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Abstract. Bias correction and statistical downscaling are now regularly applied to climate simulations to make
then more usable for impact models and studies. Over the last few years, various methods were developed to
account for multivariate – inter-site or inter-variable – properties in addition to more usual univariate ones.
Among such methods, temporal properties are either neglected or specifically accounted for, i.e. differently from
the other properties. In this study, we propose a new multivariate approach called “time-shifted multivariate bias
correction” (TSMBC), which aims to correct the temporal dependency in addition to the other marginal and
multivariate aspects. TSMBC relies on considering the initial variables at various times (i.e. lags) as additional
variables to be corrected. Hence, temporal dependencies (e.g. auto-correlations) to be corrected are viewed as
inter-variable dependencies to be adjusted and an existing multivariate bias correction (MBC) method can then
be used to answer this need. This approach is first applied and evaluated on synthetic data from a vector auto-
regressive (VAR) process. In a second evaluation, we work in a “perfect model” context where a regional climate
model (RCM) plays the role of the (pseudo-)observations, and where its forcing global climate model (GCM)
is the model to be downscaled or bias corrected. For both evaluations, the results show a large reduction of
the biases in the temporal properties, while inter-variable and spatial dependence structures are still correctly
adjusted. However, increasing the number of lags too much does not necessarily improve the temporal properties,
and an overly strong increase in the number of dimensions of the dataset to be corrected can even imply some
potential instability in the adjusted and/or downscaled results, calling for a reasoned use of this approach for
large datasets.

1 Introduction

Climate and Earth system models (ESMs) and their simu-
lations are the main physical tools to investigate the poten-
tial future evolutions of the climate system (e.g. Flato et al.,
2013; Kirtman et al., 2013). They are clearly indispensable
for testing how different scenarios of greenhouse gas emis-
sion trajectories might induce climate changes and, thus, for
trying to anticipate potential impacts of those changes (e.g.
IPCC, 2019). Although such elaborate models contain many
relevant and complex processes characterizing the climate

properties and their dependencies, the numerical simulations
they generate are often tainted with biases and disagreements
with respect to observations. Those can stem (i) from the spa-
tial resolution of the simulations (from 200 km× 200 km for
global climate models, GCMs, down to a few kilometres for
regional climate modes, RCMs), usually too low compared
to needs of impact models that may require very local or
high-resolution input climate data, e.g. kilometres, hundreds
of metres or below, down to the weather stations (e.g. Chen
et al., 2011; Maraun and Widmann, 2018), and/or (ii) from
inherent biases in the model simulations, due to parameter-
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izations, or processes not represented or poorly represented
(e.g. McFarlane, 2011). Even with respect to observations or
reanalysis data at the models’ spatial resolution, the simula-
tions can present biases, i.e. disagreements on some statisti-
cal properties (e.g. mean, variability, distribution) that differ
from reference data (e.g. Christensen et al., 2008).

Those issues make that impact models (such as for hy-
drology, energy, environment, etc.) cannot directly employ
the climate simulations as input (e.g. Teutschbein and Seib-
ert, 2012; Chen et al., 2013). Indeed, most impact models
are calibrated on observational data and the use of biased cli-
mate data as input could result in inappropriate or even false
impact projections. To overcome those spatial or inherent bi-
ases, various statistical post-processing methods have been
developed for downscaling and/or bias correction of the cli-
mate simulations. The common idea is to statistically trans-
form the numerical simulations – over a historical period –
in such a way that some properties become equal or close to
those of a chosen reference dataset (e.g. Gudmundsson et al.,
2012). The statistical downscaling or correction transforma-
tion is then usually supposed valid under other climate con-
ditions and applied to changed (e.g. future) climate. The ob-
tained downscaled/bias corrected climate data can then serve
as input into impact models (e.g. Teutschbein and Seibert,
2012; Galmarini et al., 2019; Bartók et al., 2019; Chen et al.,
2021, among many others).

Over the last two decades, many such post-processing
methods were developed, either in a “perfect prognosis” (PP)
context, generally for downscaling (DS), or in a “model out-
put statistics” (MOS) one, generally for bias correction (BC)
– see e.g. Vaittinada Ayar et al. (2015) or Maraun and Wid-
mann (2018) for the differences between the two, or Vrac
and Vaittinada Ayar (2017) for a combination of PP and
MOS. Note that, in practice, BC methods (i.e. MOS) are of-
ten used to perform downscaling (see for example Thrasher
et al., 2012; Hempel et al., 2013; Frieler et al., 2017). Hence,
in the following, we will simply refer to “bias correction”
(hereafter BC) even for downscaling purposes. Up to re-
cently, most of the BC methods were designed to work on
“univariate” data, representing one climate variable at one
given location. In such a univariate context, PP approaches
include for example linear regressions (Jeong et al., 2012),
non-linear ones such as polynomial regressions and artificial
neural networks (Xiaoli et al., 2008), or stochastic weather
generators (Wilks, 2012). In a similar univariate context,
MOS methods can vary from very simple methods correct-
ing only the mean via anomalies adjustments (e.g. Xu, 1999,
with the “anomaly” method), or the variance (e.g. Eden
et al., 2012; Schmidli et al., 2006, with the “simple scaling”
method) to more complete and widespread methods such
as the “quantile-mapping” approach that corrects the whole
univariate distribution and therefore all statistical moments
(including mean and variance) of the variable of interest.
Quantile mapping (e.g. Haddad and Rosenfeld, 1997; Déqué,
2007) is certainly the most used 1D BC method by practition-

ers and numerous variants have been developed, e.g. by Vrac
et al. (2012) to account for non-stationarity, by Kallache et al.
(2011) for modelling of extremes, by Cannon et al. (2015) to
ensure preservation of the climate change signal, or by Vrac
et al. (2016) specifically for precipitation including occur-
rences, among many other variants.

However, the univariate correction of simulations (i.e. one
variable at a time and one site at a time) may not be enough.
Indeed, the use of several 1D corrections separately for dif-
ferent physical variables and/or sites will not correct the de-
pendencies between them (Vrac, 2018). The consequence is
that, if the simulations are biased in their spatial and/or inter-
variable correlations (or more generally in their dependen-
cies), most of the 1D BC methods will conserve those biases
(Vrac, 2018; François et al., 2020). If an impact (e.g. hy-
drological) model needs realistic dependencies between its
input climate variables, the use of univariate BC may not
provide corrections realistic enough (e.g. Boé et al., 2007).
More generally in climate sciences, the accurate modelling
of dependencies is a key aspect for proper assessments and
projections of compound events and their associated risks
(e.g. Leonard et al., 2014; Zscheischler et al., 2018; Bevac-
qua et al., 2019). These characteristics strongly motivated
the development of BC methods accounting for multivari-
ate links between the variables and/or the sites of interest.
As detailed in Vrac (2018) or François et al. (2020), multi-
variate BC methods can be categorized in three approaches:
the “marginal/dependence” correction approach, in which
the correction of the marginal distributions and that of the
dependence structure are separated (e.g. Bárdossy and Pe-
gram, 2012; Cannon, 2018; Vrac, 2018); the “successive
conditional” correction one, in which successive corrections
are conditionally applied to the previously corrected vari-
ables (e.g. Piani and Haerter, 2012; Dekens et al., 2017); and
the “all-in-one” correction approach, in which the univariate
marginal properties and their dependence structures are cor-
rected altogether (Robin et al., 2019). Those methodologies
have been applied to correct either inter-variable dependence
only (i.e. multiple variables but spatial dependence not ac-
counted for), spatial dependence only (one variable at mul-
tiple locations) or even both (see François et al., 2020, for a
review and comparison of the methods).

