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In this paper, we develop a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) to fuse expert knowledge and condition monitoring information for RUL prediction under the belief function theory framework. The evidential Expectation-Maximization algorithm is implemented in the offline phase to train the MoG-EHMM based on historical data. In the online phase, the trained model is used to recursively update the health state and reliability of a particular individual system. The predicted RUL is, then, represented in the form of its probability mass function. A numerical metric is defined based on the Bhattacharyya distance to measure the RUL prediction accuracy of the developed methods. We applied the developed methods on a simulation experiment and a real-world dataset from a bearing degradation test. The results demonstrate that despite imprecisions in expert knowledge, the performance of RUL prediction can be substantially improved by fusing expert knowledge with condition monitoring information.

widespread applications due to its excellent capability to connect physical degradation processes with observations. Successful applications of the HMM-based approach include bearings [START_REF] Soualhi | Hidden Markov models for the prediction of impending faults[END_REF], turbofan engines [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF], and light-emitting diodes (LED) [START_REF] Hamada | Bayesian reliability[END_REF]. Therefore, the HMM-based approach is considered in this work for degradation modeling and RUL prediction.

In general, an HMM comprises of two stochastic processes: one is a Markov chain that characterizes the actual degradation of system health states; the other models the observations given the actual degradation states [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF]. The HMM allows us to infer the true but unobservable degradation process based on the collected observation data. Traditional HMMs are only able to treat discrete observations. In practice, however, a large number of observation processes are continuous as they come from continuous condition-monitoring signals.

To model the relationship between continuous signals and discrete hidden degradation states, the mixtures of Gaussians (MoG) model is frequently combined with HMMs for prognostics. These models are called MoG-HMMs. For example, Tobon-Mejia et al. [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF] developed a MoG-HMM-based RUL prediction method for bearings. This method relies on two phases: offline and online. The offline phase trained the MoG-HMM by estimating its parameters. The trained MoG-HMM was exploited in the online phase to assess the current health state of a new system continuously, and to estimate its RUL with the associated confidence. Chen et al. [START_REF] Chen | Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[END_REF] formulated an HMM with auto-correlated observations (HMM-AO) to characterize the degradation of manufacturing systems and developed optimal maintenance policies based on the RUL prediction results.

Geramifard et al. [START_REF] Geramifard | Multimodal hidden Markov model-based approach for tool wear monitoring[END_REF] introduced a multimodal HMM (m 2 HMM) to monitor tool wear. They used three weighting schemes and two switching strategies to combine the continuous wear output from multiple modes.

Nevertheless, most of the existing MoG-HMM-based prognostics use CM information as the only information source for RUL prediction. In reality, apart from CM information, some subjective knowledge on the health state of a system can also be collected from experts. For example, the health state of bearings can be evaluated by experts via direct visual inspections or indirect measurements [START_REF] Xing | A framework for dynamic risk assessment with condition monitoring data and inspection data[END_REF]. In aviation, experts might be able to evaluate the health state of turbofan engines during the breaks between two adjacent missions [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF]. Expert knowledge can also provide insight into the health state and could be integrated with the CM information to achieve more accurate prognostics. However, as pointed out by Si et al. [START_REF] Si | Remaining useful life estimation-a review on the statistical data driven approaches[END_REF] and Lei et al. [START_REF] Lei | Machinery health prognostics: A systematic review from data acquisition to RUL prediction[END_REF], the effective use of subjective expert knowledge for RUL prediction remains an open challenge. More specifically, the challenges include: [START_REF] Si | Remaining useful life estimation-a review on the statistical data driven approaches[END_REF] to quantify expert knowledge imprecision due to the vagueness of expert judgments and/or the measurement uncertainty; [START_REF] Zhai | RUL prediction of deteriorating products using an adaptive Wiener process model[END_REF] to fuse two different types of information, i.e., expert knowledge and CM information. Existing literature has made some attempts on these challenges. For example, He et al. [START_REF] He | Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[END_REF] introduced an exponential model to characterize the degradation of Li-ion batteries, where the model parameters were initialized by combining different imprecise expert knowledge. However, they did not use expert knowledge in the operation phase of Li-ion batteries to support RUL prediction. Ramasso and Denoeux [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF] developed a partially-hidden Markov model (PHMM) to estimate model parameters by combining expert knowledge and observations. They found that including expert knowledge drastically improved the performance of parameter estimation. Nevertheless, the PHMM assumed that observations are discrete, and only used one state sequence in the offline training phase. Such a model cannot be straightforwardly implemented on continuous CM information from non-repairable systems. To the best of our knowledge, existing MoG-HMM-based models did not fuse expert knowledge and CM information for RUL prediction.

A mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) is proposed in this paper to fill the aforementioned research gap. The expert knowledge is quantified by the belief function theory which allows modeling knowledge with a range of quality levels (from precise knowledge down to non-informative knowledge) [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF], [START_REF] Xiahou | Extended composite importance measures for multi-state systems with epistemic uncertainty of state assignment[END_REF]. Compared to the traditional MoG-HMM [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF], the hidden states in the developed model are partially, rather than completely hidden, because some expert knowledge on the health states can be elicited during system operations. Under the developed model, the traditional MoG-HMM [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF] becomes a special case with non-informative knowledge. Moreover, the Dempster's rule of combination in the belief function theory provides a useful tool to fuse multiple sources of expert knowledge and CM information. The unique contributions of this paper lie in the following three aspects: 1) A MoG-EHMM is developed to fuse expert knowledge and CM information under the belief function theory framework.

2) RUL is predicted by integrating expert knowledge and CM information.

3) A numerical metric is defined based on the Bhattacharyya distance to measure the accuracy of the predicted RUL.

The remainder of this paper is organized as follows: Section II provides the necessary background of the belief function theory. The MoG-EHMM is formally defined and used for RUL prediction in Sect. III.

Simulation experiments (Sect. IV) and an application on real bearing degradation dataset (Sect. V) are carried out to examine the effectiveness of the MoG-EHMM. Finally, conclusions are drawn in Sect. VI.

II. BACKGROUND

Belief function theory (BFT) was initialized by Dempster [START_REF] Dempster | Upper and lower probabilities induced by a multivalued mapping[END_REF] and Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF]. In general, let  be a set containing all hypotheses/propositions that are presumed to be mutually exclusive. Let Y be a variable taking The plausibility function is defined as
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The plausibility of B equals to the sum of the masses that are not in contradiction with set B, and represents the maximum degrees of support that could be attributed to set B. Evidence from different sources can be fused by the Dempster rule of combination (DRC) "  ", which is defined as
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Bayesian mass, then 12 mm  is also a Bayesian mass.

III. METHODOLOGY In this section, we develop a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) to fuse expert knowledge with CM information. The MoG-EHMM is formally defined as a three-layer model (See details in Sect. III-A). The MoG-EHMM-based RUL prediction comprises of two phases: offline and online.

Both phases can elicit Expert knowledge. In the offline phase, training data are collected from a population of similar systems. Then, health indicators (HIs) are extracted from the original training data through feature extraction. Evidential Expectation-Maximization (E 2 M) algorithm is implemented to estimate the parameters of MoG-EHMM for model training (See details inSect. III-B). In the online phase, CM information is collected from a new system. Based on the extracted HIs and the online expert knowledge, forward algorithm [START_REF] Rabiner | A tutorial on hidden Markov models and selected applications in speech recognition[END_REF] is exploited recursively for health state inference, system reliability updating, and the RUL prediction.

(See details in Sects. III-C, and III-D).

A. Model Formulation

The MoG-EHMM comprises of three-layers: true degradation layer, observation layer, and knowledge layer, as shown in Fig. 1. The true degradation layer models the true (but unobservable) degradation process.

