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Abstract—In this paper, we develop a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) 

to fuse expert knowledge and condition monitoring information for RUL prediction under the belief function 

theory framework. The evidential Expectation-Maximization algorithm is implemented in the offline phase 

to train the MoG-EHMM based on historical data. In the online phase, the trained model is used to recursively 

update the health state and reliability of a particular individual system. The predicted RUL is, then, 

represented in the form of its probability mass function. A numerical metric is defined based on the 

Bhattacharyya distance to measure the RUL prediction accuracy of the developed methods. We applied the 

developed methods on a simulation experiment and a real-world dataset from a bearing degradation test. The 

results demonstrate that despite imprecisions in expert knowledge, the performance of RUL prediction can 

be substantially improved by fusing expert knowledge with condition monitoring information. 

 

Index Terms—Belief function theory, expert knowledge, Mixture of Gaussians-evidential hidden Markov 

model (MoG-EHMM), remaining useful life (RUL)  

I. INTRODUCTION 

Prognostics and health management (PHM) has been widely recognized as a useful tool to provide early 

failure warnings and prevent industrial equipment from unexpected shutdowns. One of the core tasks in PHM 

Remaining Useful Life Prediction by Fusing Expert 
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is to accurately predict remaining useful life (RUL) as a large number of engineering decisions rely on the 

predicted RUL [1]. For example, the results of RUL prediction are used for effective predictive maintenance 

planning to reduce unplanned maintenance costs and resource wasting. Catastrophic consequences on 

production and human safety can also be prevented based on the RUL prediction results. RUL prediction has, 

therefore, attracted tremendous research efforts over the past decade [2],[3]. 

Existing approaches to RUL prediction can be broadly divided into two categories: physical model-based 

approaches and data-driven approaches. The physical model-based approaches characterize underlying 

physical failure processes and predict RUL via analytical models [4]. Often, filtering techniques are used to 

sequentially update parameters of physical models when new condition monitoring (CM) information is 

collected [5]. However, as industrial equipment becomes increasingly complicated and sophisticated, the 

challenge of developing physics-of-failure models emerges and limits the application of physical model-

based approaches. 

Unlike the physical model-based approaches, data-driven approaches directly learn degradation patterns 

from CM information. More specifically, we can divide data-driven approaches into direct RUL prediction 

approaches and statistical model-based approaches [6]. Direct RUL prediction approaches typically resort to 

artificial intelligence (AI) methods, e.g., neural networks [7], deep learning [8], support vector machines [9], 

to directly learn a complex mapping from CM information to the RUL. These approaches, with their powerful 

feature extraction and regression capability, have received tremendous attention in recent years. However, 

direct RUL prediction approaches require a large number of high-quality data to train the AI-based models. 

Further, direct RUL prediction approaches have been criticized for being “black boxes” due to their inability 

to physically explain the data-RUL mapping learned from the data [10].  

On the other hand, statistical model-based approaches use rigorous models to learn the degradation 

evolution regularities from CM information. Typical statistical model-based prognostics including Wiener 

process-based, Gamma process-based, inverse Gaussian process-based, and hidden Markov models 

(HMMs)-based approaches. Among these statistical model-based approaches, the HMM-based approach has 
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widespread applications due to its excellent capability to connect physical degradation processes with 

observations. Successful applications of the HMM-based approach include bearings [11], turbofan engines 

[12], and light-emitting diodes (LED) [13]. Therefore, the HMM-based approach is considered in this work 

for degradation modeling and RUL prediction. 

In general, an HMM comprises of two stochastic processes: one is a Markov chain that characterizes the 

actual degradation of system health states; the other models the observations given the actual degradation 

states [14]. The HMM allows us to infer the true but unobservable degradation process based on the collected 

observation data. Traditional HMMs are only able to treat discrete observations. In practice, however, a large 

number of observation processes are continuous as they come from continuous condition-monitoring signals. 

To model the relationship between continuous signals and discrete hidden degradation states, the mixtures of 

Gaussians (MoG) model is frequently combined with HMMs for prognostics. These models are called MoG-

HMMs. For example, Tobon-Mejia et al. [15] developed a MoG-HMM-based RUL prediction method for 

bearings. This method relies on two phases: offline and online. The offline phase trained the MoG-HMM by 

estimating its parameters. The trained MoG-HMM was exploited in the online phase to assess the current 

health state of a new system continuously, and to estimate its RUL with the associated confidence. Chen et 

al. [16] formulated an HMM with auto-correlated observations (HMM-AO) to characterize the degradation 

of manufacturing systems and developed optimal maintenance policies based on the RUL prediction results. 

Geramifard et al. [17] introduced a multimodal HMM (m2HMM) to monitor tool wear. They used three 

weighting schemes and two switching strategies to combine the continuous wear output from multiple modes.  

Nevertheless, most of the existing MoG-HMM-based prognostics use CM information as the only 

information source for RUL prediction. In reality, apart from CM information, some subjective knowledge 

on the health state of a system can also be collected from experts. For example, the health state of bearings 

can be evaluated by experts via direct visual inspections or indirect measurements [23]. In aviation, experts 

might be able to evaluate the health state of turbofan engines during the breaks between two adjacent missions 

[12]. Expert knowledge can also provide insight into the health state and could be integrated with the CM 



4 

information to achieve more accurate prognostics. However, as pointed out by Si et al. [1] and Lei et al. [10], 

the effective use of subjective expert knowledge for RUL prediction remains an open challenge. More 

specifically, the challenges include: (1) to quantify expert knowledge imprecision due to the vagueness of 

expert judgments and/or the measurement uncertainty; (2) to fuse two different types of information, i.e., 

expert knowledge and CM information. Existing literature has made some attempts on these challenges. For 

example, He et al. [19] introduced an exponential model to characterize the degradation of Li-ion batteries, 

where the model parameters were initialized by combining different imprecise expert knowledge. However, 

they did not use expert knowledge in the operation phase of Li-ion batteries to support RUL prediction. 

