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The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems. This problem has remained unsolved for many years. The Robin criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < e γ ×n×log log n holds for all natural numbers n > 5040, where σ(x) is the sumof-divisors function and γ ≈ 0.57721 is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if the inequality q≤q n q q-1 > e γ × log θ(q n ) is satisfied for all primes q n > 2, where θ(x) is the Chebyshev function. Using both inequalities, we show some arguments in favor of the Riemann hypothesis is true.

Introduction

In mathematics, the Chebyshev function θ(x) is given by θ(x) = q≤x log q where q ≤ x means all the prime numbers q that are less than or equal to x. Let N n = 2 × 3 × 5 × 7 × 11 × • • • × q n denotes a primorial number of order n such that q n is the n th prime number. Thus, θ(q n ) = log N n . We define a sequence based on this function: Definition 1.1. For every prime number q n , we define the sequence of real numbers:

X n = q≤q n q+1 q
log θ(q n ) .

We use this limit superior, Theorem 1.2. [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

lim sup n→∞ X n = e γ × 6 π 2 .
Say Nicolas(q n ) holds provided q≤q n q q -1 > e γ × log θ(q n ).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The importance of this inequality is:

Theorem 1.3. Nicolas(q n ) holds for all prime numbers q n > 2 if and only if the Riemann hypothesis is true [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF].

As usual σ(n) is the sum-of-divisors function of n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]: The importance of this inequality is:

Theorem 1.4. Robins(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]. If the Riemann hypothesis is false, then there are infinitely many natural numbers n > 5040 such that Robins(n) does not hold [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF].

It is known that Robins(n) holds for many classes of numbers n. We recall that an integer n is said to be square free if for every prime divisor q of n we have q 2 ∤ n [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

Theorem 1.5. Robins(n) holds for all natural numbers n > 5040 that are square free [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

Let q 1 = 2, q 2 = 3, . . . , q m be the first m consecutive primes, then an integer of the form m i=1 q a i i with a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0 is called an Hardy-Ramanujan integer [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Based on the theorem 1.4, we know this result: Theorem 1.6. If the Riemann hypothesis is false, then there exist infinitely many natural numbers n > 5040 which are an Hardy-Ramanujan integer and Robins(n) does not hold [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

We define H = γ -B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [START_REF] Mertens | Ein Beitrag zur analytischen Zahlentheorie[END_REF]. For all real numbers x ≥ 2, the function u(x) is defined as follows

u(x) = q>x log( q q -1 ) - 1 q .
For all real numbers x > 1, we define:

δ(x) =         q≤x 1 q -log log x -B         . 2 
Definition 1.7. We define another function:

ϖ(x) =         q≤x 1 q -log log θ(x) -B        
for all real numbers x ≥ 3.

Putting all together we provide some arguments in favor of the Riemann hypothesis is true.

Known Results

We know from the constant H, the following formula:

Theorem 2.1. [1]. q log( q q -1 ) - 1 q = γ -B = H.
We know this property for the Chebyshev function:

Theorem 2.2. [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF].

lim x→∞ θ(x) x = 1.
Mertens second theorem states that:

Theorem 2.3. [4]. lim x→∞ δ(x) = 0.
We know these properties for the function f (n):

Theorem 2.4. [START_REF] Hertlein | Robin's inequality for new families of integers[END_REF]. Let m i=1 q a i i be the representation of n as a product of primes q 1 < • • • < q m with natural numbers as exponents a 1 , . . . , a m . Then,

f (n) =        m i=1 q i q i -1        × m i=1        1 - 1 q a i +1 i        .
Theorem 2.5. [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. For all natural numbers n > 1:

f (n) < q|n q q -1 .
We know these results for the Riemann zeta function:

Theorem 2.6. [START_REF] Edwards | Riemann's Zeta Function[END_REF].

∞ k=1 1 1 -1 q 2 k = ∞ k=1 q 2 k q 2 k -1 = ζ(2) = π 2 6 .
Theorem 2.7. [START_REF] Edwards | Riemann's Zeta Function[END_REF]. For a ≥ 1:

q 1 - 1 q a+1 = 1 ζ(a + 1)
.

Finally, we know that:

Theorem 2.8. [START_REF] Nicolas | Petites valeurs de la fonction d'Euler[END_REF]. For all real numbers x ≥ 2:

0 < u(x) ≤ 1 2 × (x -1)
.

Ancillary lemmas

The following is a key lemma. It gives an upper bound on f (n) that holds for all natural numbers n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for all natural numbers n. Further the bound only uses the primes that divide n and not how many times they divide n. Lemma 3.1. Let n > 1 and let all its prime divisors be q

1 < • • • < q m . Then, f (n) < π 2 6 × m i=1 q i + 1 q i .
Proof. Putting together the theorems 2.5 and 2.6 yields the proof:

f (n) < m i=1 q i q i -1 = m i=1          q i + 1 q i × 1 1 -1 q 2 i          < π 2 6 × m i=1 q i + 1 q i .
The following is another key lemma.