It is partially hidden because some knowledge of the health state of a system is available from experts. The observation layer represents the HIs extracted from signals, and the knowledge layer quantifies the expert knowledge by the contour functions under the BFT. In the true degradation layer, it is assumed that the degradation of a system is multi-state and can be ) under the BFT. A commonly-used format for experts to express their knowledge in terms of contour function [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF]: 
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B. Parameter Estimation of MoG-EHMM in the Offline Phase

In the offline phase, the training data, denoted as () () ), the parameter of the MoG-EHMM ˆˆ( , , , ) = θ π A μ Σ can be estimated by maximizing the likelihood of observing () () ( ) ). It can be verified that
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The probability of being in state j S at time t given () (1),..., ) and the parameter θ , denoted as () ()

k Tr x () () k Tr t x , ( ) ( ) (1) 
j k S t 
, can be calculated by 
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for all training data, the estimate of the initial state probability ˆi 
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The estimates of the mean value vector and the covariance matrices of the MoGs can be calculated by
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respectively. The MoG-EHMM training procedure is summarized in Algorithm 1. The initial value for 0 μ can be set by the K-means clustering algorithm, while 0 0 0 ,, π A Σ can be initialized by assuming non- informative knowledge. Convergence of Algorithm 1 is checked by comparing the relative deviation of the maximum log-likelihood between two adjacent iterations to a pre-specified threshold  , say End For; 7: End For; 8: Calculate the parameter ( +1) ˆ= q θ θ by ( 12)-( 15); 9:
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Similarly, the system reliability can be updated by the posterior probability distribution ()

CM k t p
and the transition probability matrix  estimated in the offline phase.
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where t is the time elapsed after the running time k t of the specific new system.

D. RUL Prediction

Given 
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Hence, the RUL of the system, i.e., t , is

k tt   =-, (21) 
and the probability mass function of t can be calculated by
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Based on the total probability law, the failure probability at time k tt + can be decomposed into 
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Hence, the probability mass function of RUL t can be computed recursively 
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Detailed derivation of ( 25) can be found in Appendix B provided as supplementary file.

IV. SIMULATION EXPERIMENTS In this section, simulation experiments are designed to examine the performance of the MoG-EHMMs. We consider a MoG-HMM with four states and 3-dimensional Gaussian emission probability distribution 

A. Reliability Updating of the MoG-EHMM

(1) Performance Under Partial Knowledge: We first examine the scenario where partial knowledge is provided by the experts in the offline phase. As defined in [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF], if experts have partial knowledge on the true health state, the contour function takes the following form
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St and () () k True

St are the expert-believed and true health state, respectively. Algorithm 1 is implemented to estimate the parameters of the MoG-EHMM by fusing the offline expert knowledge and the training CM information. Equation ( 19) is, then, used to dynamically update the system reliability at time 3 t by only using the online CM information, and the results are plotted in Fig. 2(a). As shown in Fig. 2(a), the more precise expert knowledge in the offline phase, i.e., when  changes from 1 to 0, the closer that the updated reliability is to the true reliability. This is because the transition probability matrix can be more accurately estimated by integrating expert knowledge in the offline phase. In particular, in the worst case of =1  , i.e., the expert has non-informative knowledge, the corresponding reliability is the same as that from only using training data.

To investigate the influence of expert knowledge on system reliability updating in the online phase, we assume non-informative knowledge is given by the experts in the offline phase and using Algorithm 1 to train the MoG-EHMM. Figure 2(b) plots the updated reliability at a particular time 4 t by [START_REF] He | Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[END_REF]. As shown in Fig.