Ramasso and Denoeux [12] developed a partially-hidden Markov model (PHMM) to estimate model 

parameters by combining expert knowledge and observations. They found that including expert knowledge 

drastically improved the performance of parameter estimation. Nevertheless, the PHMM assumed that 

observations are discrete, and only used one state sequence in the offline training phase. Such a model cannot 

be straightforwardly implemented on continuous CM information from non-repairable systems. To the best 

of our knowledge, existing MoG-HMM-based models did not fuse expert knowledge and CM information 

for RUL prediction. 

A mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) is proposed in this paper to fill 

the aforementioned research gap. The expert knowledge is quantified by the belief function theory which 

allows modeling knowledge with a range of quality levels (from precise knowledge down to non-informative 

knowledge) [12],[18]. Compared to the traditional MoG-HMM [15], the hidden states in the developed model 

are partially, rather than completely hidden, because some expert knowledge on the health states can be 

elicited during system operations. Under the developed model, the traditional MoG-HMM [15] becomes a 

special case with non-informative knowledge. Moreover, the Dempster’s rule of combination in the belief 

function theory provides a useful tool to fuse multiple sources of expert knowledge and CM information. The 

unique contributions of this paper lie in the following three aspects: 

1) A MoG-EHMM is developed to fuse expert knowledge and CM information under the belief function 
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theory framework.  

2) RUL is predicted by integrating expert knowledge and CM information. 

3) A numerical metric is defined based on the Bhattacharyya distance to measure the accuracy of the predicted 

RUL. 

The remainder of this paper is organized as follows: Section II provides the necessary background of the 

belief function theory. The MoG-EHMM is formally defined and used for RUL prediction in Sect. III. 

Simulation experiments (Sect. IV) and an application on real bearing degradation dataset (Sect. V) are carried 

out to examine the effectiveness of the MoG-EHMM. Finally, conclusions are drawn in Sect. VI. 

II. BACKGROUND 

Belief function theory (BFT) was initialized by Dempster [20] and Shafer [21]. In general, let   be a set 

containing all hypotheses/propositions that are presumed to be mutually exclusive. Let Y be a variable taking 

value in  . The uncertain information on Y can be represented by a mass function : 2 [0,1]m  → , which 

satisfies the normalization axiom ( )=1
A

m A
  . The set A   with ( ) 0m A    is called a focal set. In 

particular, if a mass function has a single focal set, it is called a logical mass. It represents a piece of precise 

knowledge. The mass function degenerates to a Bayesian mass if all focal sets are singletons. A vacuous mass 

( ) 1m  =  corresponds to the non-informative knowledge.  

The plausibility function is defined as 

 ( ) ( ).
A B

Pl B m A
 

=  (1) 

The plausibility of B equals to the sum of the masses that are not in contradiction with set B, and represents 

the maximum degrees of support that could be attributed to set B. 

The contour function : [0,1]pl →  restricts the plausibility function to singletons, i.e., ( ) ( )pl Pl W = , 

where | | 1W =  and  . The quantity ( )pl   represents the likelihood of proposition  . 

Evidence from different sources can be fused by the Dempster rule of combination (DRC) “ ”, which is 
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defined as 

 ( )
1 2

1 2

( ) ( )
if

[ ] 1

0 if

B C A
m B m C

A
m m A k

A

 =

  

 =  −
 =


, (2) 

where ( )1 2 1 2[ ] ( ) ( )
B C

k m m m B m C
 =

=   = is called the degree of conflict. If 1m  (or 2m ) is a 

Bayesian mass, then 1 2m m  is also a Bayesian mass. 

III. METHODOLOGY 

In this section, we develop a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) to fuse 

expert knowledge with CM information. The MoG-EHMM is formally defined as a three-layer model (See 

details in Sect. III-A). The MoG-EHMM-based RUL prediction comprises of two phases: offline and online. 

Both phases can elicit Expert knowledge. In the offline phase, training data are collected from a population 

of similar systems. Then, health indicators (HIs) are extracted from the original training data through feature 

extraction. Evidential Expectation-Maximization (E2M) algorithm is implemented to estimate the parameters 

of MoG-EHMM for model training (See details inSect. III-B). In the online phase, CM information is 

collected from a new system. Based on the extracted HIs and the online expert knowledge, forward algorithm 

[14] is exploited recursively for health state inference, system reliability updating, and the RUL prediction. 

(See details in Sects. III-C, and III-D). 

A. Model Formulation  

The MoG-EHMM comprises of three-layers: true degradation layer, observation layer, and knowledge 

layer, as shown in Fig.1. The true degradation layer models the true (but unobservable) degradation process. 

It is partially hidden because some knowledge of the health state of a system is available from experts. The 

observation layer represents the HIs extracted from signals, and the knowledge layer quantifies the expert 

knowledge by the contour functions under the BFT.  
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Fig. 1.  The proposed MoG-EHMM. 

 

In the true degradation layer, it is assumed that the degradation of a system is multi-state and can be 

modeled by a discrete- time discrete-state Markov model. Let ( )S t  denote the system states associated with 

degradation, where 1 2( ) , ,..., NS t S S S  and N is the number of system states. The number of states can be 

determined by expert experience [15]. Let 1 2, ,..., NS S S  be in descending order of performance levels where 

1S  is the perfect functioning state and NS  is the complete failure state. The one- step transition probability 

from state iS   to jS   is denoted as Pr{ ( 1) | ( ) }ij j ia S t S S t S= + = =  ( 1,2,...,t T=  , 1 ,i j N   ). The 

corresponding transition probability matrix is denoted by [ ]ij N Na =A  , where 
1

1
N

ijj
a

=
=  . oote that 

maintenance action is not considered in the present study, i.e., ( )S t  can only transit to worse states. The 

resulting hidden Markov model is the so-called left-right or Bakis model in HMMs [14]. The initial state 

probability distribution is represented by 1 2[ , ,..., ,..., ]i N   =π   where Pr{ (0) }i iS S = =   (1 i N   ). 

