] have hypothesized that movement
could bring more useful information and, especially, dense
movement on which a property of propagation can be
useful in the case of occlusion. To exploit this property,
they propose to build a facial framework specific to the
different partial occlusions from an initial facial framework
of twenty-five regions. The calculated facial frameworks
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are subsets of regions for each facial expression optimal to
recognize facial expressions in spite of the occlusion. These
methods are based on the manual division of the face more
or less adapted to facial expressions. These divisions are
thus not flexible enough to handle a wide range of occlu-
sions. To exploit visible regions more accurately according
to occlusions, some methods based on attention mechanism
are proposed [12], [20]. These methods focus the attention on
the most informative parts of the face and the features are
weighted according to the results of the attention map. This
mechanism is particularly adapted for the case of partial
occlusions as it automatically detects the non informative
parts which here corresponds to occluded parts.

Methods that reconstruct the occluded parts. With the recent
progress in neural networks architectures, the proposed
solutions have known different improvements. Some first
solutions have been proposed to reconstruct features accord-
ing to the visible ones [19], [22]. These first solutions mostly
reconstruct facial landmarks lost by the occlusion. This
kind of solutions are highly dependent on facial landmarks
detection. However, landmarks detection in presence of
facial occlusion remains today a challenging task [21]. To get
around this dependency, solutions propose to reconstruct
directly the texture of the face. The PCA algorithm, initially
proposed to reduce dimension is frequently used to recon-
struct faces. In the case of occlusions, RPCA has proven to
be more robust to occlusions and allows a reconstruction
of an unoccluded face. Some solutions are proposed with
an RPCA reconstruction as a first step in order to get an
unoccluded face [3]. While it is an often used solution,
RPCA tends to add some artefacts on reconstructed images
as seen in Fig. 3, these artefacts may have an impact on the
facial expressions of the persons and on the classification
process.

Fig. 3: Results of reconstruction of the face extracted from
[3] proposed by Cornejo et al. In the first column of each ex-
ample, images are extracted from MUG and JAFFE datasets.
In the second column, the images have been occluded. In
the third column, we have the resulting reconstruction from
the RPCA algorithm. Finally, the last column is obtained by
filling in the occluded parts of the face by the reconstructed
one.

Some solutions have been proposed based on neural
network architectures which is more flexible to add some
constraints in the reconstruction. A first architecture have
been proposed in 2011 by Ranzato et al. [16] to reconstruct
occluded faces thanks to an extension of a DBN algo-
rithm. Recent advances in neural network architectures have
proven their effectiveness while reducing handcrafted pro-
cesses. Among these architectures, the auto-encoder, which,
as the PCA, was initially proposed to reduce the dimension-
ality and calculate some features from an unsupervised way,
turned out to be also particularly adapted to reconstruct
corrupted images by adding a decoder. Indeed, the training
step of this kind of architectures consists in supervising
the reconstruction in order to find the most discriminative

features in the bottleneck of the architecture. Based on
this kind of architectures, GAN architectures have been
proposed in order to get a more realistic output image. A
GAN architecture is composed of two adversarial networks
: a generator which generates new data and a discriminator
initially trained to recognize false and real images. This kind
of architectures are now used in solutions to reconstruct
occluded faces [11] in use cases such as facial recognition
but are still poorly used for facial expression recognition.
Recently, Lu et al. [14] proposed a WGAN architecture
used to reconstruct partially occluded faces composed of
a generator based on an auto-encoder architecture and two
discriminators : one classical discriminator trained to distin-
guish real or face images and another trained to recognize
facial expressions. While these architectures have proven
their effectiveness, GANs are complex architectures to set-
up, require a huge amount of data to be trained and the
presence of two networks makes the stability of the entire
architecture highly complex to find.

This complexity can be explained by the fact that with
this kind of architectures, we are searching for a realistic
image, which implies a coherent texture. This coherence is
partly linked to the identity of the person and is complex to
find. Moreover, in the case of facial expression recognition,
besides this coherence of texture, the architecture has to
reconstruct the appropriate facial expression.

In summary, two categories of methods are proposed in
the literature to recognize facial expressions in the presence
of occlusions. In these two categories, dense movement is
poorly used even though it seems particularly adapted.
The similarity of the movement between different persons
tends to prove the independence of the movement from the
identity of the person. This property seems to bring a real
asset to reduce the complexity of GANs architectures by
abstracting from texture coherence in order to focus on an
information highly correlated with facial expressions. As the
coherence of the texture is not as important in the field of
movement features, the adversarial network seem to be less
adapted and the auto-encoder seems to be sufficient.

2.2 Experimental Evaluations

Evaluation protocols proposed in the literature are various
and it is, for the moment, difficult to reproduce experimental
protocols and compare results with state-of-the-art methods.
Indeed, there is a variability in terms of datasets, occlusions
and protocols.

2.2.1 Datasets
In this first part, we propose to compare the datasets used
in experimental protocols of the solutions exposed in the
previous paragraph.