One main conclusion provided in the multivariate bias cor-
rection (MBC) comparison study by François et al. (2020)
is that if inter-site and inter-variable properties can be rea-
sonably adjusted by MBC methods, the temporal properties
are usually not taken into account in most MBC procedures.
As any MBC will necessarily modify the rank chronology of
the simulations to perform the multivariate correction (Vrac,
2018), the result is that temporal properties and dependen-
cies issued from the MBC output are transformed with re-
spect to the raw simulations but are not necessarily closer
to those of the reference data, depending on the method it-
self, its setting and the variables of interest (François et al.,
2020). Therefore, accounting for temporal properties (i.e.
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auto-correlations or even cross-auto-correlations) when per-
forming MBC is needed to increase the realism of the mul-
tivariate corrected time series. This is a major concern for
impact studies: for example, hydrological models are very
sensitive to the atmospheric forcing used as inputs and par-
ticularly, among others, to biases in the chronology of events
(e.g. Raimonet et al., 2017; Bhuiyan et al., 2018). Some
works tried to correct temporality properties in addition to
(spatial or inter-variable) MBC. For example, Johnson and
Sharma (2012) used a nesting 1D BC model across various
timescales; this was extended to include inter-site structures
by Mehrotra and Sharma (2015) and then by Mehrotra and
Sharma (2016) to account also for inter-variable dependence.
In those studies, time dependence was specifically modelled
via (multivariate) auto-regressive models with periodic pa-
rameters. Another recent study by Vrac and Thao (2020) pro-
posed an MBC method for both inter-site and inter-variable
properties, where the temporal aspects are accounted for
through an analogue-based method applied to multivariate
sequences of ranks.

All those approaches, although different, share the fact
that they try to correct temporal properties by a (paramet-
ric or non-parametric) model that is specific to the variable
“time”. In other words, they separate time from the other
variables (variables at various locations) of interest. How-
ever, one can wonder if there is a real need for such a speci-
ficity. Indeed, let us take an example in one dimension for
the sake of clarity (this can be easily generalized to n dimen-
sions). Say we have a time series of a climate variableX to be
corrected (e.g. temperature) at one location, for t = 1, . . . ,N :
X1:N = (x1, . . . , xN ). If we apply a 1D BC method to the
sampleX1:N , most of the BC methods will preserve the rank
correlation of X (Vrac, 2018). Now, instead of applying a
1D BC, if we duplicate and lag – say of one time step –
the time series X1:N , we obtain a shifted time series denoted
XS

1:N−1 =X2:N = (x2, . . . , xN ). If a multivariate bias correc-
tion method is able to correct the dependence between two
univariate time series, say X and Y , when applied to the bi-
variate time series

(
X,XS

)
1:N−1

=


x1 x2
x2 x3
...

...

xN−1 xN

 , (1)

it should then be able to correct the dependence between the
univariate time series X and XS , i.e. it should be able to cor-
rect the lag-1 temporal dependence of X. As far as we know,
this specific approach of considering time as any other sta-
tistical variable in an MBC procedure has never been inves-
tigated. This is therefore the goal of the present study. More
specifically, the aim is to investigate (i) if this time-shifted
multivariate bias correction (TSMBC) approach does correct
temporal properties (e.g. auto-correlations), (ii) if and how

it impacts other properties (e.g. inter-site and inter-variable),
and (iii) if this TSMBC is able to work for more than lag-1.

To do so, the rest of the paper is organized as follows. Sec-
tion 2 describes the climate and synthetic data used in this
study and provides detailed explanations about the proposed
TSMBC approach. Section 3 investigates the method based
on artificially simulated multivariate dataset obtained from
a vector auto-regressive (VAR) model. Then, TSMBC is ap-
plied to correct daily temperature and precipitation simulated
from a climate model, and the results are given in Sect. 4.
Finally, conclusions are reiterated and perspectives are dis-
cussed in Sect. 5.

2 Data and methodology

2.1 Data: climate simulations and VAR processes

To apply any (M)BC method, it is necessary to dispose of a
dataset of reference – i.e. it is supposed to be as close as pos-
sible to real observed climate – and a dataset of simulations
(e.g. stemming from a GCM) that are biased with respect to
the reference dataset.

Here, the climate simulations to be corrected are daily
temperature and precipitation times series over the south-
east of France, for the time period 1951–2010, extracted at
a 1.25◦× 2.5◦ spatial resolution from the IPSL-CM5A-MR
global climate model (Marti et al., 2010; Dufresne et al.,
2013) developed at Institut Pierre Simon Laplace (IPSL). The
simulations are forced by historical conditions up to 2005
and then by RCP8.5 scenario conditions from 2006. The re-
gion of interest is presented in Fig. 1 and corresponds to a
zone where correlations between precipitation and tempera-
ture as well as auto-correlations are difficult to model due to
various geographical constraints, such as Mediterranean in-
fluences and three mountain ranges (the Pyrenees, the Mas-
sif Central, the Alps), which can generate high-precipitation
events known as “Cevennol events” (see for example Delrieu
et al., 2005).

Regarding the reference dataset, regional climate simula-
tions are used in this study, instead of observational or reanal-
ysis data. Those are EURO-CORDEX daily temperature and
precipitation from the KNMI-RACMO22E regional climate
model (KNMI, 2017) developed at the Royal Netherlands
Meteorological Institute (KNMI) and forced by the larger-
scale IPSL simulations. The same time period and region as
for the IPSL simulations were extracted but with a 0.11◦×
0.11◦ spatial resolution. Note that the extracted region of in-
terest is small in comparison to the initial EURO-CORDEX
domain (Jacob et al., 2014) over which the RCM simulations
were performed. This kind of “perfect model experiment”,
i.e. considering simulations as “pseudo-observations”, is now
a common approach to assess downscaling and bias correc-
tion methods (see for example Charles et al., 2004; Vrac
et al., 2007; Frost et al., 2011; Bürger et al., 2012; Grouil-
let et al., 2016).
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Figure 1. Left panel: map of elevation (in m) over France. The region of interest lies in the south-east box. Right panels: mean summer (JJA)
temperature (in ◦C) and precipitation (in mm d−1) for the region of interest (top: IPSL-CM5A-MR; bottom: KNMI-RACMO22E) over 1951–
2010.

The GCM data are then interpolated with a nearest-
neighbour method to the 0.11◦× 0.11◦ spatial resolution of
the RCM to apply the TSMBC approaches. The (GCM and
reference) data over the period 1951–1980 will serve to cal-
ibrate the proposed TSMBC method, while projections and
evaluations will be performed over 1981–2010. Moreover,
the calibration and projection steps are realized on a sea-
sonal basis, i.e. for the four seasons separately to account
for specific seasonal features of the biases. For sake of clar-
ity, only the summer (JJA) results are shown in the paper,
winter (DJF) results being provided in the Supplement.