System reliability 1 2( ) [ , ,..., ,..., ]i NS t S S S S  is defined as the probability that the performance level of the 

system is not lower than a threshold state FS , 

 ( ) Pr{ ( ) }
i F

S iS S
R t S t S


= = . (3) 

In the observation layer, continuous CM information denoted by ( )tc  , such as vibration signals and 

acceleration signals, can be collected from sensors. Through feature extraction, HIs can be reconstructed 

from ( )tc . Let ( )tx ( 1,2,...,t T= ) denote the extracted HIs, where 1 2( ) [ ( ), ( ),..., ( )]
fNt x t x t x t=x  and fN  is 

the number of HIs. Examples of the HIs include root mean square, mean value, and kurtosis. A Gaussian 

...

( ( ) | ( ))b t S tx

Observation Layer Partially Hidden Layer Knowledge Layer

...

...

NS

1( )x t
( )tpl

NS

...

1S
1S

...

...

i
S

i
S( )

i
x t

( )
fNx t
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mixture model (GMM) is utilized to characterize the continuous evolution behaviors of the HIs and the 

uncertainty associated with them. In the GMM, the emission probability ( ( ) | ( ))b t S tx   represents the 

probability of observing the current values of HIs ( )tx  , given that the current state is ( )S t  , i.e., 

( ( ) | ( ))ib t S t =x Pr{ ( ) | ( ) } = ( ( ) | , )i i it S t S t=x x μ Σ , where iμ  is the mean value of ( )tx  under the given 

hidden state iS , while the covariance matrix iΣ  captures the uncertainty associated with ( )tx . oote that 

the number of Gaussian components is determined in this paper by minimizing the Akaike information 

criterion (AIC) [12],[15]. 

In the knowledge layer, expert knowledge on the health state of a system is given in the form of mass 

function 
1 2

( ) [ ( ), ( ),..., ( ),..., ( )]
NS S St m t m t m t m t=m  or contour function 

1 2
( ) [ ( ), ( ),..., ( )]

NS S St pl t pl t pl t=pl

( 1,2,...,t T= ) under the BFT. A commonly-used format for experts to express their knowledge in terms of 

contour function [12]: 

 
1 If ( )

( )
Otherwise

i

Expert i

S

S t S
pl t



 =
= 


, (4) 

where ( )ExpertS t   is the current health state judged by experts,    ( 0 1   ) is the non-specificity 

coefficient that quantifies the epistemic uncertainty in the expert judgments: 0 =   indicates precise 

knowledge elicited by experts, whereas 1 =   corresponds to the non-informative knowledge. A larger 

value of   means experts are more uncertain in his/her judgments. oote that ( )ExpertS t  is not guaranteed 

to be coincide with the true health state, denoted by ( )TrueS t  , as the experts might sometimes provide 

incorrect judgments. 

Expert knowledge can also be elicited in terms of mass function. In fact, as shown in Proposition 1 in the 

Appendix A in the supplementary file, mass function is equivalent to contour function in terms of eliciting 

knowledge from the experts. If the mass function is elicited, it can be converted into the contour functions 

before fusing with CM information. Therefore, we only present the developed methods in terms of contour 

functions in this work.  
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B. Parameter Estimation of MoG-EHMM in the Offline Phase 

In the offline phase, the training data, denoted as ( ) ( )k

Tr tc ( 1, 2,...,k K= , 1,2,...,t T= ) need to be collected 

from a population of K  identical systems. The number of training data, i.e., K, should be as large as possible, 

because the size of the training dataset could directly impact the training performance. Through feature 

extraction, the HIs ( ) ( )k

Tr tx  ( 1, 2,...,k K= , 1,2,...,t T= ) can be extracted. Based on the training data ( ) ( )k

Tr tx  

and its corresponding expert contour function ( ) ( )k

Tr tpl  ( 1, 2,...,k K=  , 1,2,...,t T=  ), the parameter of the 

MoG-EHMM ˆ ˆ ˆˆ ˆ( , , , )=θ π A μ Σ   can be estimated by maximizing the likelihood of observing ( ) ( )k

Tr tx   and 

( ) ( )k

Tr tpl , ( 1, 2,...,k K= , 1,2,...,t T= ) 

 

(1) ( ) (1) ( )

(1) ( ) (1) ( )

( ) ( )

1 1

ˆ arg max ( , | ) Pr{ ( ),..., ( ), ( ),..., ( ) | }

arg max ( , | ) ( ( ),..., ( ) | ) ( ( ),..., ( ))

arg max ( , | ) ( ( ) | ) ( )

K K

Tr Tr Tr Tr

K K

Tr Tr Tr Tr

T
k k

Tr Tr

k t

t t t t

b t t t t

b t t
= =

= =

= = 

= = 

θ

θ

θ

θ x pl θ x x pl pl θ

x pl θ x x θ pl pl

x pl θ x θ pl
K



 (5) 

where ( )( ( ) | )k

Trb tx θ  is the emission probability of the kth training data at time t given the parameters θ  of 

the MoG-EHMM. oote that the result of ( ) ( )( ( ) | ) ( )k k

Tr Trb t tx θ pl   is still a probability measure as 

( )( ( ) | )k

Trb tx θ  can be regarded as a Bayesian mass [12]. Directly resolving (5) is challenging because the true 

states are partially hidden. The E2M algorithm can be implemented to calculate ( , | )x pl θ  iteratively: 

E-Step: Compute the expectation of ˆ( , | )x pl θ  given the current estimates θ̂ . 

M-Step: Maximize the log-likelihood function obtained in the E-Step and calculate a new maximum 

likelihood estimate for the unknown parameters θ̂ . 