Table 1 summarizes different datasets used to evaluate
methods in the literature. As seen in this table, the datasets
are various. This variety is a first barrier to compare the
effectiveness of the different methods proposed in the liter-
ature and to identify a common validation protocol.

Table 2 gives some additional information about the
mostly used datasets in the literature. In this table, we only
keep the datasets which appear at least twice in Table 1. As
CK+ is an extension of the CK dataset, we have decided
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Paper Datasets
Towner and Slater [19], 2007 (2) CK
Ranzato et al. [16], 2011 (2) CK, TFD
Liu et al. [13], 2014 (1) JAFFE
Zhang et al. [22], 2015 (2) CK, JAFFE
Dapogny et al. [4], 2018 (1) CK+, BU-4D, SFEW
Cornejo et al. [3], 2018 (2) CK+, JAFFE, MUG
Li et al. [12],2018 (1) RAF-DB, AffectNet, CK+, MMI,

Oulu-Casia, SFEW
Lu et al. [14], 2019 (2) AffectNet, RAF-DB
Poux et al. [15], 2020 (1) CK+
Wang et al. [20], 2020 (1) FERPlus, AffectNet, RAF-DB,

SFEW

TABLE 1: Datasets used to evaluate different methods to
handle occlusions in the literature and the associated cate-
gory of method. The categories correspond to : (1) : Exploita-
tion of the remaining visible regions of the face for facial
expression recognition, (2) : Reconstruction of the occluded
parts of the face for facial expression recognition.

to count only one dataset. In this table, we also report the
type of data : videos or still images. We can remark that,
because we are working on movement features, in addition
to be the most representative dataset used for evaluation
in the literature, CK+ is also the most appropriate to study
movements. In this table, we can notice that methods are
evaluated both on controlled and uncontrolled datasets.
On controlled datasets, the subjects keep their faces in
front of the camera, there is no head pose variation, a
controlled illumination, no occlusion and the expressions
are acted. Nevertheless, we can also notice that evaluations
on controlled datasets are slightly more frequent than on
uncontrolled datasets. Controlled environment is, in fact,
more appropriate to focus on the challenge of occlusions.
It, in fact, allows to have the entire control on the occlusions
studied and to ensure the results obtained are due to the
occlusion and not the data itself. To know the impact of the
occlusions it is then possible to compare the results with
those obtained on unoccluded data.

Dataset Apparitions Video sequences Controlled
CK-CK+ 7 yes yes
JAFFE 3 no yes

AffectNet 3 no no
SFEW 3 no no

RAF-DB 3 no no

TABLE 2: Comparison of the mostly used datasets in the
literature.

We propose in the next section to review the simulated
occlusions in the literature. Because CK+ is the mostly
used in the literature and the most appropriate to study
movements, we focus the analysis on papers working on
this dataset.

2.2.2 Occlusion Generation
While the datasets used to evaluate methods are various,
the CK+ is slightly more represented than others. As CK+
is a completely controlled dataset, occlusions have to be
simulated. In this section, we compare different simulations
proposed in the literature. Table 3 exposes different simu-
lations applied on CK+. As seen in this table, simulations
in the literature are various in term of localisation and

simulation of these occlusions. We can nevertheless notice
that, in spite of different sizes and localisations, occlusions
of the eyes and the mouth regions seem to be frequently
applied.

Paper Occlusion localisation Occlusion simulation
Dapogny et

al. [4]
Overlay of a noisy

pattern

Poux et al.
[15] Removal of features

Li et al. [12] Overlay of images of
objects

Cornejo et al.
[3] Overlay of black boxes

TABLE 3: Summary of different occlusion simulations on the
CK+ dataset.

To get an entire experimental protocol, we propose next
to compare the evaluation protocol used to evaluate these
methods.

2.2.3 Experimental Protocol

The previous sections show that a comparison of methods
is complex because of a variety in terms of datasets used
and occlusion simulations. In these sections, we have seen
that the CK+ dataset seems to be majoritarily used and, in
spite of the variety of occlusions, areas of the eyes and on
the mouth regions are mainly occluded. Finally, we propose
in this last part to compare the experimental protocols used
in the different papers evaluated on the CK+ dataset. Table
4 shows that, except for Cornejo et al. [3], the 10 folds cross
validation protocol seems to be a representative protocol
used in the literature.

Paper Experimental protocol
Dapogny et al. [4] Out of bag error (OOB)

Poux et al. [15] 10 folds cross validation
Li et al. [12] 10 folds cross validation

Cornejo et al. [3] 80% for training, 20% for testing. 50% of train-
ing data is occluded, 50% of testing data is
occluded

TABLE 4: Protocols applied to evaluate different methods
on the CK+ dataset.