2(b), even with an imprecision level of

0.8  =
, the updated reliability is more accurate than without integrating online expert knowledge. However, the updated reliability is slightly lower than the true reliability values (See the difference between the blue curve and the true one). This is because the transition probability matrix cannot be accurately estimated without precise expert knowledge in the offline phase (as we assumed non-informative knowledge in the offline phase). Hence, it is concluded that integrating expert knowledge in both the offline and online phase is beneficial to the accuracy of system reliability updating. ( [START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF]. To study the influence of expert knowledge with noise in the offline phase, Algorithm 1 is implemented to estimate the transition probability matrix. The system reliability is, then, updated by ( 19) at time 3 t , the results are shown in Fig. 3(a). As illustrated in Fig. 3(a), an error probability with mean value =0.6 v can still result in a better reliability estimate than without offline expert knowledge. However, when error probability becomes much greater, e.g., 0.8 v = or 1 v = , the reliability estimates are less accurate than when only using CM information. The reason is the estimated transition probability matrix  tends to underestimate the reliability as it overestimates the transition probability to the failure state, which it is caused by the wrong inputs from the expert knowledge with noise.

To investigate the influence of expert knowledge with noise in the online phase, non-informative knowledge is assumed in the offline phase while expert knowledge with different levels of error probability are considered in the online phase. The system reliability is updated at time 4 t by [START_REF] He | Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[END_REF], and the results are illustrated in Fig. 3(b). As shown in Fig. 3(b), even with a mean error probability of 0.6 v = , the reliability estimate is still better than that of without online expert knowledge with noise. Moreover, with the mean error still be influenced by the misleading recommendations of experts. Figure 5 shows the ARI and IR values after adding expert knowledge in the online phase. As illustrated in Fig. 5, both of the ARI and IR values start from 1, and then gradually degrade as the value of  or v gets larger. It is concluded that the MoG- EHMM with online precise knowledge can correctly infer the health state. Similar as the offline phase, the misleading recommendations by experts in the online phase can negatively affect the quality of health state inference. 

probability of 0.8 v = or 1 v = ,

V. APPLICATION TO NASA BEARING TEST DATA

We further test the performance of the proposed method on a real bearing run-to-failure test dataset provided by oASA prognostics center of excellence [START_REF] Lee | Bearing Data Set, oASA Ames Prognostics Data Repository[END_REF]. The data acquisition, health indicator construction, health state division and the RUL prediction by the MoG-EHMM are described as follows.

(1) Data Acquisition: The bearing test rig, as shown in Fig. 6, comprises of four test bearings on one shaft.

The rotation speed of the shaft was kept constant at 2000rpm. An accelerometer was installed on each bearing housing. Vibration signals were collected every 20 minutes by a oational Instruments DAQCard-6062E data acquisition card. The data sampling rate is 20 kHz and the data length is 20480 points [START_REF] Soualhi | Hidden Markov models for the prediction of impending faults[END_REF]. The vibration signals of the four bearings are used to estimate the parameter of the MoG-EHMM in the offline phase. (2) HI Construction: Based on the vibration signals, three features, i.e., the root mean square (RMS), the average power of vibration (APV), and the mean value of vibration (MVV), were extracted via the timedomain feature extraction methods. These three features are selected as they are the most relevant features to the bearing degradation [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF], [START_REF] Xing | A framework for dynamic risk assessment with condition monitoring data and inspection data[END_REF]. The extracted health indicators are plotted in Fig. 7. (3) Health State Division: A Gaussian Mixture Model (GMM) is utilized to cluster the degradation data of the three extracted HIs. The number of health states equal to the number of clustering centers, and can be obtained by minimizing the Akaike information criterion (AIC) under different numbers of the components of Gaussians [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF]. As shown in Table I, GMM with 4 components of Gaussians has the lowest AIC values.