To implement the E2M algorithm, two auxiliary variables, namely the forward variable ( ) ( )
j

k

S t   and 

backward variable ( ) ( )
j

k

S t  are introduced. In this work, ( ) ( )
j

k

S t  is defined as the probability of observing 

( ) ( )(1),..., ( )k k

Tr Tr tx x  and ( ) (1),...,k

Trpl  ( ) ( )k

Tr tpl  with the current state jS  given the parameter θ : 

 
( )

( ) ( ) ( )

( ) ( )

( )= Pr{ ( ), ( ), ( ) | }

( ( ) | ) ( ) [ ]

j

k k k

S Tr Tr j

k k

Tr Tr j

t t t S t S

b t t S

 =

= 

x pl θ

x θ pl
 (6) 
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for 1 j N  ( 1, 2,...,k K= , 1,2,...,t T= ). It can be verified that 

 

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

(1) ( (1) | ) (1) [ ]

( 1) ( ( 1) | ) ( 1) [ ] ( )

j

j i

k k k

S i Tr Tr j

N
k k k k

S Tr Tr j S ij

i

b S

t b t t S t a

 

 
=

 =  

  

+ = +  +   
 


x θ pl

x θ pl
 (7) 

The backward variable ( ) ( )
j

k

S t   is defined as the probability of observing ( ) ( )( 1),..., ( )k k

Tr Trt T+x x   and 

( ) ( )( 1),..., ( )k k

Tr Trt T+pl pl  ( 1, 2,...,k K= , 1, 2,..., 1t T= − ) given the current state 
jS  and the parameter θ  

 

( ) ( ) ( )

( ) ( )

( )= Pr{ ( 1), ( 1) | ( ) , }

( ( 1) | ) ( 1)

j

k k k

S Tr Tr j

k k

j Tr Tr

t t t S t S

b t t

 + + =

= +  +

x pl θ

x θ pl
 (8) 

for 1 ,i j N  ( 1, 2,...,k K= , 1, 2,..., 1t T= − ). It can also be verified that 

 
( )

( )

( ) ( ) ( ) ( )

1

( ) 1 for 1

( 1) ( ( 1) | ) ( 1) [ ] ( )

j

j j

k

S

N
k k k k

S Tr Tr j ij S

i

T j N

t b t t S a t



 
=

 =  

  

+ = +  +   
 
 x θ pl

 (9) 

The probability of being in state jS   at time t given ( ) (1),...,k

Trx
( ) ( )k

Tr tx  , ( ) ( )(1),..., ( )k k

Tr Tr tpl pl  ( 1, 2,...,k K=  ,

1,2,...,t T= ) and the parameter θ , denoted as ( ) ( )
j

k

S t , can be calculated by 

 

( ) ( )

( )

( ) ( )

1

( ) ( )
( )

( ) ( )

j j

j

j j

k k

S Sk

S N k k

S Sj

t t
t

t t

 


 
=

=


 (10) 

and the probability of the kth training data being in state iS  at time t while in state jS  at time t+1, denoted 

as ( )

, ( )
i j

k

S S t , can be computed by 

( )

( )

( ) ( ) ( ) ( )

( )

,
( ) ( ) ( ) ( )

1 1

( ) ( ( 1) | ) ( 1) [ ] ( 1)
( )

( ) ( ( 1) | ) ( 1) [ ] ( 1)

i j

i j

i j

k k k k

S ij Tr Tr j Sk

S S N N
k k k k

S ij Tr Tr j S

i j

t a b t t S t
t

t a b t t S t

 


 
= =

+  + +
=

+  + +

x θ pl

x θ pl

 (11) 

After calculating ( )

, ( )
i j

k

S S t  and ( ) ( )
j

k

S t  for all training data, the estimate of the initial state probability ˆ
i

(1 i N  ) can be calculated by 
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( )

1
(1)

ˆ j

K k

Sk

i
K


 =

=


 (12) 

The estimate of the one-step transition probability ija (1 ,i j N  ) is 

 

( )

,1 1

( )

1 1

( )
ˆ

( )

i j

i

K T k

S Sk t

ij K T k

Sk t

t
a

t





= =

= =

=
 

 
 (13) 

The estimates of the mean value vector and the covariance matrices of the MoGs can be calculated by 

 

( ) ( )

1 1

( )

1 1

( ) ( )
ˆ

( )

i

i

K T k k

S Trk t
i K T k

Sk t

t t

t






= =

= =

=
 

 

x
 (14) 

and 

 

( ) ( ) ( )

1 1

( )

1 1

ˆ ˆ( )( ( ) )( ( ) )
ˆ ,

( )

i

i

K T k k k

S Tr i Tr ik t
i K T k

Sk t

t t t

t

  



= =

= =

− −
=
 

 

x x
Σ  (15) 

respectively. The MoG-EHMM training procedure is summarized in Algorithm 1. The initial value for 0μ  

can be set by the K-means clustering algorithm, while 0 0 0, ,π A Σ  can be initialized by assuming non-

informative knowledge. Convergence of Algorithm 1 is checked by comparing the relative deviation of the 

maximum log-likelihood between two adjacent iterations to a pre-specified threshold  , say -6=10  as 

used in this work. Note that the forward and backward variables should be normalized in each step to avoid 

exponentially converging to zero. 

Algorithm 1: Parameter estimation of MoG-EHMM θ̂  

Require: Initial values of θ̂ , denoted as 0θ ;  

Training data ( ) ( )(1),..., ( )k k

Tr Tr Tx x ; 

Expert knowledge ( ) ( )(1),..., ( )k k

Tr Tr Tpl pl . 

Output: The estimated parameters θ̂  of the MoG-EHMM. 