Evaluations in the literature do not allow a fair and easy
comparison. Indeed, evaluations vary in terms of datasets,
occlusion simulations and protocols. However, we can no-
tice that the CK+ dataset seems to be mostly used in the
literature. This dataset is, in fact, an appropriate dataset as
it is a controlled dataset with no particular challenge and,
thus, allows to focus on the challenge of occlusions. More-
over, simulating occlusions allows a comparison between
the results obtained with and without occlusions as we have
ground truth images without occlusion. If we focus on the
simulation of the occlusions, we notice that the occlusions
are various in terms of localisation and simulation even if,
generally, mouth and eyes occlusions are frequently studied.
Finally, the evaluation of the CK+ dataset is frequently based
on a 10-folds cross validation protocol.
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In this paper, we propose to exploit the performance of
auto-encoders to reconstruct directly the optical flow calcu-
lated from occluded faces for facial expression recognition
by taking advantage of the similarity of the movement of the
several expressions between different persons. To evaluate
our solution, we propose a new reproducible experimental
protocol with the CK+ dataset, available occlusions of the
eyes and mouth regions and a 10-folds cross validation
protocol.

3 PROPOSED APPROACH

In this paper, we propose to take advantage of the per-
formances of generative algorithms to reconstruct occluded
facial expressions by reconstructing directly the occluded
optical flow. In order to do that, we propose a denois-
ing auto-encoder which, takes the optical flow calculated
between two occluded images as input and returns the
unoccluded flow as output. We underline the fact that, even
if generative algorithms have been used in the literature to
reconstruct face images, to the best of our knowledge, our
approach is the first to deal with the movements of the face
to perform facial expression recognition in the presence of
occlusions.

3.1 Data preparation
For our data preparation, we consider the publicly available
datasets for facial expression recognition, and the facial
occlusion approaches that are available in the literature,
to propose a more suitable testing protocol. First, we com-
bine publicly available datasets which deal with expression
recognition in the presence of occlusions. The advantage
combining several datasets offers the ability to train our
proposed approach on larger datasets. Second, we apply
occlusions on several parts of the face. Finally, we calculate
normalized optical flows.

3.1.1 Occlusions Generation
In order to cope with most of the occlusions already studied
in the literature [23], we simulate occlusions around the eyes
and the mouth, as illustrated in Fig. 4. Eyes and mouths are
important parts for facial expression recognition [9].

Fig. 4: An example of generated occlusions, applied on an
image from the CK+ dataset, and used in our evaluation.

3.1.2 Optical Flow Calculation
In order to keep as much information as possible during the
calculation of the optical flow, we calculate the flow on the
original images (i.e., we keep their initial resolution) and
we directly scale the optical flows in order to satisfy the
requirement of normalized input for the deep networks that
are used in our recognition and reconstruction steps. For
that purpose, we propose the three steps process illustrated
in Fig. 5. First, we process the images in their original sizes.

Second, we crop the face based on the positions of the
eyes and the inter pupilar distance. Third, we compute the
optical flow from the cropped faces using the Farnebäck
[6] method. We have selected the Farnebäck method to
compute optical flows as Allaert et al. [1] show that this
method is particularly adapted for facial expressions. In
order to generate normalized optical flows for all images
and to reduce the computational cost of the auto-encoder,
we resize the optical flows to a smaller size in the x and y
dimensions. The evaluation of the optimal parameter size is
covered in the evaluation section (Section 4). Each new value
of x and y is calculated based on the elements of a sliding
window in the original flow. For each coordinate (i, j), the
new value is calculated using the following equation :

resize(OF, (i, j)) =

(µOF [(bdx ∗ ic, ..., bdx ∗ (i+ 1)cd∗dxe − 1)],

µOF [(bdy ∗ ic, ..., bdy ∗ (i+ 1)cd∗dye − 1)])

(1)

where dx and dy are the coefficients between the original
and the final size (dx = origSize x/finalSize x and
dy = origSize y/finalSize y) and µ represents the av-
erage of the optical flow values in the window. origSize x
and finalSize x are the original and final widths of the
image, respectively.

dy11 dy12 ... dy1(n-1) dy1n

dy21 dy22 ... dy2(n-1) dy2n

... ... ... ... ...

dy(m-1)1 dy(m-1)2 ... dy(m-1)(n-1) dy(m-1)n

dym1 dym2 ... dym(n-1) dymn

dx’11 ... dx’1n’

... ... ...

dx’m’1 ... dx’m’n’

Neutral and apex 
faces (a)

Optical flow 
visualisation (b)

dx and dy decomposition (c)

Average pooling 
for dy (d2)

New optical 
flow 

visualisation 
(e)

Average pooling 
for dx (d1)

dx’11 ... dx’1n’

... ... ...

dx’m’1 ... dx’m’n’

dx11 dx12 ... dx1(n-1) dx1n

dx21 dx22 ... dx2(n-1) dx2n

... ... ... ... ...

dx(m-1)1 dx(m-1)2 ... dx(m-1)(n-1) dx(m-1)n

dxm1 dxm2 ... dxm(n-1) dxmn

Fig. 5: This figure illustrates the calculation process of the
normalized optical flow. The two images of Fig. 5-(a) are the
first and the last of a video sequence of the CK+ dataset
where the original images have been cropped automatically
with respect to the eyes positions and the inter pupilar
distance to only obtain the inner face region. Fig. 5-(b)
is the visualisation in the HSV space of the optical flow
calculated between the two images of Fig. 5-(a) and Fig. 5-
(c) the matrix representation of the dx and dy decomposition
which correspond respectively to the horizontal and vertical
displacements of pixels. An average pooling is applied on
these two matrices as represented in d1 and d2. In the
example, the initial matrices are mxn matrices reduced to
m′xn′ matrices. Each dx′ and dy′ corresponds to the mean
of the values in the corresponding region. A visualisation of
this reduction is shown with Fig. 5-(e) which corresponds to
a reduction of the optical flow visualised in Fig. 5-(b).