In addition to the evaluations that will be done based on
those climate simulations, a preliminary analysis will first be
performed on synthetic data, i.e. data artificially generated
from statistical models. Here, a VAR process is employed. A
VAR process is a multivariate auto-regressive (AR) process
(i.e. allowing multivariate data) modelling the statistical link
between the components of a vector (i.e. multivariate data)
when they change in time. In the following, a VAR is used
to generate multivariate time series (Xt )t=1, ..., N where each
Xt is a vector of dimension d (e.g. d = 2 with temperature
and precipitation at one location, or with temperature only
at two locations), with prescribed auto-correlations up to a
certain lag s, such that

Xn = b+

s∑
l=1

AlXn−l + ε, (2)

where s is the order of the VAR process for which the
auto-correlation is accounted for, b is the d-dimensional in-

tercept vector, Al are matrices of coefficients and ε is a
d-dimensional noise following a multivariate Gaussian law
with 0 mean vector and covariance matrix 6. Two VAR pro-
cesses are generated: one used as the large-scale or biased
simulations and the other one used as the reference.

To generate such synthetic data and analyse them in a com-
prehensive way, the dimension d has been chosen to be equal
to 2 and lag s equal to 3. The sampling is performed based on
Eq. (2): the first s vectors (i.e. from time 1 to s) are initialized
and the VAR process allows new values to be generated for
the d components of the vector at time s+ 1. Also, in order
to be in a realistic case, i.e. close to our climate simulation
context, the parameters b, (Al)l=1 ... 3 and 6 have been esti-
mated from a VAR fitted to temperature at two opposite grid
points in summer (from the GCM or RCM, for VARs rep-
resenting biased or reference data respectively) in the region
of interest. The parameters obtained for these two VARs are
then used to simulate 2500 synthetic data for each of the two
VAR processes, approximately corresponding to the number
of summer days over the available calibration period. The
univariate and bivariate probability density functions of those
simulations are plotted in Fig. 2a, in red for VAR data to be
corrected and in blue for the reference VAR.

2.2 The TSMBC approach: auto-correlations seen as
correlations

The main philosophy of the proposed time-shifted multi-
variate bias correction (TSMBC) approach has been briefly
introduced (with lag 1) in Eq. (1) of the introduction sec-
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Figure 2. (a) Probability densities and covariance matrices of the VAR processes and their corrections. (b) Auto-correlation of the first
coordinate. (c) Cross-auto-correlation between the first and the second coordinates. (d) Cross-auto-correlation between the second and the
first coordinates. (e) Auto-correlation of the second coordinate.

tion. We now described the approach in a more general way
and with more details. Say we dispose of a d-dimensional
time series (i.e. matrix) X1:N = (X1,X2, . . .,Xd )1:N , where
each Xi1:N is an N -dimensional vector (i.e. time series of
lengthN ): (xi1, . . . , xiN )T, where the superscript T on a vector
denotes its transpose. The idea proposed and tested in this ar-
ticle consists of applying a multivariate bias correction onto
the matrix M(s) constituted by the gathering of the initial
X1:N time series and those obtained after shifting it by dif-
ferent lags up to lag s:

MX(s)=
((
X1,X2, . . .,Xd

)
1:N−s

,(
X1,X2, . . .,Xd

)
2:N−s+1

, . . .,(
X1,X2, . . .,Xd

)
s+1:N

)
(3)

or equivalently

MX(s)=



x1

1 x2
1 . . . xd1

x1
2 x2

2 . . . xd2
...

...
. . .

...

x1
N−s x2

N−s . . . xdN−s

 ,


x1
2 x2

2 . . . xd2
x1

3 x2
3 . . . xd3

...
...

. . .
...

x1
N−s+1 x2

N−s+1 . . . xdN−s+1

 , . . .,

x1
s+1 x2

s+1 . . . xds+1
x1
s+2 x2

s+2 . . . xds+2
...

...
. . .

...

x1
N x2

N . . . xdN


 , (4)

which can then be grouped by variable (dimension) and thus
reordered as
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MX(s)=



x1

1 x1
2 . . . x1

s+1
x1

2 x1
3 . . . x1

s+2
...

...
. . .

...

x1
N−s x1

N−s+1 . . . x1
N

 ,

x2

1 x2
2 . . . x2

s+1
x2

2 x2
3 . . . x2

s+2
...

...
. . .

...

x2
N−s x2

N−s+1 . . . x2
N

 , . . .,

xd1 xd2 . . . xds+1
xd2 xd3 . . . xds+2
...

...
. . .

...

xdN−s xdN−s+1 . . . xdN


 . (5)

Such a transformation can be made to create MY(s)
and MX(s), the lagged matrices obtained from the reference
dataset and the biased one to be corrected, respectively. An
MBC method can thus be applied to correct the multivariate
properties of MX(s) with respect to MY(s) as reference. The
result of the MBC is therefore a matrix MZ(s) of the same
size as MX(s). The question to answer now is, from this re-
sulting MBC matrix, how can a N × d matrix Z be extracted
or reconstructed that corresponds to proper multivariate (time
included) corrected data? There are indeed various possibili-
ties for that, and they may not be equivalent.

In this study, we propose a method based on a reconstruc-
tion by rows. For illustration, let us take this example of a
bivariate dataset X and its associated matrix MX(1), i.e. in-
cluding a lag-1 shift:

X=


1 10
2 20
3 30
4 40
5 50
6 60

 , MX(1)=


1 10 2 20
2 20 3 30
3 30 4 40
4 40 5 50
5 50 6 60

 .

In this example, the bold rows of the matrix MX(1) (its
rows 1, 3 and 5) can be used to reconstruct the original
dataset X. More generally, a row s of MX(1) is a vector corre-
sponding to a portion of X, which continues at row s+2, and
which continues at row 2s+3, etc. Concatenating these rows,
we can re-construct the dataset X. Applying this method to
the matrix MZ(s), we can reconstruct a corrected dataset Z.
Because the same operation can be applied by starting at the
second row (and any row between 1 and s+ 1), the recon-
struction depends on the choice of the starting row. However,
even if the values are repeated in the lagged matrix, no re-
peated values can appear in the final reconstruction (i.e. mul-
tivariate corrections). It is also worth noting the initial map-
ping (i.e. going from X to MX) is injective, and that, in gen-
eral, an inverse mapping is not. However, with the suggested
reconstruction (i.e. inverse mapping), when a starting row is

chosen, the inverse mapping gives a unique time series and
is thus injective. Moreover, the choice of a starting row r > 1
omits the first r − 1 values in the final reconstruction. This
leads us to wonder about the influence of the choice of the
starting row. These points will be investigated with the VAR
processes. Our approach is summarized in the Algorithm 1.

Note that a reconstruction “by column” could also be per-
formed: each column of MX(1) being a sub-column of X, it
could then be used to reconstruct the original dataset. How-
ever, preliminary analyses showed that this approach does
not allow auto-correlations to be corrected, as the temporal
dependence structure in each row is not corrected and mostly
corresponds to that of the model to be adjusted (not shown).
Hence, only the TSMBC approach “by rows” is investigated
in the following.

Finally, because TSMBC uses an underlying MBC, po-
tentially any MBC method can be used, as MBCn (Can-
non, 2018) or R2D2 (Vrac and Thao, 2020). Here, the MBC
method used is the dynamical optimal transport correction
(dOTC) developed by Robin et al. (2019). While most of the
bias correction methods build a mapping between the biased
and the reference dataset, dOTC infers a probability distribu-
tion P such that P(x,y) is the probability that y is the correc-
tion of x. This probability distribution is inferred – with op-
timal transport methods; see Appendix A and Villani (2008)
and Santambrogio (2015) – between the biased and reference
dataset in calibration period (representing the bias), and be-
tween the biased dataset in calibration and projection periods
(representing the evolution). The “evolution” distribution is
then transferred along the “bias” distribution to construct a
correction in the reference world with an evolution similar to
that of the biased data. Note that this method seeks to pre-
serve the evolution of the model while reducing bias. A brief
reminder about dOTC is given in Appendix A, while all de-
tails can be found in Robin et al. (2019).