Lemma 3.2.

There exists a natural number N such that X n < e γ ×6 π 2 + ε for all natural numbers n > N and for a positive real number ε < 6 π 2 . Only a finite number of elements of the sequence are greater than e γ ×6 π 2 + ε (this could be an empty set). Proof. The limit superior of a sequence of real numbers y n is the smallest real number b such that, for any positive real number ε, there exists a natural number N such that y n < b + ε for all natural numbers n > N. Only a finite number of elements of the sequence are greater than b + ε (this could be an empty set). Therefore, this is a consequence of the theorem 1.2. This is also a helpful lemma.

Lemma 3.3. q 1 q -log(1 + 1 q ) = log( π 2 6 ) -H. Proof. If we add H to q 1 q -log(1 + 1 q )
then we obtain that

H + q 1 q -log(1 + 1 q ) = H + q 1 q -log( q + 1 q ) = q log( q q -1 ) - 1 q + q 1 q -log( q + 1 q ) = q log( q q -1 ) -log( q + 1 q ) = q log( q q -1 ) + log( q q + 1 ) = q log( q 2 (q -1) × (q + 1) ) = q log( q 2 (q 2 -1) ) = log( π 2 6 ) 
according to the theorems 2.1 and 2.6. Therefore, the proof is done.

A Simple Case

We can easily prove that Robins(n) is true for certain kind of numbers:

Lemma 4.1. Robins(n) holds for all natural numbers n > 5040 when q ≤ 5, where q is the largest prime divisor of n.

Proof. Let n > 5040 and let all its prime divisors be q 1 < • • • < q m ≤ 5, then we need to prove

f (n) < e γ × log log n that is true when m i=1 q i q i -1 ≤ e γ × log log n
according to the theorem 2.5. For the prime divisors

q 1 < • • • < q m ≤ 5, m i=1 q i q i -1 ≤ 2 × 3 × 5 1 × 2 × 4 = 3.75 < e γ × log log(5040) ≈ 3.81.
For all natural numbers n > 5040, we note that e γ × log log(5040) < e γ × log log n and therefore, the proof is complete when q 1 < • • • < q m ≤ 5.

The Function ϖ(x)

Lemma 5.1. The inequality ϖ(p) > u(p) is satisfied for a prime number p ≥ 3 if and only if Nicolas(p) holds.

Proof. We start from the inequality:

ϖ(p) > u(p)
which is equivalent to

        q≤p 1 q -log log θ(p) -B         > q>p log( q q -1 ) - 1 q .
We add the following formula to the both sides of the inequality,

q≤p log( q q -1 ) - 1 q
and due to the theorem 2.1, we obtain that

q≤p log( q q -1 ) -log log θ(p) -B > H because of H = q≤p log( q q -1 ) - 1 q + q>p log( q q -1 ) - 1 q and q≤p log( q q -1 ) = q≤p 1 q + q≤p log( q q -1 ) - 1 q .
We distribute it and remove B from the both sides:

q≤p log( q q -1 ) > γ + log log θ(p) since H = γ -B.
If we apply the exponentiation to the both sides of the inequality, then we have that

q≤p q q -1 > e γ × log θ(p)
which means that Nicolas(p) holds. The same happens in the reverse implication.

Lemma 5.2. The Riemann hypothesis is true if and only if the inequality ϖ(p) > u(p) is satisfied for all prime numbers p ≥ 3.

Proof. This is a direct consequence of theorems 1.3 and 5.1.

Lemma 5.3. lim x→∞ ϖ(x) = 0.
Proof. We know that lim x→∞ ϖ(x) = 0 for the limits lim x→∞ δ(x) = 0 and lim x→∞ θ(x)

x = 1. In this way, this is a consequence from the theorems 2.2 and 2.3.

Inequalities on Hardy-Ramanujan integers

Lemma 6.1. Let m i=1 q a i i be the representation of an Hardy-Ramanujan integer n > 5040 as a product of the first m primes q 1 < • • • < q m with natural numbers as exponents a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0. If Robins(n) does not hold, then Nicolas(q m ) holds indeed.

Proof. When Robins(n) does not hold, then

f (n) ≥ e γ × log log n.
Let's assume that Nicolas(q m ) does not hold as well. Consequently,

q≤q m q q -1 ≤ e γ × log log N m .
According to the theorem 2.5,

e γ × log log N m ≥ q≤q m q q -1 > f (n) ≥ e γ × log log n.
However, this implies that N m > n which is a contradiction since n > 5040 is an Hardy-Ramanujan integer. then Nicolas(q n ) does not hold.