3.2 Optical Flow Reconstruction

3.2.1 Architecture

The architecture of the auto-encoder used in our approach is
composed of successive convolutional and max-pooling lay-
ers for the encoder part and convolutional and up-sampling
layers for the decoder part as illustrated in Fig. 6.
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Fig. 6: Overview of our approach: a symmetric auto-encoder
architecture processes the optical flow calculated from im-
ages of occluded faces and outputs the reconstructed optical
flow. The auto-encoder is trained by computing a loss based
on the comparison between the generated flow and the
ground truth flow. The ground truth is known by calculating
the optical flow between the same images as for the input
but without occlusion.

The proposed architecture is symmetrical, which implies
that the encoder part is inversely identical to the decoder
part. Each convolution layer of a 3x3 kernel is followed by a
ReLU and a two factor max pooling. The last convolution
of the decoder part produces the same feature channels
of input optical flow in order to get back to the initial
dimensions. After the last convolution, there is no use of
ReLU because the goal is to reproduce an optical flow which
can be composed of negative components.

In general, after each up-sampling operation, the ten-
sor goes through two successive layers of convolution to
increase the intensity. Compared to classical architectures,
only one convolution layer is used in our architecture. If we
try to build very faithfully the missing optical flow, there
is more chance to include motion discontinuities within the
estimated region that may have a negative impact on the
facial expression analysis. Whereas using a single layer, the
model reconstructs a coarser optical flow that tends to rely
heavily on a continuity of facial movement observed in the
unoccluded regions, and generates less detail to facilitate
facial expression analysis.

3.2.2 Proposed loss functions

Different loss functions have been used in order to find the
most appropriate one in order to reconstruct the optical flow,
while preserving the information of the facial expression in
order to optimize the facial expression recognition step.

MSE loss: The mean squared error (MSE) is a frequently
used loss with a denoising auto-encoder. The MSE loss is
calculated by comparing each pixel of the output of the
network with the pixel with the same coordinates in the
ground truth image.

Wing loss: The wing loss was first proposed for the task
of landmarks localisation [7]. This loss has the specificity of
paying more attention to medium and small errors, which
allows to have a more accurate prediction than with the
MSE loss. We assume that this loss should generate a more
accurate and detailed reconstruction of the optical flow since
it corrects smaller errors.

Endpoint loss: Finally, we use the endpoint loss as it is a
standard error measure for the evaluation of optical flows
[5]. Endpoint error is usually used to measure the error of
calculation of an optical flow compared to the ground truth.

3.3 Facial Expression Classification

Facial expression recognition approaches are nowadays
mostly based on deep learning approaches, and they have
proven their effectiveness and give state-of-the-art results.
Among the different architectures that are proposed in the
literature, CNN architectures seem to be the mostly used
architectures for static facial expression recognition [10]. In
order to add time, Allaert et al. [1] proposed to feed a CNN
architecture with optical flows. We propose in this paper to
build the same architecture as in [1] as it has been already
developed in the context of optical flow classification for
facial expression recognition. This architecture is not neces-
sarily the state-of-the-art architecture but, in this paper, we
do not focus on the performance of the recognition classifier
but on the ability of our method to compensate under the
effect of occlusions on the performance of the classifier.

4 EXPERIMENTAL EVALUATIONS

For our experimental evaluations, we propose, first, to anal-
yse the impact of the size of the input image to correctly
recognize facial expressions using the proposed CNN archi-
tecture. Once the optimal size has been determined, we then
propose to evaluate the entire method by analysing the im-
pact of several other meta-parameters. First, we evaluate the
impact of the loss function used to train the auto-encoder.
Second, we explore several strategies to calculate the optical
flows. Third, we explore data augmentation techniques by
combining different datasets for the training step of the
auto-encoder and we study the impact on the reconstruction
of the optical flow. Finally, when the different parameters
and training data are fixed, we compare our results with the
ones produced by the state-of-the-art methods.

4.1 Experimental protocol

In this section, we define the details of implementation for
the evaluation protocol of the facial expression recognition
and the reconstruction. In this section, we first expose the
dataset selected for the evaluation before explaining, in
one hand, the experimental protocol proposed to evaluate
the CNN architecture and, on the other hand, the entire
process including the reconstruction step. For this goal, the
reconstructed optical flows are evaluated according to the
recognition rate they can obtain with the CNN architecture.