1: Set 
( )

0

q =θ θ ; q=1; 

2: For k=1 to K do 

3:      For t=1 to T do 

4:      Calculate ( ) ( )
j

k

S t , ( ) ( )
j

k

S t , ( ) ( )
j

k

S t , ( )

, ( )
i j

k

S S t  by (7),(9)-(11);  

5:      oormalize ( ) ( )
j

k

S t  and ( ) ( )
j

k

S t ; 

6:      End For; 

7: End For; 

8: Calculate the parameter 
( +1)ˆ= q

θ θ  by (12)-(15); 

9: If 
( 1) ( ) ( )| ( , | ) ( , | ) | ( , | )q q q + − x pl θ x pl θ x pl θ , 

( 1)ˆ= q+
θ θ  

10:
( 1)ˆ= q+

θ θ ; Break; 

11: Else 
( +1)q=θ θ ; Go to Step 2; 

12: End If. 
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C. Health State Inference and Reliability Updating in the Online Phase 

In the online phase, the CM information, denoted as ( )CM tc ( 1,2,...,t T= ) is collected from a particular 

individual system of interest. Similar to the offline phase, once ( )CM tc   is collected, the HIs ( )CM tx

( 1,2,...,t T= ) are extracted through feature extraction. Expert knowledge can also be elicited in terms of 

contour functions for the states, denoted by ( )CM ktpl  . The two information sources can be merged to 

estimate the true health state of the system and update reliability estimation based on the trained MoG-

EHMM in the offline phase. Let 
1 2, ,( ) [ ( ), ( ),...,CM k CM S k CM S kt p t p t=p , ,( ),..., ( )]

i NCM S k CM S kp t p t  represents the 

posterior state probability distribution of the new system updated by ( )CM ktx  and ( )CM ktpl  up to time kt , 

that is 

 ,
ˆ( ) Pr{ ( ) | ( ), ( ), }

iCM S k k i CM k CM kp t S t S t t= = x pl θ . (16) 

From Bayesian theorem, , ( )
iCM S kp t   can be readily computed based on the forward variable using 

( )CM ktx  and ( )CM ktpl , and θ̂  as following 

 ,

ˆ ( )Pr{ ( ) , ( ), ( ) | }
( )

ˆ ( )Pr{ ( ), ( ) | }

i

i

i

i

S kk i CM k CM k
CM S k

S kCM k CM k
S

tS t S t t
p t

tt t





=
= =


x pl θ

x pl θ
 (17) 

Let ( )MAP kS t   be the most likely state at time kt  . It can be determined by maximizing the posterior 

probability , ( )
iCM S kp t  (i=1,2,...,N) 

 
,

1,2,...,

( ) arg max ( ), 1,2,...,
iMAP k CM S k k

i N

S t p t t T
=

=  = . (18) 

Similarly, the system reliability can be updated by the posterior probability distribution ( )CM ktp  and the 

transition probability matrix Â  estimated in the offline phase. 

 
( )ˆ( ) ( )

i F

S CM k

S S

tR t t


 =  p A , (19) 

where t   is the time elapsed after the running time kt  of the specific new system.  



13 

D. RUL Prediction 

Given the failure threshold state FS , if ( )MAP k FS t S , the RUL of the system is definitely zero. Otherwise, 

let   denotes the first passage time to the failure state {S }j  where j FS S  

 inf{ : ( ) | ( ) }F MAP k FS S S t S  =   . (20) 

Hence, the RUL of the system, i.e., t  , is 

 kt t = − , (21) 

and the probability mass function of t  can be calculated by 

 Pr{ } Pr{ }, 1,2,...t t kq t t t t t=
= = = = + = . (22) 

Based on the total probability law, the failure probability at time kt t+  can be decomposed into  

 

1

2

1

Pr{ ( ) | ( ) }

Pr{ ( ) | 1}Pr{ 1| ( ) }

Pr{ ( ) | 2}Pr{ 2 | ( ) }

Pr{ ( ) | }Pr{ | ( )

j F

j F
t

j F
t

j F

k j k i

S S

k j k i

S S
q

k j k i

S S
q

k j k i

S S

S t t S S t S

S t t S t t S t S

S t t S t t S t S

S t t S t t t t S t S

=

=








=

+ = =

 = + = = = =

 + + = = = =

+

 + + = = = =







 }

t tq =

. (23) 

Hence, the probability mass function of RUL t   can be computed recursively 

 

=

1

1

Pr{ ( ) | ( ) }

Pr{ ( ) | }

j F

j F

t t k j k i

S S

t

k j t l

l S S

q S t t S S t S

S t t S t l q





−

=

= 

= + = =

− + = = 



 
, (24) 

where Pr{ ( ) | ( ) } 1 ( )
j F

k j k i SS S
S t t S S t S R t


+ = = = −  . In general, it is difficult to calculate 

Pr{ ( ) | }k jS t t S t l+ = =  for 1 1l t  − , because the recovery from the failure state to a functioning state is 

possible for repairable systems. In this paper, as we consider only non-repairable systems, (24) reduces to 

 ( 1) ( ).t t S Sq R t R t= = − −  (25) 
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Detailed derivation of (25) can be found in Appendix B provided as supplementary file. 

IV. SIMULATION EXPERIMENTS 

In this section, simulation experiments are designed to examine the performance of the MoG-EHMMs. We 

consider a MoG-HMM with four states and 3-dimensional Gaussian emission probability distribution 

( ( ) | ( )) ( ( ) | , )ib t S t t=x x μ Σ . The parameters of the MoG-HMM are given as follows 

0.5 0.5 0 0

0 0.6354 0.3646 0

0 0 0.7565 0.2435

0 0 0 1

 
 
 =
 
 
 

A [1,0,0,0]=π  

0.0412 0.0916 0.0579

0.1176 0.1184 0.9168

0.2002 0.2634 0.8672

1 1 0.8446

 
 
 =
 
 
 

μ 1

0.0108 0.0018 0.0007

0.0018 0.0137 0.0014

0.0007 0.0014 0.0121

 
 

 =
 
  

  

2

0.0111 0.0020 0.0012

0.0020 0.0134 0.0019

0.0012 0.0019 0.0137

 
 

 =
 
  

3 4

0.01 0 0

= 0 0.01 0

0 0 0.01

 
 

  =
 
  

 

To examine the influence of expert knowledge on the health state inference and reliability updating, two 

different experiments are designed in both offline and online phases. One hundred sequences of training data 

were generated based on the true values and used in the offline phase to estimate parameters of the MoG-

EHMM, while another sample is generated to serve as online CM information. 