Proof. If we have the inequality

X n ≤ e γ × 6 π 2 then this is equivalent to q≤q n q + 1 q ≤ e γ × 6 π 2 × log θ(q n ).
If we multiply the both sides by π 2 6 , so

π 2 6 × q≤q n q + 1 q ≤ e γ × log θ(q n ).
We use that theorem 2.6 to show that

π 2 6 × q≤q n q + 1 q >         q≤q n q 2 q 2 -1         × q≤q n q + 1 q .
Besides,

        q≤q n q 2 q 2 -1         × q≤q n q + 1 q = q≤q n q q -1 because of q q -1 = q 2 q 2 -1 × q + 1 q .
Consequently, we obtain that

q≤q n q q -1 ≤ e γ × log θ(q n )
and therefore, Nicolas(q n ) does not hold.

Main Insight

The next lemma is a main insight.

Lemma 8.1. Let π 2 6 × log log n ′ ≤ log log n for some natural number n > 5040 such that n ′ is the square free kernel of the natural number n. Then Robins(n) holds.

Proof. Let n ′ be the square free kernel of the natural number n, that is the product of the distinct primes q 1 , . . . , q m . By assumption we have that

π 2 6 × log log n ′ ≤ log log n.
For all square free n ′ ≤ 5040, Robins(n ′ ) holds if and only if n ′ {2, 3, 5, 6, 10, 30} [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Robins(n) holds for all natural numbers n > 5040 when n ′ ∈ {2, 3, 5, 6, 10, 15, 30} due to the lemma 4.1. When n ′ > 5040, we know that Robins(n ′ ) holds and so f (n ′ ) < e γ × log log n ′ because of the theorem 1.5. By the previous lemma 3.1:

f (n) < π 2 6 × m i=1 q i + 1 q i .
Suppose by way of contradiction that Robins(n) fails. Then

f (n) ≥ e γ × log log n. We claim that π 2 6 × m i=1 q i + 1 q i > e γ × log log n.
Since otherwise we would have a contradiction. This shows that

π 2 6 × m i=1 q i + 1 q i > π 2 6 × e γ × log log n ′ . 8 Thus m i=1 q i + 1 q i > e γ × log log n ′ ,
and

m i=1 q i + 1 q i > f (n ′ ),
This is a contradiction since f (n ′ ) is equal to

(q 1 + 1) × • • • × (q m + 1) q 1 × • • • × q m
according to the formula f (x) for the square free numbers [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF].

Pros for the Riemann Hypothesis

Theorem 9.1. The Riemann hypothesis is possibly true.

Proof. Let m i=1 q a i i be the representation of a sufficiently large Hardy-Ramanujan integer n > 5040 as a product of the first m primes q 1 < • • • < q m with natural numbers as exponents a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0. We claim that for every sufficiently large Hardy-Ramanujan integer n > 5040, then Robins(n) could always hold. Suppose that Robins(n) does not hold and so, the Riemann hypothesis would be false. Hence,

f (n) ≥ e γ × log log n.
We use that theorem 2.4,

              ≥ e γ × log log n log log N m because of log log N m = log θ(q m )
, where N m is the primorial number of order m. We know that X m ≤ e γ ×6 π 2 is false according to the lemmas 6.1 and 7.1. From the lemma 3.2, we know that there exists a natural number N such that X m < e γ ×6 π 2 + ε for all natural numbers m > N and for a positive real number ε < 6 π 2 . Moreover, only a finite number of elements of the sequence are greater than e γ ×6 π 2 + ε (this could be an empty set). Under our assumption, there exist infinitely many Hardy-Ramanujan integers n > 5040 such that Robins(n) does not hold and X m < e γ ×6 π 2 + ε. In addition, q m cannot have an upper bound under our assumption. In general, if q m would have an upper bound, then our assumption fails as a consequence of the lemma 8.1. In this way, we obtain that

       m i=1 q 2 i q 2 i -1        × ( e γ × 6 π 2 + ε) × m i=1        1 - 1 q a i +1 i        ≥ e γ × log log n log log N m
which is the same as

       m i=1 q 2 i q 2 i -1        × 6 π 2 × (e γ + c) × m i=1        1 - 1 
q a i +1 i        ≥ e γ × log log n log log N m
for a sufficiently small positive value of c = ε × π 2 6 . That would be equivalent to

        q>q m q 2 -1 q 2         × (e γ + c) × m i=1        1 - 1 
q a i +1 i        ≥ e γ × log log n log log N m .
Since n is an Hardy-Ramanujan integer, then

        q>q m q 2 -1 q 2         × m i=1        1 - 1 q a i +1 i        < q 1 - 1 q a 1 +1 = 1 ζ(a 1 + 1)
because of the theorem 2.7, where a 1 is the highest exponent such that 2 a 1 | n. Therefore,