4.1.1 Dataset
The CK+ dataset is used to evaluate our approach. The CK+
dataset is composed of 374 video sequences labelled with
6 facial expressions. The CK+ dataset has the advantage
of being completely controlled in order to focus on the
challenge of occlusion. Moreover this dataset is majoritarily
used in the literature [3], [4], [12], [15] for exploring the
challenge of occlusion and allows a comparison with other
methods.
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4.1.2 Facial Expression Recognition
The facial expression recognition is evaluated based on a
CNN architecture trained to recognize facial expressions.
The CNN is composed of three successive layers of convolu-
tion, ReLu activation and max pooling and the architecture
ends with connected layers for the classification. The loss
function used for training this CNN is the cross entropy
loss. This architecture is the one proposed by Allaert et
al. [1] which has the advantage of being evaluated directly
with optical flows for the input. The meta-parameters used
for this architecture are frequently used parameters. We are
aware that this architecture with these meta-parameters are
not necessarily the state-of-the-art ones but our goal is not
to improve CNN architectures to get the best recognition
rates but to compensate the corruption of occlusions by
reconstructing data to replace in a controlled environment.

4.1.3 Evaluation protocol
In order to evaluate the recognition step, we choose ten
folds cross validation protocol which is mostly used in the
literature [4], [12], [15]. The dataset is cut in ten stratified
folds which contains proportional number of each facial
expression compared with the original dataset. As illus-
trated in Fig. 7, the ten folds are successively used as test
fold. For each experimentation, eight folds are used to train
the network, one fold is used for validation in order to
select the model and the last fold is used for testing. This
cross validation protocol is first used to evaluate the facial
expression recognition part in order to calculate the baseline
without occlusion and to save the models used for the next
experimentations. In a second part, the same protocol with
the same folds are used to train the auto-encoder used
for the reconstruction step. Eight folds are used to train
the auto-encoder, one fold is used to validate the model
and the last fold is used to test. For this last test, the
images from the testing fold are reconstructed by the auto-
encoder and the recognition rate of the reconstructed fold
is calculated according to the corresponding CNN model
previously trained.

Fig. 7: Ten folds cross protocol used to evaluate our method.
For each experimentation, eight folds are used for training,
one fold for validation and the last one for testing. The final
accuracy is the mean over the number of 10-fold iterations.
We also use the same partitions for both reconstruction and
recognition.

Experimental protocol for the reconstruction step For the
evaluation of the reconstruction step, an occlusion O is
applied on all images of CK+. As illustrated in Fig. 7, we
train the network with eight folds and validate on the last
one. We ensure with this protocol to learn the auto-encoder
and the CNN architectures on the same data for each exper-
imentation. The test fold is also the same to ensure that the

evaluation of the reconstructed data has not been already
seen in the training step of the CNN model. We evaluate
the entire process once for each fold to average the results
obtained on the ten folds. After each epoch, the network
is evaluated on the validation fold and the result model is
selected according to the best results on the validation fold.
The result model is then applied on the test fold.

Experimental protocol for expression recognition For the
evaluation, The split in fold used to evaluate the expression
recognition is used with the same process : eight folds are
used to train the CNN, one fold is used for validation and
the model is selected according to the best recognition rate
on the validation fold. The last fold is used for testing.
Successively, the folds are changed to test and validate on
the ten different folds. The reported accuracy is the mean
accuracy of the ten testing folds.

4.2 Expression recognition without reconstruction

The recognition step is first evaluated in order to find an
appropriate compromise between the size of the input and
the results of the recognition network. Indeed, smaller the
image is, smaller is the number of meta-parameters for
the auto-encoder for the reconstruction step. Thus, we are
searching for the minimal size of input image required to
keep optimal recognition rates. Besides, this first evaluation
allows to give baselines in order to get the results without
occlusion in one hand, and the results obtained with occlu-
sions without using the proposed reconstruction method.

In this section, we evaluate the results obtained for sev-
eral sizes of optical flows. We have evaluated the recognition
performances on a wide range of input sizes : 24x24, 48x48,
64x64, 96x96 and 128x128. In order to have accurate results
with a reduced impact of random initialisation, we evaluate
each size on 100 different seeds. The results are obtained
by calculating the median and the average results of the
100 scores. Once the optimal size is found, we fix the seed
in order to train a CNN which allows a recognition rate
representative with average results.

4.2.1 Evaluation of expression recognition rate according
to different sizes
The recognition architecture is evaluated with different
input sizes for the optical flow according to the above
mentioned protocol. The results obtained for this evaluation
are presented in Fig. 8.

As seen in this figure, the normalized optical flow give
enough information for the architecture to correctly recog-
nize the expressions with a small size. The best results are
obtained between sizes of 64x64 and 96x96. According to
the results presented in this graph, we can consider that a
higher size does not seem to give more information but the
input optical flow is more complex and more training data
is needed, which can explain the fact that the results are
decreasing.