3 Results: synthetic VAR data

In this section we test our TSMBC method on synthetic data,
generated from two VAR processes (see Sect. 2.1). A biased
dataset and a reference one – denoted respectively as X and Y
– are drawn from two VAR processes fitted from two time se-
ries of temperature of the GCM or RCM. TSMBC is applied
to correct X with respect to Y, i.e. to generate a corrected
dataset Z.

Because the reconstruction step preserves the dependence
structure, we propose to test which part of the correction is
due to the underlying method (here dOTC), and which part
is due to the reconstruction. To do so, a second underlying
bias correction method is then used as a benchmark. It cor-
responds to a very naive method: the correction is randomly
drawn from the reference dataset, i.e. for any x ∈ X, the cor-
rection is given by a random value y generated according to
the distribution of Y. In practice, values from Y are resam-
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pled. Note that this naive method corresponds to dOTC with
a transport plan given by the product probability distribution
between the biased and reference datasets; see Appendix A.
We denote this multivariate method a “random bias correc-
tion” (RBC), and TSMBC is thus available in two versions
for this evaluation: TSMBC(dOTC) and TSMBC(RBC). For
these two methods, we test in the first part the influence of
the choice of the starting row, and in the second part the in-
fluence of the choice of the lag.

3.1 Influence of the choice of the starting row

We fix the number of lags s = 10, and we compute the cor-
rection for each of the two methods with a starting row
r ∈ {1, 3, 6, 9, 12}. Note that, since here s = 10, TSMC ap-
plied with r = 12 will provide the same results as for r = 1
but will ignore the first row. The corrections are denoted Zr.

To measure the similarity of the corrections from different
starting rows, we compute the matrix of Pearson correlations
between the pair Zr1/Zr2 . We also compute the correlations
with X and Y to compare the corrections with the biased and
reference datasets. The results are presented in Fig. 3a for
TSMBC(dOTC) and in Fig. 3b for TSMBC(RBC). Only the
first dimension is represented; the second dimension – which
gives similar results – and the associated p values are given
in Fig. S1 of the Supplement. We can see for TSMBC(dOTC)
that all corrections are highly correlated – with values close
to 1 – whereas for TSMBC(RBC) no significant correlation
appears. This indicates that, whatever the chosen starting row
for TSMBC, the results are very close to each other. Note
that for TSMBC(dOTC) the corrections stay highly corre-
lated with X. This is an effect of the dOTC method, which
tries to preserve as much as possible the temporal properties
of the model simulations to be corrected (Robin et al., 2019;
François et al., 2020). On the other hand, no correlation ap-
pears with Y. This was expected. Indeed, there is no reason
for the bias corrected data to be correlated to the reference.
If the BC procedure is efficient, corrected and reference time
series can be seen as generated based on the same statisti-

Figure 3. The first row (a, b) of matrices shows the correlations be-
tween corrections of the VAR with different choices of starting row
for the reconstruction step. The second row (c, d) shows the cor-
relations between corrections of the VAR with different choice of
lag. The starting row for the reconstruction step is the middle value
between 0 and lag of corrections. Panels (a, c) show the correction
with the method TSMBC with the underlying method dOTC, and
(b, d) also show TSMBC, but with the underlying method RBC.

cal distributions and/or properties but independently. Hence,
they are not correlated.

From this experiment we can conclude first that the choice
of the starting row has only a very marginal influence on
the correction. Therefore, from now on, we use the integer
part of r = s+1

2 as starting row. Second, the TSMBC(RBC)
method produces many different corrections, which are ex-
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tremely weakly correlated. Even if, by construction, the
TSMBC(RBC) is able to provide satisfactory inter-variable
dependence structures and correlations, it is not able to pro-
vide proper temporal statistics, highlighting the importance
of the choice of the underlying bias correction method.

3.2 Influence of the choice of the lag

In this section the starting row is fixed at r = s+1
2 , and we

vary the number of lags s ∈ {3, 5, 10, 20, 100}. This generates
the corrections Zs for the two methods TSMBC(dOTC) and
TSMBC(RBC).

As for the previous sub-section, the correlations between
corrections, reference and biased dataset are computed and
represented in Fig. 3c and d for the first variable, and the
second variable and p values are given in Fig. S2. We can
see for TSMBC(dOTC) that all corrections are highly corre-
lated (and correlated with the biased dataset), with correla-
tions decreasing with s. This shows that the corrections are
similar, even when increasing the lag to a reasonable extent.
As for the previous section, the method TSMBC(RBC) pro-
vides many different corrections, different from each other
and thus difficult to link together.

Furthermore, we have added in Fig. 2a the density of the
corrections with TSMBC(dOTC) and with TSMBC(RBC) in
green and black respectively. The two methods correctly ad-
just the density and the dependence structure of the reference
dataset. Therefore the differences seen in Fig. 3c,d come only
from their capability to adjust the temporal structure.

The (cross-)auto-correlations between the 2 dimensions
for various lags are also given in Fig. 2b–e. On each panel,
we can see that the results for the lag 0 – which corresponds
to classic correlations – are close to the references for all
corrections, which is confirmed by the Fig. 2a. For non-
zero lags, the (cross-)auto-correlations of corrections with
TSMBC(dOTC) are close to the reference one, validating
the method. For TSMBC(RBC), the (cross-)auto-correlations
become close to the reference if s is large enough. This shows
that the ability to correct the (cross-)auto-correlation when
s is small comes from dOTC, and not only from the recon-
struction part. When s increases, TSMBC(RBC) tends to ad-
just the temporal properties correctly, but this is due to the
reconstruction that replaces the biased dataset with the refer-
ence one for large s.

Generally, from the synthetic VAR dataset, we can see
the ability of the TSMBC approach to correct the (cross-
)auto-correlations. The choice of the starting row has little
influence on the final corrections, and we fix it now at s+1

2 .
We also highlighted the importance of dOTC as the under-
lying bias correction method (compared to the naive ran-
dom approach), as the ability to properly correct the temporal
structure does not come only from the reconstruction step of
TSMBC.

4 Results: DS and BC of temperature and
precipitation

We now apply the TSMBC method with the underlying
dOTC method to the bias correction and downscaling of the
IPSL GCM simulations with respect to the RCM simula-
tions taken as references. Following the strategy proposed by
François et al. (2020), four kinds of corrections are applied
and analysed:

– Each variable and grid point are corrected indepen-
dently. This approach will be referred to as “L1V” (lo-
cal 1 variable). The BC method employed here is dOTC
in its univariate version (when s = 0).

– The dependence between temperature and precipitation
(i.e. inter-variable dependence) is taken into account in
the correction, but not the spatial dependence. This ap-
proach is denoted “L2V” (local 2 variables) and em-
ploys the bivariate version of dOTC (when s = 0).

– The spatial dependence is corrected, but not the re-
lations between temperature and precipitation. This
approach is denoted “S1V” (spatial 1 variable) and
uses dOTC in a 16 (longitude)× 13 (latitude)= 208-
dimensional configuration (when s = 0).

– All dependencies (i.e. inter-variable and spatial) are cor-
rected. This approach is denoted “S2V” (spatial 2 vari-
ables), and dOTC has thus a 2 (variables)× 16 (lon-
gitude)× 13 (latitude)= 416-dimensional configuration
(when s = 0).