Hence, the degradation of the four bearings can be divided into 4 states, corresponding to the "healthy" state (State 1), and the "moderately worn out" (State 2), the "seriously worn out" (State 3), and the "completely worn out" (State 4). It should be noted that the GMM clustering is a soft partition method which gives the posterior probabilities of all the data belonging to all the clustering centers. In this work, the posterior probabilities are treated as the elicited offline expert knowledge. To study the influence of offline expert knowledge on reliability assessment, both the state partitions (also known as the hard label) and the posterior probabilities (also known as the soft label) of the GMM clustering results are used as offline expert knowledge to train the MoG-EHMM by Algorithm 1, where the data from the four bearings in Fig. 7 are used as training CM data. The results of reliability assessment obtained by [START_REF] Yang | Remaining useful life prediction based on a double-convolutional neural network architecture[END_REF] are presented in Fig. 8. In Fig. 8, the true system reliability is calculated by the MoG-EHMM with the true parameter θ . As shown in Fig. 8, the soft label of the training data can result in a better reliability estimate than that of the hard label. (5) RUL Prediction In The Online Phase: In the online phase, expert knowledge are given at six time instants, i.e., t=50 (mins), t=81(mins), t=261(mins), t=1205(mins), t=1631(mins), and t=1800(mins). . To assess the accuracy of the RUL prediction, a numerical metric based on the Bhattacharyya distance [START_REF] Choi | Feature extraction based on the Bhattacharyya distance[END_REF] is developed in this work. The smaller the Bhattacharyya distance is, more accurate the RUL prediction is. In this case, the Bhattacharyya distance between the probability mass function of the predicted RUL and the true RUL is presented in Table III. As shown in Table III, all the predicted RULs which uses expert knowledge, no matter the expert knowledge is offline or online, were more accurate than without using expert knowledge. It is noteworthy that when no expert knowledge is used, the model degenerate to the MoG-HMM in [START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF]. It shows that both the offline knowledge and the online precise knowledge are of benefit to the RUL prediction. To assess the impact of imprecise expert judgments of the true states of the bearings on the RUL prediction, online partial knowledge at the above six time instants was given in the form of (4). The probability mass distribution (PMF) of the RUL can be calculated via [START_REF] He | Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[END_REF] by fusing the expert knowledge from precise knowledge down to non-informative knowledge, i.e., , ( ) 1 i CM S pl t = for all the states. The results are delineated in Fig. 9(a). The Bhattacharyya distance between the probability mass function of the predicted RUL by fusing online partial knowledge and the true RUL is presented in Table IV. As shown in Table IV, the Bhattacharyya distance gradually increases as  (indicates the degree of imprecision) increases.

However, the RUL prediction with imprecise expert knowledge 01   is still more accurate than without using the online expert knowledge ( 1  = ). The results indicate that online partial knowledge also contributes to a more accurate RUL prediction.

Furthermore, to assess the impact of incorrect expert judgments of the true states of the bearings on the RUL prediction, the incorrect expert judgments at the six time instants are given as (50) ,1, , ] 

CM    = pl , (81) [ , , CM  = pl 1, ]  , ( 261 
) CM = pl [ , ,1, ]    , (1205) [ , , ,1] CM  = pl , ( 1631 
) CM pl [ , , ,1] 

VI. CONCLUSION

In this paper, a mixture of Gaussians-evidential hidden Markov model (MoG-EHMM) was put forth for RUL prediction by fusing expert knowledge and CM information under the belief function theory framework.

In the MoG-EHMM, the MoG was used to characterize the behaviors of multi-dimensional CM information, whereas the expert knowledge was elicited through the contour function. The emission probability calculated by MoG was fused with expert knowledge via the Dempster's rule of combination. Based on the proposed MoG-EHMM, the RUL prediction was divided into two phases. In the offline phase, the parameters of the MoG-EHMM were estimated by the E 2 M algorithm, while in the online phase, the estimated parameters, along with online expert knowledge, were used to infer the health states, update the system reliability, and calculate the probability mass distribution of the RUL for a particular individual system of interests.