According to these results, 64x64 seems to be a reason-
able size. The seed is then fixed for all the following ex-
perimentations by choosing a seed which allows an average
result for the recognition rate. Once the seed is fixed, the
CNN is trained and this trained model is used to evaluate
the reconstruction step according to the different studied
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Fig. 8: Recognition rate of the CNN architecture in terms
of the input size (after reduction of the size of the optical
flow). This evaluation is conducted on 100 different seeds.
The graph on the left shows the average and the median
of those 100 experiments. The graph on the right shows the
box plots in terms of the sizes of the optical flow. The flier
points are the results out of the whiskers.

parameters. Based on these criteria, the baselines with and
without occlusions can be calculated. These baselines are
presented in Table 5. To calculate these scores, the CNN
has been trained and validated on non-occluded faces and
tested on one hand with non-occluded faces and, on the
other hand, on occluded faces. These scores allow us to
compare the results obtained with and without the proposed
method to reconstruct the optical flows.

TABLE 5: Baseline calculated from non-occluded faces and
different occlusions with optical flow of size 64x64.

92,8% 73,8% 71,1% 46,8%

4.3 Expression recognition with reconstruction
In the first part of the evaluation, we have fixed the in-
put optical flow image size and the seed used for the
expression recognition step. This step gives us a baseline
which indicates the results we can obtain without occlusion
and the results obtained with a training on non-occluded
faces and testing on occluded faces. In this section, we
evaluate the reconstruction step by comparing the results
obtained with reconstructed optical flows with the above-
mentioned results. In order to do that, we first have to find
optimal parameters for the entire process. After explaining
the experimental protocol for these evaluations, we evaluate
the different above-mentioned parameters. When all the
optimal parameters are fixed, the results are compared with
state-of-the-art results.

4.3.1 Evaluation of the Proposed method w.r.t. to different
loss functions
Different loss functions have been proposed to train the
auto-encoder to reconstruct the corrupted optical flows :

• the MSE loss which is a mostly used loss function,
• the wing loss which pays more attention to small

errors and should give more accurate results,
• the endpoint loss which is a standard error measure

for the evaluation of optical flows.

These three loss functions are compared in this section
to find the most appropriate for the proposed auto-encoder.
The above-mentionned experimental protocol is applied
with the CK+ dataset and we consider optical flows calcu-
lated between the first and the last frame of each sequence.
Tables 6 and 7 present the results by respectively presenting
the accuracy of expression recognition on reconstructed
optical flows and the average gain for the several occlusions
compared to the results without reconstruction. As observed
on those tables, on average, the endpoint seem to be more
adapted to this context. For the following experiments, we,
thus, fix the endpoint loss and give only results with this
loss.

TABLE 6: Comparison of the accuracy for expression recog-
nition obtained with reconstructed optical flow according to
different loss functions for training the reconstruction auto-
encoder.

Eyes occ. Mouth occ. Lower part occ.
MSE 86.2% 74.0% 67.3%
Wing 86.1% 79.5% 69.0%

EndPoint 87.1% 80.1% 70.2%

TABLE 7: Comparison of the loss/gain obtained for ex-
pression recognition obtained with reconstructed optical
flow according to different loss functions for training the
reconstruction auto-encoder.

Eyes occ. Mouth occ. Lower part occ. Average gain
MSE +12.4 +2.9 +20.5 +11.9
Wing +12.3 +8.4 +22.2 +14.3

EndPoint +13.3 +9.0 +23.4 +15.2

4.3.2 Evaluation of the Proposed method w.r.t. skip con-
nections
We propose to add skip connections to the network to merge
the information from the previous tensor and the oversam-
pling tensor, which allows the details of the previous layers
to be used completely. Indeed, some available information
in the visible regions of the face may be lost in the bottleneck
of the network. For this goal, we propose to add skip
connections to reuse some features from the encoder. In
order to analyze the impact of these connection, we propose
to study the different possible connection combinations to
highlight the importance of these connections, illustrated in
Fig. 9, and the importance of their role in the reconstruction
of the optical flow for the recognition of facial expressions.

Fig. 9: Illustration of the different skip connections studied.

Inspired by the U-net architecture [17], rather than using
element addition to merge the information from the pre-
vious tensor and the oversampling tensor, our architecture
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concatenates them respecting the channel dimension in the
decoder part. This recalls the details of the previous layers
in the reconstruction process.

Table 8 shows that skip connections have a positive
impact on the final results. These results tend to show that
skip connections allow a more detailed reconstruction of the
optical flows. This table also shows that skip connections
on all layers seems to be the most appropriate. For the
following experiments, the architecture is fixed by adding
skip connections on the three layers.