Furthermore, for each of these approaches, we apply
TSMBC to account for various lags, up to some maximum
lags: 0 (i.e. corresponding to dOTC, without any lag), 5 and
10 d lags, denoted dOTC, TSMBC-5 and TSMBC-10, re-
spectively. Hence, we have finally 12 correction approaches,
with dimensions varying from 1 (dOTC without any kind of
dependence) to 2× 16× 13× (10+ 1)= 4576 (MSTBC-10
correcting spatial and inter-variable dependencies and tem-
poral dependence up to a lag of 10 d). A summary of the
dimension of each method is given in Table 1.

Recall that only the results for summer are given in the rest
of this article (winter results are provided in the Supplement);
the calibration period is 1951–1980, and the validation and
projection period is 1981–2010.

4.1 Bias reduction in marginal properties: mean,
standard deviation, auto-correlation

We start by controlling the ability of the different methods
to reduce the bias of the first two statistical moments: the
mean (noted E) and the standard deviation (noted σ ). De-
noting Z as any correction, and κ as the statistics of interest
(such as the mean E, the standard deviation σ or the lag-s
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Table 1. Summary of the dimensions of the bias correction for each method used in Sect. 4. For each cell, the first value corresponds to
the dependence or not between temperature and precipitation. The second and third are the dimension of the grid of the RCM (16× 13 grid
cells). The last values is the dimension to be corrected until the lag 0 for the first column, the lag 5 for the second column and the lag 10 for
the last column.

dOTC TSMBC-5 TSMBC-10

L1V 1× 1× 1× 1= 1 1× 1× 1× (5+ 1)= 6 1× 1× 1× (10+ 1)= 11
L2V 2× 1× 1× 1= 2 2× 1× 1× (5+ 1)= 12 2× 1× 1× (10+ 1)= 22
S1V 1× 16× 13× 1= 208 1× 16× 13× (5+ 1)= 1248 1× 16× 13× (10+ 1)= 2288
S2V 2× 16× 13× 1= 416 2× 16× 13× (5+ 1)= 2496 2× 16× 13× (10+ 1)= 4576

auto-correlation ρs), we compute the following criterion BRκ
to characterize the bias reduction:

BRκ = 1−
∣∣∣∣ κ(Z)− κ(RCM)
κ(GCM)− κ(RCM)

∣∣∣∣ . (6)

This criterion lives in the interval [−∞, 1]. A value of 1
indicates a perfect correction. Note that if the raw simula-
tions are already close to the reference, the metric will be
near zero. If the correction also gives a metric close to zero,
then the relative reduction of bias BRκ can have a very strong
negative value if κ(Z)> κ(GCM), even if the absolute differ-
ence (i.e. κ(Z)−κ(GCM)) is potentially very small. Boxplots
of mean bias reduction (BRE) and standard deviation bias re-
duction (BRσ ) criteria from all grid points are presented in
Fig. 4 for each variable and correction. For the calibration pe-
riod (first column) we can see a bias reduction (both in means
and standard deviations) between 0.95 and 1 for the tem-
perature, and between 0.8 and 1 for precipitation. The bias
reduction slightly decreases when the dimension increases,
indicating a “curse of dimensionality” problem. For the pro-
jection period, the bias reduction in mean temperature stays
reasonable, between 0.7 and 1. However, for the precipita-
tion the results are more contrasting. For 75 % of the grid
points, the reduction of the mean precipitation bias lies be-
tween 0.2 and 0.95 and that of the standard deviation bias
between 0.6 and 1. Interestingly, the use of a TSMBC ap-
proach relying on dOTC implies bias reductions in means
and standard deviations equivalent to those provided by the
dOTC method, i.e. without “time-shifted” consideration. In
other words, TSMBC does not degrade the basic marginal
properties of the corrections from dOTC. Note that the ability
of the methods to reduce the biases can be strongly affected
by the evolution of the GCM variables between the calibra-
tion and validation period. Indeed, this evolution is different
from that of the RCM (i.e. here the reference dataset) vari-
ables. As dOTC preserves the evolution of the GCM to be
corrected, the resulting corrections for the projection period
have necessarily properties different from the reference over
the same period.

The same boxplots are now represented in Fig. 5 for
the lag-2 auto-correlation bias reduction BRρ2 . The couples
tas/tas, pr/pr, tas/pr and pr/tas are, respectively, the correla-

tions between temperature and lagged (i.e. past) tempera-
ture, precipitation and lagged precipitation, temperature and
lagged precipitation, and precipitation and lagged tempera-
ture. Over the calibration period, the use of TSMBC clearly
improves the (cross-)auto-correlation compared to dOTC. In
the projection period, the TSMBC correction is better than
the dOTC correction for the pr/pr couple. No clear improve-
ment appears for the couples pr/tas and tas/pr, and for the
couple tas/tas a degradation appears when dimension in-
creases, related to the problems already described for the
mean and standard deviation.

Figure 6 presents the maps of auto-correlations of precip-
itation at lag 1 (first two lines) and at lag 4 (last two lines).
The calibration period corresponds to the first and third lines,
and the projection period to the second and last lines. We
focus here only on the L2V approach, but the results are
equivalent for the others (not shown, except for temperature
with L2V given in Fig. S4). Regarding the calibration pe-
riod, it is clear that dOTC does not reproduce the RCM auto-
correlation maps. In addition, the obtained auto-correlation
maps are quite different from those of the GCM, justifying
the need for TSMBC. Based on TSMBC-5 and TSMBC-
10, the corrections are closer to the reference RCM. Using
10 lags instead of 5 does not show a clear improvement and
can sometimes even degrade the corrections. For the projec-
tion period, the situation is quite different and requires the
comparison of the GCM, RCM and corrections, as well as
their evolution between the calibration and projection peri-
ods. For the GCM, the lag-1 auto-correlation decreases be-
tween the two periods for the northern part but increases
in the southern part. As dOTC mostly reproduces the evo-
lution of the model (see Robin et al., 2019), the same feature
appears in the corrections over the projection period. When
TSMBC-5 or TSMBC-10 use dOTC as the underlying MBC
method, the same conclusion holds. This result is also true
for the lag 4, with auto-correlations more noisy for TSMBC-
5 and TSMBC-10 due to a higher number of dimensions to
consider.

Globally, TSMBC is able to reduce biases in means and
standard deviations as well as dOTC but clearly improves
the corrections of the auto-correlations. We now propose
to further study the dependence structure of the corrections
brought by TSMBC.
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Figure 4. Boxplots of bias reduction in mean and standard deviation (BRE and BRσ ) in calibration (first column) and projection (second
column) periods for temperature and precipitation in summer. The closer the boxplot is to 1, the closer the results are to the reference and
therefore the better they are.

4.2 Bias reduction in dependencies: the
W-cross-auto-correlogram metric

The present sub-section targets the evaluation of the TSMBC
corrections in terms of spatial structure of auto-correlations
between variables and grid points. This requires a new tool:
the W-cross-auto-correlogram metric, based on the classic
correlogram.

In order to evaluate spatial dependencies present in a uni-
variate sample, correlograms (i.e. correlations expressed as

function of the distance) are classically used (see for exam-
ple Vrac, 2018; François et al., 2020). To estimate it, the
correlation between each pair of locations (or grid cells in
the present study) is computed. Then the set of distance–
correlation pairs (DCP) is divided into classes (e.g. 0–10,
10–20 km) and the conditional mean correlation is calculated
for each class. However, following an equivalent procedure,
the calculation of correlation in a univariate context can be
replaced by the auto-correlation for any lags, or, in a multi-
variate setting, by cross-auto-correlations between variables
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Figure 5. Boxplots of bias reduction in lag-2 (cross-)-auto-correlations (BRρ2 ) in calibration (first column) and projection (second column)
periods for temperature and precipitation in summer. The closer the boxplot is to 1, the closer the results are to the reference and therefore
the better they are.