Simulation results and real case study showed that by introducing the expert knowledge, the performances of reliability assessment, health state inference and RUL prediction can be substantially improved.
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  influence of expert knowledge on the health state inference and reliability updating, two different experiments are designed in both offline and online phases. One hundred sequences of training data were generated based on the true values and used in the offline phase to estimate parameters of the MoG-EHMM, while another sample is generated to serve as online CM information.
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 2 Fig.2. Reliability updating by fusing the expert knowledge. (a) In the offline phase updated at 3 t , (b) In the online phase updated at 4 t . (a) (b) 0 3 6 9 12 15 18 21 24 27 30 0
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 3 Fig.3. Reliability updating by fusing expert knowledge with noise. (a) In the offline phase updated at 3 t , (b) In the online phase updated at 4 t .
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 4 Fig.4. Mean values with one standard deviation of (a) The ARI, (b) The IR, over 50 run times in the offline phase.
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 5 Fig.5. Mean values with one standard deviation of (a) The ARI, (b) The IR, over 50 run times in the online phase.
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 6 Fig.6. Bearing test rig[START_REF] Soualhi | Hidden Markov models for the prediction of impending faults[END_REF].

Fig. 7 .

 7 Fig. 7. Extracted features from the four bearings' vibration data. (a) RMS; (b) APV; (c) MVV.
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 4 True Model Parameters and CM Data: In this case study, as the sample size is too small, we do not use cross validation to test the results. Alternatively, we use bootstrap method to generate 100 bootstrap samples from the four bearing data. Algorithm 1 is used to estimate the parameters θ of the MoG-EHMM with these bootstrap samples and offline non-informative knowledge. The MoG-EHMM with θ is treated as the true degradation model and used to generate the CM information in the online phase. The generated CM data, which comprises of three signals 1 () xt, 2 () xt, and 3 () xt, is used in subsequent sections for online reliability updating and RUL prediction.
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 8 Fig. 8. Reliability estimation of the bearings in the offline phase.

Fig. 9 .

 9 Fig. 9. Probability mass function (PMF) of RUL (a) with online partial knowledge; (b) with online partial knowledge with noise.

  . oote that the number of Gaussian components is determined in this paper by minimizing the Akaike information criterion (AIC)[START_REF] Ramasso | Making use of partial knowledge about hidden states in HMMs: an approach based on belief functions[END_REF],[START_REF] Tobon-Mejia | A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[END_REF].In the knowledge layer, expert knowledge on the health state of a system is given in the form of mass
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  . Health State Inference and Reliability Updating in the Online Phase
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Table

  II gives the results of the health state inference by the MoG-EHMM with the parameter θ . It can be seen that the states at time t=50, 261, 1800 were correctly inferred while the estimations at t=81, 1205, 1631 were inaccurate when using only the CM information. Then, online precise knowledge is given at these time

	instants. The probability mass distribution (PMF) of the RUL can be calculated via (19) by fusing the precise
	knowledge, i.e.,	, CM S True pl	( ) ( ) 1 t t = and	, ( ) 0 i CM S pl t = for	i S S True 	() t

TABLE V BHATTACHARYYA

 V DISTAoCE OF RUL PREDICTIOo WITH OoLIoE EXPERT KoOWLEDGE WITH oOISE

	Time t		=0		=0.2	Bhattacharyya Distance =0.4  =0.6 		=0.8		=1
	t=50	0.025276	0.022275	0.020944	0.020196	0.019718	0.019387
	t=81	1.476586	0.019046	0.016023	0.017649	0.017453	0.017234
	t=261	1.476586	0.018834	0.018015	0.017749	0.017618	0.017540
	t=1205	+∞	0.315424	0.315424	0.315424	0.315424	0.315424
	t=1631	+∞		+∞	+∞	+∞		+∞	+∞
	t=1800		0		0	0	0		0	0
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knowledge with noise.

B. Health State Inference by MoG-EHMM

To assess the quality of health state inference by the MoG-EHMM, two metrics, namely the adjusted Rand index (ARI) and the improvement ratio (IR), are used to quantify the difference between the true state sequence and the predicted state sequence by the MoG-EHMM. The ARI is a well-known partition performance measure which ranges from 0 to 1, where 0 presents two purely random partitions, and 1 for two identical partitions. In this work, the true health states of the generated sequences are viewed as the baseline of the partition, whereas the state sequences inferred by the MoG-EHMM is used to calculate the ARI.

The IR is proposed to measure the improvement of the health state inference by fusing expert knowledge against the result from only using CM information. It is defined as