Eyes occ. Mouth occ. Lower part occ.
/ 87.1% 80.1% 70.2%
1 88.4% 81.1% 71.1%
2 89.3% 81.8% 71.9%
3 89.4% 81.0% 70.8%

1+2 88.9% 82.6% 71.4%
1+3 89.3% 82.5% 71.5%
2+3 89.5% 82.6% 72.1%

1+2+3 89.6% 83.1% 72.5%

TABLE 8: Impact of skip connections in the auto-encoder
performances. The results correspond to the final facial
expression recognition rate after using the entire process.
The different skip connections correspond to the numbers
illustrated in Fig. 9

4.3.3 Evaluation of the Proposed method w.r.t. the optical
flow computation strategy
The input data of the auto-encoder is given by optical
flows calculated between two images. We have selected the
Farnebäck method to compute optical flows as Allaert et
al. [1] show that this method is particularly adapted for
facial expressions. In order to ensure sufficient varieties of
optical flow intensities on different expressions, we propose
to study and compare three ways of calculating the optical
flows for each video sequence illustrated in Fig. 10. Let prvs
and next two frames used to calculate the optical flow and
n the number of frames in a sequence S.

• Apex flow: The first proposition, represented on line
(a) of the Fig. 10, calculates only one optical flow
for each sequence S with prvs the first frame of the
sequence and next the last frame.

• All flows : The second solution to calculate the op-
tical flows of a sequence S, represented on line (b) of
Fig. 10, calculates all the (prvs,next) where prvs is a
tth frame and next the (t+ 1)th for t ∈ [1, n].

• Flows and apex: The third proposition is a combina-
tion of the two precedent solutions. This proposition
allows a training containing flows with small and
important intensities.

• Mid flows: The last proposition, illustrated on line
(c) of Fig.10, calculates all the possible optical flows
between each prvs and next with prvs the tth where
t ∈ [1, n− 1] and next ∈ [max(t+ 1, n/2), n]

Table 9 gives the results obtained with the endpoint
loss according to the several strategies. As we can see in
this table, although apex generates few optical flows, it is
already a good strategy to train the auto-encoder. We can
also notice that allflows strategy is not adapted, which
can be totally explained by the fact that this strategy only

Fig. 10: Five ways of calculating the optical flows are pro-
posed. The first line illustrates a part of a video sequence
from the CK+ dataset. Each frame has been numbered
from 1 to 5 to facilitate the comprehension. The next lines
of the figure illustrate the different strategies. Under each
visualisation of optical flow, the number of the frames used
to compute the flow written as (prvs)-(next). (a) The apex
strategy only calculates the optical flow between the first
and the last frame of the sequence. (b) The three frames
strategy considers the first frame and the three last frames
to compute different optical flows. This strategy aims to
add flows by considering the last three frames as three apex
frames. (c) The all flows strategy computes all consecutive
flows. The flows and apex strategy which combines the
optical flows calculated with the strategies (a) and (c). (d)
The midflows strategy calculates all possible flows where
each next frame of the couple (prvs, next) is chosen from the
second half part of the sequence.

generates optical flow with small movements as it con-
siders consecutive frames. However, the facial expression
recognition step considers the entire movement calculated
between the first and the last frame of the sequence, which
is a much bigger movement. Flowsandapex gives higher
scores than allflows as it also considers big movements
between first and last frame. Nevertheless, all the small
movements added with this strategy only reduce the ability
of the auto-encoder to reconstruct big movements. Finally,
midflows strategy seem to be the most appropriate with
the highest scores for each occlusion. This last observation
is easily understandable as this strategy generates the most
important amount of optical flows for training. Moreover,
this strategy makes sure that the intensity of the movement
is not too small by avoiding the first middle part of the video
sequence.

TABLE 9: Impact of the several strategies according to the
training input for the studied occlusions.

Eyes occ. Mouth occ. Lower part occ.
Apex flow 89.6% 83.1% 72.5%
Three frames 90.2% 83.6% 74.4%
All flows 85.5% 77.6% 66.8%
Flows and apex 89.6% 79.1% 71.8%
Mid flows 91.1% 85.9% 75.2%
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4.3.4 Performances comparison with the literature
We compare our approach to the state-of-the-art methods,
and attempt to explain why movement reconstruction im-
proves expression recognition in the presence of occlusions.
In the evaluation section (Sec. 4), the different proposed
parameters were fixed by taking the optimal ones. Here,
the endpoint loss is used and the midflows strategy is kept.
With these parameters fixed, we can therefore compare the
results of the proposed approach with other methods.

Table 10 compares the results obtained using our recon-
struction step with other state-of-the-art methods which has
been evaluated on the CK+ dataset. In this table, the best
performance is highlighted in bold and the second best is
underlined. In order to quantify the impact of occlusion on
the performance of the different approaches, the gap be-
tween the baseline ‘without occlusion’ and in the presence of
different types of occlusions is reported. To easily compare
the different approaches, the cumulative gap obtained from
the ‘eyes occlusion’ and the ‘mouth occlusion’ is computed.
One can notice from the table that the behavior is the same
for all methods : occlusion of the eyes has less impact on
the performance than the occlusion of the mouth regions.
We can especially notice that the results achieved with
our method are very competitive. Indeed, our approach
achieves the second best performance for the eyes occlusion
and the best results for mouth and ‘lower part’ occlusions
which have the greatest impact on facial expression recog-
nition. The results obtained with our approach with the
lower part occlusion (a more important area of the face) are
competitive with occlusions of the mouth of the state-of-the-
art methods.