(e.g. correlation between temperature at time t for one loca-
tion and precipitation at time t + lag for another location).
This gives an auto-correlogram or a cross-auto-correlogram,
respectively.

Figure 7 presents the scatter plots of the DCP values,
where correlations are cross-auto-correlations between tem-
perature and precipitation for all pairs of grid points with
lag 1 for the GCM data (Fig. 7a), the RCM (Fig. 7 b), the
corrections with dOTC (S2V, Fig. 7c) and with TSMBC-
5 (S2V, Fig. 7d). In each panel, the black line is the es-

timated mean cross-auto-correlogram. It is clear that the
cross-auto-correlograms – as mean conditional correlations
given distances – are not quite representative of the DCP
scatter-plot structures. Indeed, the DCP structures show large
spreads that cannot be visible on simple lines. Moreover,
those structures are different from one dataset to another, for
example between the GCM data to be corrected and from
the reference RCM data, while their associated cross-auto-
correlograms (i.e. mean black lines) can appear relatively
close to each other. However, the DCP scatter plots of the
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Figure 6. Map of lag-1 (two first rows) and lag-4 (two last rows) auto-correlations of precipitation in summer. The first and third rows are
for the calibration period, the second and fourth rows are for the projection period. The first (and second, third, fourth and last, respectively)
column gives the maps of auto-correlations of the RCM to be corrected (the GCM, the correction dOTC, the correction TSMBC-5 and
the correction TSMBC-10 with method L2V, respectively). A key point of this figure is to compare the evolution between calibration and
projection periods for the RCM, GCM and corrections. The evolution of the TSMBC corrections is similar to the GCM evolution, which is
different from the RCM evolution, leading to a failure of the correction in projection period.

dOTC (Fig. 7c) and TSMBC-5 (Fig. 7d) corrections exhibit a
large improvement compared to the uncorrected GCM, with
TSMBC-5 that seems better than dOTC, with a more real-
istic spread and shape of the DCP set. To quantify this im-
provement, for the GCM, the RCM and all the corrections,
all DCP sets are first computed for lags between 0 and 9,
for auto-correlations (temperature/temperature and precipi-
tation/precipitation) and for cross-auto-correlations (temper-
ature/precipitation and precipitation/temperature). Then, the
Wasserstein distance W (see Appendix B) is calculated and
used as a metric to measure the difference between the DCP
sets from the RCM (i.e. here, the reference) and the DCP
sets of the GCM or the corrections. The Wasserstein distance
(e.g. Santambrogio, 2015; Robin et al., 2019) is a distance
between two multivariate distributions and can therefore be
considered as an alternative to the energy distance (Rizzo and
Székely, 2016; François et al., 2020). Denoting these DCP
sets as DCPRCM, DCPGCM and DCPZ respectively, we pro-

pose the following indicator, BRW , based on the Wasserstein
distance, to measure the bias reduction in dependence with
respect to the raw GCM:

BRW = 1−
∣∣∣∣ W (DCPZ,DCPRCM)
W (DCPGCM,DCPRCM)

∣∣∣∣ , (7)

where W(DCPZ, DCPRCM) is the Wasserstein distance be-
tween the DCP set from the corrections Z and that from
the reference RCM data, and W(DCPGCM, DCPRCM) is the
equivalent between the GCM and RCM DCP sets. A value
of BRW close to 1 indicates that the chosen dependen-
cies (correlation, auto-correlation or cross-auto-correlation)
of the correction is close to the dependence structure of the
reference RCM. We call the set of this indicator a W-cross-
auto-correlogram.

As the Wasserstein metric is sensitive to the scale of the
multivariate data (here, the DCP sets) it is applied to, two
normalizations of the DCP sets are proposed before the com-
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Figure 7. Auto-correlogram (lag 1) between temperatures and precipitation in calibration period in summer for (a) the model, (b) the
observations, (c) the S2V dOTC correction and (d) the S2V TSMBC-5 correction.

putation of the BRW values. First, we normalize the correla-
tion values of the DCP sets between−1 and 1, independently
for each method and lag. This allows us to compare only the
pattern of the DPC sets, by removing mean and scale biases.
The results are shown in Fig. 8. Alternatively, a second type
of normalization is performed, with a normalization common
to all methods for a given lag but different for different lags.
Hence, this normalization conditional to the lag allows us to
compare the different bias correction methods and include
both the intensities of the correlations and the DCP patterns
while first normalization only accounts for the pattern of the
DCP sets. The results are presented in Fig. 9, where only the
BRW values coming from the same “column” (i.e. lag) can
be compared.

Starting with the first normalization (for each method and
lag separately), allowing us to compare only the pattern of
the DPC sets, in Fig. 8, we can first see that BRW ma-
trices for calibration and projection periods are relatively
similar, indicating some robustness of the TSMBC method
over projections. Generally speaking, for the local config-
urations (L1V and L2V), TSMBC (5 or 10) is better than
dOTC that does not account for temporal properties. This
is true for almost all lags> 0 and any BRW matrix (tas/tas,
tas/pr, pr/tas, pr/pr). However, for the spatial configurations
(S1V and S2V), TSMBC does not seem to provide better re-

sults than dOTC, except for the tas/tas matrix where TSMBC
strongly improves dOTC. Moreover, although dOTC pro-
vides similar results for the L1V and L2V configurations (po-
tentially of poor quality for various lags), the use of S1V and
S2V approaches within dOTC – i.e. without specifically ac-
counting for temporal dependence – strongly improves the
BRW results. This indicates that imposing to account for
spatial properties within dOTC can improve the correction
of the auto-correlation and cross-auto-correlation patterns.
Moreover, regarding the tas/tas and pr/pr BRW matrices, the
spatial versions (i.e. S1V and S2V) of the method appear
largely better than the local (i.e. L1V and L2V) ones, espe-
cially for tas/tas for most of the lags. This was somewhat
expected since the S1V and S2V configurations also cor-
rect spatial dependencies. Regarding the BRW matrices for
tas/pr and pr/tas, results are better for L2V and S2V config-
urations than with L1V and S1V ones: accounting for corre-
lations and cross-auto-correlations between temperature and
precipitation allows the results to be improved over config-
urations based on temperature and precipitation considered
separately. Furthermore, it is not clear that increasing the
number of lags in TSMBC significantly improves the re-
sults. Here, TSMBC-10 and TSMBC-5 provide quite simi-
lar BRW values whatever the couple of variables of interest,
with some non-systematic variations along the lags. How-
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Figure 8. Bias reduction of dependence (BRW ) values, based on the Wasserstein distances computed on bivariate (correlation, distance)
distributions between reference and the different BC datasets or model simulations in summer. The (correlation, distance) 2-D distributions
come from the calculated correlograms (see Fig. 7 and text for details). The first line of matrices corresponds to the calibration period, and
the second line to the projection period. The BC results and model simulations correspond to rows. The correlations are calculated between
tas and tas (first matrix), tas and pr (second matrix), pr and tas (third matrix), and pr and pr (fourth matrix). For each matrix, the columns
correspond to different lags and thus correlations indicate auto-correlations. Hence, the two central matrices (tas/pr and pr/tas) contain cross-
correlations and cross-auto-correlations. In order to compare the shape of a (correlation, distance) set, a normalization is performed separately
for each cell (i.e. each couple’s method lag) of each matrix. This normalization allows us to characterize the pattern of the distributions, and
to get rid of the marginal properties. Hence, the comparison between different couples’ method lag is possible but only to characterize the
shape of the (distance, correlation) distributions. The closer the BRW value is to 1, the closer the results are to the reference and therefore
the better they are.