(e γ + c) ζ(a 1 + 1) > e γ × log log n log log N m
for a sufficiently small positive value of 0 < c < 1. However, this could be false for a sufficiently small positive value of ε < 6 π 2 that we could choose, where c = ε × π 2 6 would be a very small positive value as well. In addition, we know that log log n log log N m > 1 due to the theorem 1.5. Furthermore, from the paper [START_REF] Hertlein | Robin's inequality for new families of integers[END_REF], we know that Robins(n) holds for all natural numbers n > 5040 when

a 1 > 1 log 2 × (log(2 -a 1 +19 × n)) 1048576 1048575 -log(2 -a 1 × n) .
In conclusion, for every sufficiently large Hardy-Ramanujan integer n > 5040, then Robins(n) could always hold. By contraposition, the Riemann hypothesis is possibly true, because of the theorems 1.4 and 1.6.

Theorem 9.2. The Riemann hypothesis is possibly true.

Proof. We claim that for every sufficiently large Hardy-Ramanujan integer n > 5040, then Robins(n) could always hold. Let m i=1 q a i i be the representation of a sufficiently large Hardy-Ramanujan integer n > 5040 as a product of the first m primes q 1 < • • • < q m with natural numbers as exponents a 1 ≥ a 2 ≥ • • • ≥ a m ≥ 0. Suppose that Robins(n) does not hold and so, the Riemann hypothesis would be false. Hence,

f (n) ≥ e γ × log log n.
We use that theorem 2.4,

       1 q -log(1 + 1 q ) - q>q m 1 q -log(1 + 1 q ) + log        m i=1 ( q a i +1 i q a i +1 i -1 )        ≤ ϖ(q m ) -H which is log( log log n log log N m ) -log        m i=1 q 2 i q 2 i -1        - q>q m 1 q -log(1 + 1 q ) + log( π 2 6 ) + log        m i=1 ( q a i +1 i q a i +1 i -1 )        ≤ u(q m ) + ε
due to the definition 1.7 and the theorem 2.1 with the lemmas 5.1, 5.3, 6.1 and 3.3, where ε = ϖ(q m )u(q m ) could be a sufficiently small positive real number that goes to 0 when q m tends to infinity. Certainly, we would have that 1) according to the theorem 2.8 and the lemma 5.3. Actually, q m cannot have an upper bound under our assumption, so the positive value ε gets smaller and smaller as the chosen Hardy-Ramanujan integer n grows. In general, if q m would have an upper bound, then our assumption fails as a consequence of the lemma 8.1: our assumption is that there would be infinitely many natural numbers n > 5040 which are an Hardy-Ramanujan integer and counterexample of the Robin inequality. We know that

lim m→∞ ϖ(q m ) -u(q m ) = 0 because of lim m→∞ ϖ(q m ) = 0 and lim m→∞ u(q m ) = lim m→∞ 1 2 × (q m -1) = 0 since 0 < u(q m ) ≤ 1 2×(q m -
u(q m ) + q>q m 1 q -log(1 + 1 q ) + log        m i=1 q 2 i q 2 i -1        = q>q m log( q q -1 ) - 1 q + q>q m 1 q -log(1 + 1 q ) + log        m i=1 q 2 i q 2 i -1        = q>q m log( q q -1 ) -log(1 + 1 q ) + log        m i=1 q 2 i q 2 i -1        = q>q m
log( q q -1 ) + log( q q + 1 ) + log

       m i=1 q 2 i q 2 i -1        = q>q m log( q 2 q 2 -1 ) + log        m i=1 q 2 i q 2 i -1        = q log( q 2 q 2 -1 )
= log( π 2 6 ) using the theorem 2.6. It is enough to distribute and remove the value of log( π 2 6 ) from the both sides to show that log( log log n log log N m ) + log

       m i=1 ( q a i +1 i q a i +1 i -1 )        ≤ ε which is equivalent to ( log log n log log N m ) × m i=1        q a i +1 i q a i +1 i -1        ≤ e ε .
However, this could be false for a sufficiently small positive value of ε, since we know that ε tends to 0 as n grows. In addition, we know that log log n log log N m > 1 due to the theorem 1.5. In conclusion, for every sufficiently large Hardy-Ramanujan integer n > 5040, then Robins(n) could always hold. By contraposition, the Riemann hypothesis is possibly true, because of the theorems 1.4 and 1.6.

  d|n d where d | n means the integer d divides n and d ∤ n signifies that the integer d does not divide n. Define f (n) to be σ(n) n . Say Robins(n) holds provided f (n) < e γ × log log n.

7 .

 7 When the Nicolas inequality may fail Lemma 7.1. If some prime number q n > 2 complies with X n ≤ e γ × 6 π 2
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