A. Reliability Updating of the MoG-EHMM 

(1) Performance Under Partial Knowledge: We first examine the scenario where partial knowledge is 

provided by the experts in the offline phase. As defined in [12], if experts have partial knowledge on the true 

health state, the contour function takes the following form 

 

( ) ( )1 If ( ) ( )
( )

Otherwise
i

k k

Expert True i

S

S t S t S
pl t



 = =
= 


 (26) 

where 
( ) ( )k

ExpertS t   and ( ) ( )k

TrueS t   are the expert-believed and true health state, respectively. Algorithm 1 is 

implemented to estimate the parameters of the MoG-EHMM by fusing the offline expert knowledge and the 
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training CM information. Equation (19) is, then, used to dynamically update the system reliability at time 3t  

by only using the online CM information, and the results are plotted in Fig. 2(a). As shown in Fig. 2(a), the 

more precise expert knowledge in the offline phase, i.e., when   changes from 1 to 0, the closer that the 

updated reliability is to the true reliability. This is because the transition probability matrix can be more 

accurately estimated by integrating expert knowledge in the offline phase. In particular, in the worst case of 

=1 , i.e., the expert has non-informative knowledge, the corresponding reliability is the same as that from 

only using training data. 

To investigate the influence of expert knowledge on system reliability updating in the online phase, we 

assume non-informative knowledge is given by the experts in the offline phase and using Algorithm 1 to train 

the MoG-EHMM. Figure 2(b) plots the updated reliability at a particular time 4t  by (19). As shown in Fig. 

2(b), even with an imprecision level of 0.8 =  , the updated reliability is more accurate than without 

integrating online expert knowledge. However, the updated reliability is slightly lower than the true reliability 

values (See the difference between the blue curve and the true one). This is because the transition probability 

matrix cannot be accurately estimated without precise expert knowledge in the offline phase (as we assumed 

non-informative knowledge in the offline phase). Hence, it is concluded that integrating expert knowledge in 

both the offline and online phase is beneficial to the accuracy of system reliability updating. 

 
Fig.2. Reliability updating by fusing the expert knowledge. (a) In the offline phase updated at 3t , (b) In the online phase updated at 4t . 
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Fig.3. Reliability updating by fusing expert knowledge with noise. (a) In the offline phase updated at 3t , (b) In the online phase updated at 4t . 

 
(2) Performance Under Expert Knowledge with Noise: In practice, the experts may sometimes provide 

misleading state estimations. To capture such phenomenon, it is assumed that as in (26), with a probability 

ErrorP , the experts might give a wrong state estimation, i.e., 
( ) ( )( ) ( )k k

Expert TrueS t S t . A Beta distribution with mean 

value v  and variance 0.2 is used to quantify the error probability of expert knowledge with respect to the 

true states i.e., ~ ( ,0.2)ErrorP Beta v . Such a model is called expert knowledge with noise [12]. To study the 

influence of expert knowledge with noise in the offline phase, Algorithm 1 is implemented to estimate the 

transition probability matrix. The system reliability is, then, updated by (19) at time 3t , the results are shown 

in Fig. 3(a). As illustrated in Fig. 3(a), an error probability with mean value =0.6v  can still result in a better 

reliability estimate than without offline expert knowledge. However, when error probability becomes much 

greater, e.g., 0.8v =   or 1v =  , the reliability estimates are less accurate than when only using CM 

information. The reason is the estimated transition probability matrix Â   tends to underestimate the 

reliability as it overestimates the transition probability to the failure state, which it is caused by the wrong 

inputs from the expert knowledge with noise. 

To investigate the influence of expert knowledge with noise in the online phase, non-informative 

knowledge is assumed in the offline phase while expert knowledge with different levels of error probability 

are considered in the online phase. The system reliability is updated at time 4t  by (19), and the results are 

illustrated in Fig. 3(b). As shown in Fig. 3(b), even with a mean error probability of 0.6v = , the reliability 

estimate is still better than that of without online expert knowledge with noise. Moreover, with the mean error 

probability of 0.8v =  or 1v = , the reliability estimate is no worse than when it was without online expert 
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knowledge with noise. 

B. Health State Inference by MoG-EHMM 

To assess the quality of health state inference by the MoG-EHMM, two metrics, namely the adjusted Rand 

index (ARI) and the improvement ratio (IR), are used to quantify the difference between the true state 

sequence and the predicted state sequence by the MoG-EHMM. The ARI is a well-known partition 

performance measure which ranges from 0 to 1, where 0 presents two purely random partitions, and 1 for 

two identical partitions. In this work, the true health states of the generated sequences are viewed as the 

baseline of the partition, whereas the state sequences inferred by the MoG-EHMM is used to calculate the 

ARI. 

The IR is proposed to measure the improvement of the health state inference by fusing expert knowledge 

against the result from only using CM information. It is defined as 

 
error error

CM Expert

error

CM

N N
IR

N

−
=  (27) 

where error

CMN  is the number of errors in the health state inference made by using only CM information, 

error

ExpertN  is the number of errors in the health state inference made by fusing the expert knowledge. If 0IR  , 

it means the health state inference by fusing expert knowledge can improve the quality of the health state 

inference. 