TABLE 10: Comparison of the results of our proposed
method and the state-of-the-art results on the CK+ dataset
for eyes, mouth and lower part occlusion. This table illus-
trates the impact of different types of occlusions on the
performance of different techniques, and shows the gap in
performance between ‘no occlusion’ and different types of
occlusion. A cumulative gap of ‘eyes and mouth’ occlusions
is also shown in the fourth row of the table to easily compare
the performance of the different approaches.

Methods No occ. Eyes occ. Mouth occ. Gap Lower part occ.
Huang et al. 93.2% 93% 73.5%
[8] -0.2% -19.7% -19.9% -
Dapogny et al. 93.4% 76% 67.1%
[4] -17.4% - 26.3% -43.7% -
Poux et al. 91.3% 88.8% 79% 73.4%
[15] -2.5% -12.3% -14.8% -17.9%

Our method 92.8% 91.1% 85.9% 75.2%
-1.7% -6.9% -8.6% -17.6%

The difference in performance may be explained by
the features on which these different approaches are based
(e.g., static or dynamic). Indeed, in addition to the use of
more complex occlusions based on salt and pepper boxes,
Dapogny et al. [4] proposed an approach based on static
images which may explain the gap obtained with occlusions
because of the loss of the temporal information. Huang et
al. [8] approach uses texture and shape dynamic features
which can explain the fact that the solution is more robust

to occlusions thanks to the temporal information. Neverthe-
less, the features proposed by Huang et al. are not based
on dense movements and the remaining information on the
cheeks, when the mouth is occluded, may not be sufficient
as the cheeks are not textured. Moreover, in Poux et al. [15]
a solution based on dense movements using an optical flow
descriptor was proposed, which allows to exploit the prop-
erty of propagation of movements and can explain the gain
obtained, especially under mouth occlusion. The important
difference of the proposed approach with the one proposed
in Poux et al. (which also holds for the case of the two
other methods) is that, these three solutions rely on a sub-
region approach which focuses its attention on the visible
regions, and gives less importance to the occluded parts.
The difference between the results of our approach and
especially the one of Poux et al. [15] (which is also based on
optical flow) may be explained by the fact that our approach
takes advantage of all visible parts for reconstruction, and
does not only rely on some of the visible regions of the face.
Moreover, our solution, which is based on the movement
(by reconstructing optical flows), exploits the property of
similarity of the movement between different persons.

These results show the importance of the reconstruction
of the optical flow to handle occlusions for facial expres-
sion recognition. We can also notice that the results of our
approach, especially for eyes occlusion, may be improved.
In this paper, we proposed a basic architecture based on
an auto-encoder, which can easily be improved with a more
complex architecture. Moreover, this approach relies on a re-
construction trained with the loss between the reconstructed
optical flow and the ground truth optical flow, calculated on
images without occlusion, while the goal is to classify facial
expression under occlusion. The solution can be improved
by modifying the loss in order to ensure that the information
about the facial expression is preserved. In this case, a less
qualitative reconstruction may be more informative if the
information about the expression is well reconstructed.

There is a caveat to the above comparisons and justi-
fication in terms of training and testing protocols that are
adopted by the different approaches, and which do not lead
to a totally fair and impartial comparison. First, Huang et al.
and Dapogny et al. evaluated their approaches on 8 facial
expressions, including neutral and contempt, while we are
only using 6 facial expressions. Second there is a difference
between approaches in the split of the datasets into training
and testing datasets. Indeed, Dapogny et al. evaluated their
approach with an Out of Bag protocol, Huang et al. used
a Leave One Subject Out method and we use a 10-folds
cross validation. We believe that establishing a clear protocol
for occlusion generation and evaluation, as presented in
this work, will support finer and fairer comparisons in the
future.

5 CONCLUSION

In this paper, we propose a novel approach to recognize
facial expressions in presence of partial facial occlusions.
The proposed approach consists in reconstructing directly
calculated optical flows corrupted by a partial occlusion
before using these reconstructed optical flows for the recog-
nition step. In order to do that, we propose a denoising
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auto-encoder trained to reconstruct corrupted optical flow
by using a loss which compares the reconstruction with
the ground truth optical flow calculated on images without
occlusions. To find the best way to reconstruct optical flows,
we proposed to compare different loss functions and differ-
ent ways to calculate the training optical flows. The several
proposed studies have shown that the endpoint loss and the
midflows strategy which considers a wide range of intensity
of optical flows seem to be the more suitable choices for this
particular task. When comparing the obtained results with
state-of-the-art results, we can see that the proposed method
is really competitive. In a future work, we want to study the
impact of dynamic occlusions on this method in order to
propose a solution which takes into account these kind of
more natural occlusions. To go further, our future work will
be to study occlusions caused by head pose variations. In
this case, in addition to the loss of movement behind the
occlusion there is a noisy movement caused by the head.
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