Figure 9. Same as Fig. 8, but with a normalization by column (i.e. by given lag), before computing the BRW values. Hence, the BRW values
of a given method for two different lags cannot be compared with this normalization. The closer the BRW value is to 1, the closer the results
are to the reference and therefore the better they are.
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ever, globally, the DCP patterns are clearly improved by the
TSMBC corrections, as shown by the positive BRW values
in Fig. 8.

Continuing with the BRW results obtained based on the
second type of normalization in Fig. 9, the results are more
contrasted, as negative values are now visible. This shows
that, although DCP patterns are globally improved by the
various configurations of dOTC and TSMBC (as seen pre-
viously in Fig. 8), biases are present in the intensities of cor-
relations and, when accounted for, degrade the BRW values.
However, as for the first normalization, the spatial configu-
rations (S1V or S2V) seem to reduce biases more than the
local (L1V or L2V) configurations; the L2V and S2V ap-
proaches are in general better than the L1V and S1V ones for
the cross-correlation matrices (i.e. involving both tas and pr),
and the S1V versions appear better than the S2V ones for ma-
trices with single variables (i.e. tas/tas and pr/pr). This latter
remark is due to the fact that with the S2V approach, the com-
plexity of the methods is obviously higher than with S1V:
this is done at the expense of the quality of each variable
separately. Hence, in such a case where only one variable is
of interest in a spatial context, the S1V methods have to be
favoured. Moreover, generally, the bias reduction in depen-
dence is stronger (i.e. better) for the cross-auto-correlations
between precipitation and temperature (matrices pr/tas) and
between precipitation and precipitation (matrices pr/pr) than
for the other couples of variables (tas/tas and tas/pr). This
comes from the fact that the initial biases (i.e. Wasserstein
distances) of the raw GCM data for pr/tas and pr/pr are larger
than those from tas/tas and tas/pr. This is visible in Fig. S7,
showing the values of the Wasserstein distances (based on
the second normalization of the DCP sets) used to com-
pute BRW . In addition, some negative BRW values in Fig. 9
are related to very small differences between Wasserstein dis-
tances very close to zero. Indeed, if the model simulations
to be corrected have a DCP set already close to the refer-
ence, its Wasserstein distance will be near zero. If a cor-
rected dataset also has a distance to the reference close to
zero, the resulting ratio can be quite different from 1 (and
thus induce a strongly negative BRW value) while the two
W values are only slightly different. For example this is the
case for, among others, TSMBC-5 (S1V) at lag 1 for the
tas/tas matrix under a projection context in Fig. S7, where
the W value is small but slightly higher than that of the raw
IPSL simulations, implying a negative (red) BRW value in
Fig. 9. Finally, when comparing TSMBC-5 and TSMBC-10,
it appears that, whatever the configuration, increasing the di-
mension (i.e. 10 lags to be accounted for in the MBC, instead
of 5) degrades the gain in correlations. The increase in the
complexity (i.e. the number of dimensions) of the method
is made at the expense of the quality of the results. This is
not visible in Fig. 8, which only accounts for the shape of
the DCPs. Thus, it indicates that this degradation is mostly
due to biases in the marginals that are not fully removed by
TSMBC in a high-dimensional setting. One potential expla-

nation for this is the well-known problem of the “curse of
dimensionality” (e.g. Wilcox, 1961; Finney, 1977): having
∼ 2500 values in 4576 dimensions for TSMBC10/S2V in-
dicates that we may not have enough data to explore such
a high-dimensional space and, thus, that the MBC inference
and procedure performed by dOTC may not be robust. In ad-
dition, an increased number of dimensions could potentially
lead to two types of linear dependencies that could interfere
with the underlying MBC method being used (dOTC): (i) a
linear dependence between two “close” grid points (espe-
cially for temperature), although this effect seems limited as
dOTC performed correctly at lag 0, and (ii) a linear depen-
dence in the lagged matrix by duplicating and shifting the
columns. However, the latter is difficult to distinguish from
the curse of dimensionality problem.

5 Conclusions and discussion

The goal of bias correction (BC) is to transform biased cli-
mate simulations in order to make their statistical proper-
ties more similar to those from reference data. Over the last
decades, many univariate BC methods were developed and
applied, working on one climate variable at a time and one lo-
cation at a time. Over the last few years, various multivariate
bias correction (MBC) methods were also designed to correct
not only some marginal properties of the simulations (e.g.
means, variances, distributions) but also their dependencies
(e.g. correlations), either in a multivariate context, inter-site
context or both. Some methods were even specifically de-
veloped to adjust the temporal properties (e.g. Mehrotra and
Sharma, 2016) of the simulations. However, the latter usually
consider time-related properties and temporal (auto- or cross-
)correlations specifically, i.e. differently from inter-variable
or inter-site dependencies. The goal of the present study was
then to investigate whether, by considering time just like
other variables (i.e. by adding to the multivariate data to be
corrected some lagged time series of itself), an MBC method
is able to correct both the multivariate (inter-variable and
inter-site) properties and the temporal properties. To test this,
the dynamical optimal transport correction (dOTC) method
has been applied first to a synthetic (i.e. statistically gener-
ated) dataset and, second, to a dataset of daily temperature
and precipitation over the south of France, simulated from
the IPSL global climate model. For evaluation, the reference
dataset was extracted from higher-resolution regional climate
simulations over the same region. dOTC was then applied
to correct the IPSL dataset where various lagged versions of
those simulations have been added. This approach – perform-
ing an MBC on lagged time series in addition to the initial
ones – has been called time-shifted multivariate bias correc-
tion (TSMBC). Furthermore, it has been tested based on four
configurations: only one variable is corrected at a time, either
for a given location (L1V) or for all locations at the same
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time (S1V); the two variables are jointly corrected, for a sin-
gle location (L2V) or for all locations (S2V).

From the synthetic data experiment, a comparison with
a “reasonably naive” multivariate bias correction method,
RBC, based on random sampling, has been proposed. The
results showed the following:

– TSMBC(dOTC) provides a clear improvement com-
pared to TSMBC(RBC).

– The choice of the starting row only has a marginal in-
fluence on the corrections. In the case of a starting row
n > 1 (i.e. with a lag s > 0), the reconstruction will omit
the first n−1 time steps. In order to have as many recon-
structed time steps as in the model simulations to be cor-
rected, it is possible to sample from the first s−1 row(s)
of the fully corrected lagged matrix, allowing first n−1
time steps of the reconstruction matrix to be completed.
However, as no values are omitted when starting at first
row (r = 1) for the reconstruction, this is a logical and
practical choice.

– For a relatively low number s of lags to account for
in TSMBC (say s ≤ 10 d), the TSMBC s results are
roughly equivalent, whatever s is.

Those first conclusions indicate some robustness of the
proposed TSMBC methodology that, despite some choices
to make by the user (starting row, number of lags to include),
provides stable corrections.