The experiment in Sect. IV.A are repeated 50 times (each time, a new data set is generated for training and 

testing). The results of ARI and IR are shown in Fig. 4(a) and 4(b), respectively. As shown in Fig. 4(a), the 

quality of health state inference gradually degrades when the imprecision level   drops from precise to non-

informative knowledge. Moreover, the mean values of ARI with noise are always no better than that of 

without noise for offline expert knowledge, indicating that the misleading recommendations have negative 

impacts on the health state inference. As shown in Fig. 4(b), the IR values with offline expert knowledge are 

almost positive, which indicates that the offline expert knowledge can improve the health state inference as 

compared to the case of using only CM information. Similarly, the improvement of health state inference can 
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still be influenced by the misleading recommendations of experts. Figure 5 shows the ARI and IR values 

after adding expert knowledge in the online phase. As illustrated in Fig. 5, both of the ARI and IR values start 

from 1, and then gradually degrade as the value of    or v   gets larger. It is concluded that the MoG-

EHMM with online precise knowledge can correctly infer the health state. Similar as the offline phase, the 

misleading recommendations by experts in the online phase can negatively affect the quality of health state 

inference. 

 
Fig.4.  Mean values with one standard deviation of (a) The ARI, (b) The IR, over 50 run times in the offline phase. 

 

 
Fig.5.  Mean values with one standard deviation of (a) The ARI, (b) The IR, over 50 run times in the online phase. 

 

V. APPLICATION TO NASA BEARING TEST DATA 

We further test the performance of the proposed method on a real bearing run-to-failure test dataset 

provided by oASA prognostics center of excellence [24]. The data acquisition, health indicator construction, 

health state division and the RUL prediction by the MoG-EHMM are described as follows. 

(1) Data Acquisition: The bearing test rig, as shown in Fig. 6, comprises of four test bearings on one shaft. 

The rotation speed of the shaft was kept constant at 2000rpm. An accelerometer was installed on each bearing 

housing. Vibration signals were collected every 20 minutes by a oational Instruments DAQCard-6062E data 

acquisition card. The data sampling rate is 20 kHz and the data length is 20480 points [11]. The vibration 

signals of the four bearings are used to estimate the parameter of the MoG-EHMM in the offline phase. 

( )v ( )v

(a) (b)

(a) (b)

( )v ( )v
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Fig. 6.  Bearing test rig [11]. 

 

(2) HI Construction: Based on the vibration signals, three features, i.e., the root mean square (RMS), the 

average power of vibration (APV), and the mean value of vibration (MVV), were extracted via the time-

domain feature extraction methods. These three features are selected as they are the most relevant features to 

the bearing degradation [15],[23]. The extracted health indicators are plotted in Fig. 7. 

 
Fig. 7.  Extracted features from the four bearings’ vibration data. (a) RMS; (b) APV; (c) MVV. 
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(State 1), and the “moderately worn out” (State 2), the “seriously worn out” (State 3), and the “completely 

worn out” (State 4). It should be noted that the GMM clustering is a soft partition method which gives the 

posterior probabilities of all the data belonging to all the clustering centers. In this work, the posterior 

probabilities are treated as the elicited offline expert knowledge. 
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TABLE I 

AIC UoDER DIFFEREoT oUMBERS OF GAUSSIAo COMPOoEoTS 

oo. of 

Gaussians 
1 2 3 4 5 6 7 8 

AIC(
510 ) 

-

1.238 

-

1.250 

-

1.251 

-

1.253 

-

1.250 

-

1.252 

-

1.252 

-

1.252 

 

(4) True Model Parameters and CM Data: In this case study, as the sample size is too small, we do not use 

cross validation to test the results. Alternatively, we use bootstrap method to generate 100 bootstrap samples 

from the four bearing data. Algorithm 1 is used to estimate the parameters θ̂  of the MoG-EHMM with these 

bootstrap samples and offline non-informative knowledge. The MoG-EHMM with θ̂  is treated as the true 

degradation model and used to generate the CM information in the online phase. The generated CM data, 

which comprises of three signals 1( )x t , 2 ( )x t , and 3( )x t , is used in subsequent sections for online reliability 

updating and RUL prediction. 

 
To study the influence of offline expert knowledge on reliability assessment, both the state partitions (also 

known as the hard label) and the posterior probabilities (also known as the soft label) of the GMM clustering 

results are used as offline expert knowledge to train the MoG-EHMM by Algorithm 1, where the data from 

the four bearings in Fig.7 are used as training CM data. The results of reliability assessment obtained by (3) 

are presented in Fig. 8. In Fig. 8, the true system reliability is calculated by the MoG-EHMM with the true 

parameter θ̂ . As shown in Fig. 8, the soft label of the training data can result in a better reliability estimate 

than that of the hard label. 

 
Fig. 8.  Reliability estimation of the bearings in the offline phase. 

 

(5) RUL Prediction In The Online Phase: In the online phase, expert knowledge are given at six time 
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instants, i.e., t=50 (mins), t=81(mins), t=261(mins), t=1205(mins), t=1631(mins), and t=1800(mins). Table 

II gives the results of the health state inference by the MoG-EHMM with the parameter θ̂ . It can be seen 

that the states at time t=50, 261, 1800 were correctly inferred while the estimations at t=81, 1205, 1631 were 

inaccurate when using only the CM information. Then, online precise knowledge is given at these time 

instants. The probability mass distribution (PMF) of the RUL can be calculated via (19) by fusing the precise 

knowledge, i.e., 
, ( )

( ) 1
TrueCM S t

pl t =  and , ( ) 0
iCM Spl t =  for ( )i TrueS S t . To assess the accuracy of the RUL 

prediction, a numerical metric based on the Bhattacharyya distance [22] is developed in this work. The 

smaller the Bhattacharyya distance is, more accurate the RUL prediction is. In this case, the Bhattacharyya 

distance between the probability mass function of the predicted RUL and the true RUL is presented in Table 

III. As shown in Table III, all the predicted RULs which uses expert knowledge, no matter the expert 

knowledge is offline or online, were more accurate than without using expert knowledge. It is noteworthy 

that when no expert knowledge is used, the model degenerate to the MoG-HMM in [15]. It shows that both 

the offline knowledge and the online precise knowledge are of benefit to the RUL prediction. 