In order to evaluate the results in a fully multivariate
manner (i.e. inter-variable, inter-site and temporal aspects),
a new statistical criterion has been proposed. It is based
on the Wasserstein distance between the set of distance–
correlation pairs (DCP) from references and that of a dataset
(from corrections or simulations). This distance can be com-
puted on lagged data, using multiple variables and at dif-
ferent locations, hence providing assessments of cross-auto-
correlations, generalizing the traditional correlogram tool.

The results obtained by applying TSMBC to climate sim-
ulations provided the following conclusions:

– In terms of means and standard deviations, for both tem-
perature and precipitation, the inclusion of lagged data
does not strongly modify the results of the dOTC cor-
rection method. Although some evidence of degrada-
tion might appear when the number of lags increases
(e.g. for BRσ in temperature), the bias reduction values
with respect to the raw simulations are mostly positive,
indicating an improvement over the raw GCM.

– This is also mostly the case for auto-correlation bias re-
ductions BRρ but, this time, the increase in the number
of lags in TSMBC globally improves the results, even
though TSMBC-10 does not clearly improve TSMBC-
5.

– Moreover, the main spatio-temporal patterns of the
TSMBC results are globally improving those from the
raw GCM.

– However, biases in the intensities of the (inter-variable,
inter-site or temporal) correlations might remain. This is
typically related to very small differences between two
Wasserstein distances very close to zero: if the raw sim-
ulations already have a DCP set close to the reference,
its Wasserstein distance will be near zero. Therefore, the
relative reduction of bias BR can be strongly negative,
even though the absolute difference is potentially very
small.

– Finally, if the TSMBC methodology seems to reason-
ably adjust temporal (cross-auto-)correlations, while
still performing well on multivariate properties, when
the number of lags increases (e.g. from 5 to 10 d), the
gain in the quality of the corrections is not obvious and
the latter can even be degraded. It is thus required to
limit the temporal constraints to a few time steps, de-
pending on the variable of interest. This would avoid
having to apply the MBC method in an overly high di-
mensional context and then allow robust results.

Globally, the results of the different tests indicate that the
proposed approach of time-shifted multivariate bias correc-
tion – i.e. including lagged versions of the simulated and ref-
erence datasets in a multivariate correction procedure – can
indeed be relevant to adjust temporal properties, in addition
to more usual marginal and multivariate components.

Despite its promising results, the TSMBC approach can
be further investigated and improved. For example, in the
present study, only the dOTC multivariate method was used
as a correction technique. Other MBC methods exist. Hence,
it would be interesting to test how those alternative MBCs
– such as “R2D2” (Vrac, 2018; Vrac and Thao, 2020),
“MBCn” (Cannon, 2018) or “MRrec” (Bárdossy and Pe-
gram, 2012), among others – would behave in this TSMBC
framework.

Note also that the chosen lag in TSMBC should be adapted
to the type of variable and the area. For example, taking 3 d
(s = 3) for precipitation in Europe seems reasonable, while
pressure or temperature could require a week (s ≥ 7). Hence,
a preliminary analysis of the auto-correlation or temporal
properties of the variables to be corrected should be per-
formed to decide about the relevant lag to use.
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In addition, when dealing with precipitation, the rainfall
occurrence is not treated differently from the non-occurrence
(dry days) by the TSMBC approach proposed here (i.e. using
dOTC as underlying MBC method). However, the sequences
of dry days and wet days can bear a major part of the auto-
correlation information. Hence, it could be interesting to ac-
count for this specific aspect of precipitation when perform-
ing the underlying MBC method.

Moreover, some adjustment methods were designed to
account specifically for the correction of temporal proper-
ties (e.g. Johnson and Sharma, 2012; Mehrotra and Sharma,
2015, 2016). A comparison of TSMBC to such methods
would then be of interest to understand whether specific
modelling is needed for adjusting temporal properties or
whether considering lagged data into MBCs (i.e. no specific
modelling as in TSMBC) provides equivalent results.

Finally, the Wasserstein cross-auto-correlation-based met-
ric introduced in this study could be used more generally to
compare various datasets and/or assess their diverse proper-
ties with respect to a reference. It can then be useful to make
evaluations of climate simulations (adjusted or not) in a more
holistic way.

Appendix A: Optimal transport and the dOTC method

A bias correction method is classically defined as a map T
between the biased dataset, denoted X with probability dis-
tribution PX on Rd , and the reference dataset, denoted Y with
probability distribution PY on Rd , such that

T (PX)= PY.

Consequently, a biased value x ∈ X is linked to its correction
y ∈ Y by the relation y = T (x). Robin et al. (2019) have re-
placed the map T by a probability distribution γ on Rd×Rd ,
such that γ (x,y) is the probability that y is the correction
of x. The case of a map T corresponds to the probabil-
ity distribution defined on the couples (x,T (x)). The set of
probability distribution γ (or bias correction methods) is de-
noted 0, and given by

0 =

γ : PX(A)=
∫

A×Rd

dγ,PY(B)=
∫

Rd×B

dγ

 .
With this formulation, PX and PY are the first and second
projection of all γ ∈ 0. This set is non-empty, because it con-
tains γRBC = PX×PY. The RBC (random bias correction)
procedure for γRBC consists of drawing randomly according
to PY the correction y of x. The dOTC method uses a specific
γ , which minimizes the energy.

The dOTC method is given by the γ̃ ∈ 0 which minimizes
the energy needed to transform X to Y. It is defined by the
minimum of the following cost function, coming from opti-
mal transport theory (see for example Villani, 2008; Santam-
brogio, 2015):

γ̃ = arg⊂ γ ∈ 0min
∫

Rd×Rd

‖x− y‖2dγ (x,y). (A1)

Here, ‖x− y‖2 is the energy needed to transform x to y,
weighted by γ (x,y). In the univariate case (d = 1), γ̃ corre-
sponds to the quantile mapping method. To take into account
the projection period, where references are not available, the
following modification had been proposed by Robin et al.
(2019): denoting the biased and reference dataset in the cal-
ibration period as XC and YC, and the biased dataset in the
projection period as XP, two transformations are inferred:

– γ̃ : XC
7−→ YC, the bias, and

– ϕ̃ : XC
7−→ XP, the evolution of the biased data.

The correction ZP during the projection period by dOTC is
formally (see Robin et al., 2019, for details) given by

ZP
=

(
ϕ̃ ◦ γ̃ ◦ ϕ̃−1

)(
XP) .

The “evolution” distribution is transferred along the “bias”
distribution to construct a correction in the reference world
with an evolution similar to that of the biased data. Note
that this method seeks to preserve the evolution of the model
while reducing bias. This idea is similar to the CDF-t method
(see for example Vrac et al., 2012), which extends the quan-
tile mapping in a non-stationary context.

Appendix B: Wasserstein metric

From the probability distribution γ̃ defined by the Eq. (A1),
a metric called the Wasserstein distance can be derived. This
metric is defined by

W(PX,PY)2
=

∫
Rd×Rd

‖x− y‖2dγ̃ (x,y)= inf
γ∈0

∫
Rd×Rd

‖x− y‖2dγ (x,y). (B1)

The Wasserstein metric is sensitive to the shape of the distri-
bution and is a measure of how much it costs to transform PX
to PY. Hence, a value of W(PX, PY) close to 0 indicates that
the two (multivariate) distributions PX and PX are similar,
while a large value indicates that the distributions are differ-
ent.

Code and data availability. The CMIP5 and CORDEX
databases are freely available. Source codes of TSMBC are freely
available in the R/Python package SBCK under the GNU-GPL3
license (https://doi.org/10.5281/zenodo.5483134; Robin, 2021).
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-1253-2021-supplement.
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