TABLE II 

THE RESULTS OF HEALTH STATE IoFEREoCE  

Time t (min) t=50 t=81 t=261 t=1205 t=1631 t=1800 

Only by CM 

information 
1 1 2 2 4 4 

True values 1 2 2 3 3 4 

 

To assess the impact of imprecise expert judgments of the true states of the bearings on the RUL prediction, 

online partial knowledge at the above six time instants was given in the form of (4). The probability mass 

distribution (PMF) of the RUL can be calculated via (19) by fusing the expert knowledge from precise 

knowledge down to non-informative knowledge, i.e., , ( ) 1
iCM Spl t =   for all the states. The results are 

delineated in Fig. 9(a). The Bhattacharyya distance between the probability mass function of the predicted 

RUL by fusing online partial knowledge and the true RUL is presented in Table IV. As shown in Table IV, 

the Bhattacharyya distance gradually increases as    (indicates the degree of imprecision) increases. 

However, the RUL prediction with imprecise expert knowledge 0 1   is still more accurate than without 
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using the online expert knowledge ( 1 = ). The results indicate that online partial knowledge also contributes 

to a more accurate RUL prediction.  

Furthermore, to assess the impact of incorrect expert judgments of the true states of the bearings on the 

RUL prediction, the incorrect expert judgments at the six time instants are given as (50) ,1, , ]CM   =pl ,

(81) [ , ,CM  =pl 1, ]  , (261)CM =pl   [ , ,1, ]    , (1205) [ , , ,1]CM   =pl  , (1631)CMpl [ , , ,1]  =  , and 

(1800) [ , , ,1]CM   =pl  with the imprecision level   setting from 0 (corresponding to complete incorrect 

judgment case) to 1 (corresponding to non-informative knowledge case) with an increment of 0.2. Figure 9(b) 

illustrates the probability mass functions of the RUL by fusing the incorrect expert judgments. Table V 

tabulates the Bhattacharyya distances between the probability mass distributions of the RUL by fusing the 

incorrect expert judgments and their true values. As shown in Table V, incorrect expert judgments of the true 

states can negatively affect the prediction performance, except for t=81 and 0.4 = . This is because at time 

t=81, the inferred state is State 1 if we only use the CM information, while the expert knowledge estimates 

State 3. Both the two individual information are incorrect since the true state is State 2. Through the DRC for 

these two incorrect evidences, State 2 has the greatest probability, which coincides the true state at this time 

instant. Therefore, the incorrect expert judgments of experts under such a scenario can still result in a better 

RUL prediction. 
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Fig. 9.  Probability mass function (PMF) of RUL (a) with online partial knowledge; (b) with online partial knowledge with noise. 

 

TABLE III 

COMPARATIVE RESULTS OF RUL PREDICTIOo WITH THE EXISTIoG APPROACH 

Time t 
Bhattacharyya Distance 

Without any 
knowledge [15] 

With only offline 
knowledge 

With only online precise 
knowledge 

With both offline and online 
knowledge 

t=50 0.038831 0.019387 0.029215 0.017485 
t=81 0.035810 0.017234 0.020863 0.013333 

t=261 0.038328 0.017540 0.028739 0.017240 
t=1205 0.523747 0.315424 0.412371 0.221881 
t=1631 +∞ +∞ 0.541708 0.221881 
t=1800 0 0 0 0 

 

TABLE IV 

BHATTACHARYYA DISTAoCE OF RUL PREDICTIOo WITH OoLIoE PARTIAL KoOWLEDGE 

Time t 
Bhattacharyya Distance 

=0  =0.2  =0.4  =0.6  =0.8  =1  

t=50 0.017485 0.017945 0.018360 0.018736 0.019077 0.019387 
t=81 0.013333 0.013471 0.013683 0.014049 0.014811 0.017234 

t=261 0.017240 0.017300 0.017359 0.017419 0.017479 0.017540 
t=1205 0.221881 0.305304 0.311330 0.313543 0.314705 0.315424 
t=1631 0.221881 +∞ +∞ +∞ +∞ +∞ 
t=1800 0 0 0 0 0 0 

TABLE V 

BHATTACHARYYA DISTAoCE OF RUL PREDICTIOo WITH OoLIoE EXPERT KoOWLEDGE WITH oOISE 

Time t 
Bhattacharyya Distance 

=0  =0.2  =0.4  =0.6  =0.8  =1  

t=50 0.025276 0.022275 0.020944 0.020196 0.019718 0.019387 
t=81 1.476586 0.019046 0.016023 0.017649 0.017453 0.017234 

t=261 1.476586 0.018834 0.018015 0.017749 0.017618 0.017540 
t=1205 +∞ 0.315424 0.315424 0.315424 0.315424 0.315424 
t=1631 +∞ +∞ +∞ +∞ +∞ +∞ 
t=1800 0 0 0 0 0 0 

VI. CONCLUSION 

In this paper, a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) was put forth for 

RUL prediction by fusing expert knowledge and CM information under the belief function theory framework. 

In the MoG-EHMM, the MoG was used to characterize the behaviors of multi-dimensional CM information, 

whereas the expert knowledge was elicited through the contour function. The emission probability calculated 
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by MoG was fused with expert knowledge via the Dempster’s rule of combination. Based on the proposed 

MoG-EHMM, the RUL prediction was divided into two phases. In the offline phase, the parameters of the 

MoG-EHMM were estimated by the E2M algorithm, while in the online phase, the estimated parameters, 

along with online expert knowledge, were used to infer the health states, update the system reliability, and 

calculate the probability mass distribution of the RUL for a particular individual system of interests. 

Simulation results and real case study showed that by introducing the expert knowledge, the performances 

of reliability assessment, health state inference and RUL prediction can be substantially improved. 
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