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Abstract

Most of existing resilience models assume that system performances are continuous. In this paper, we consider

resilience modeling and analysis for multi-state systems, whose performances are characterized by discrete, rather

than continuous variables. A non-homogeneous Semi-Markov reward process model is developed for resilience

analysis of multi-state systems. In the developed model, system performance changes, caused by either disruptive

events or system recoveries, are modeled as state transitions, and rewards are used to model financial losses

incurred during and after the disruptions. Four resilience metrics are defined to quantify different aspects of

resilience. As the developed model is non-homogeneous, it can capture time-dependent system behaviors and

their impact on system resilience. An efficient resilience analysis algorithm is also designed based on linear

interpolation and implemented using vectorization. The computational benefits of the developed algorithm are

demonstrated through two numerical experiments. We apply the developed method on two practical case studies,

an oil tank farm and a re-configurable computing system. The results show that the developed methods can

quantify resilience of multi-state systems accurately and efficiently.

Index Terms

Resilience, extreme events, multi-state system, non-homogeneous semi-Markov process, accumulated reward.
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Resilience Analysis of Multi-state Systems

with Time-dependent Behaviors

I. INTRODUCTION

Resilience is generally defined as the ability of a system to resist, mitigate, and quickly recover from potential

disruptions [1]. Resilience of modern engineering systems has attracted great attention in recent years as they

become increasingly vulnerable to various disruptive like hurricanes, windstorms, earthquakes, and intentional

cyber-attacks. Various approaches have been developed in the literature for resilience modeling and analysis.

According to the classification of Hosseini et al. [1], the existing approaches can be broadly classified into two

categories: general measure-based and structure-based methods.

In the general measure-based methods, resilience is measured based on empirically observable metrics of

system performances, without considering system-specific characteristics like system structures. One of the

most representative general measure-based methods is the resilience triangle developed in [2], which uses

performance losses during and after disruptions to measure seismic resilience. Panteli et al. [3] developed a

resilience trapezoid model based on empirically observable performance indicators of a power system and used

the model quantify its resilience. In [4], a general measure-based resilience metric is defined by measuring the

ratio between the recovered and lost performance after the disruption. Panteli et. al. [5] developed a resilience

model for power systems, in which the resilience is quantified based on the performance losses, duration of

disruption, and speed of recovery. Caputo et al. [6] applied the general measure-based methods to evaluate the

resilience of a process plant faced with seismic hazard, considering the capacity loss after the disruptive event,

recovery trend and the related economic losses. An integrated resilience metric was developed in [7], considering

both absorptive and restorative capabilities. Ouyang et al. [8] proposed a probabilistic extension of the resilience

triangle and used it to quantify resilience under multiple extreme events. An integrated framework was developed

in [9] to quantify long-term resilience of highway bridges using the general measure-based methods, where a

stochastic renewal process model is employed to consider uncertainty.

To use the general measure-based methods, the performance parameters need to be directly observable.This

premise, however, does not always hold in practice, which limits the applicability of the general measure-based

methods. Another drawback of these methods is that it does not provide explanatory models that link resilience to

its contributing factors, which limits their use when design decisions need to make to improve resilience. Unlike

general measure-based methods, the structure-based methods consider system-specific characteristics like system

structures. Based on these system-specific characteristics, models are developed to measure resilience [1]. The

structure-based methods can be further divided into optimization-based, topology-based, and simulation-based

methods [10].

The optimization-based method evaluates resilience by solving an optimization model aiming at restoring

the system within time constraints while minimizing the potential losses [10]. For example, Zhang et al. [11]

developed a dynamic optimization framework to evaluate and improve the post-disaster resilience of a water
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distribution system. Li et al. [12] developed a minimax-regret robust co-optimization model for resilience

assessment and design of integrated power distribution and natural gas systems. A Bayesian optimization

method based on ranking and selection was proposed in [13] for resilience assessment and design for risk-

averse decision-makers.

In topology-based methods, resilience is modeled and analyzed based on topological models of the systems

(usually in terms of network models). This type of model is often used in vulnerability analyses, which is related

to the capability of the system to resist the disruptive events and remain resilient. For example, Bose et al. [14]

conducted a resilience and vulnerability analysis for an electrical network using the topology-based methods.

Topological-based evaluation, physics-based performance simulation, and multi-criteria decision analysis were

combined into a unified framework to assess pre-event community resilience against extreme rainfall [15]. In

Liu et al. [16], the topological model has combined with system dynamic models for resilience evaluation of

interconnected gas and electricity networks.

Simulation-based methods use simulation to capture the uncertain behaviors involved in the resilience quan-

tification. For example, To investigate the resilience of power systems against extreme weather events, Panteli

et al. [17] developed a time-series Monte Carlo simulation method. Cardini et al. [18] developed a simulation

model for resilience quantification, which allows analyzing simultaneously the normal system behavior and

extreme weather events. Rocchetta et al. [19] proposed a simulation-based framework to evaluate the resilience

of power grids subject to extreme weather-induced failures.

Most of the existing methods for resilience modeling and analysis, as reviewed above, assume that the

performance of the system is continuous. A lot of practical engineering systems, however, are multi-state

in nature or needs to be modeled by multi-state models to control the modeling/computational complexity

[20]. A typical application of multi-state models is to use them for modeling the demands and capacities of

energy generation systems [21]. Tsai et al. [22] developed a multiple-state discrete-time Markov chain model

to describe the suspended sediment concentration distributions in water with different depths. There are only

a few works regarding quantifying resilience using multi-state models. Thekdi and Chatterjee [23] developed

a multi-state hidden Markov model to quantify the resilience of infrastructure systems and discussed how to

make decisions based on the model. Nuss et al. [24] used a continuous-time discrete-state Markov model

to quantify the resilience against disruptions and support system design selections considering the multi-state

engineering system behaviors of uncrewed surface vessels. In previous research of the authors [25], a Markov

reward process-based model is developed for quantifying resistance, absorption, recovery and overall resilience.

This work only applies to time-static systems, as the model is Markovian. The major difference between [25]

and the present work is that, the present work is based on non-homogeneous semi-Markov process model, and,

therefore, can be applied to problems with time-dependents bahaviors.

All the works mentioned above assume Markov (or hidden Markov) models. A significant drawback of

these Markov model-based methods is that they have to assume that the transition times among states follow

exponential distributions. This assumption indicates that, if the state jump depends on the performance of some

safety systems, these safety systems must have time-static behaviors, i.e., their failure probabilities cannot

change over time. Such models, however, cannot adequately describe the time-dependent behaviors of a large

variety of real-world engineering systems. Ferrario et al. [26] used goal-tree-success-tree as a tool for quantifying
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seismic resilience of infrastructure systems considering their multi-state behaviors and developed a Monte Carlo

simulation framework to consider the non-exponentially distributed recovery times. However, their work did

not consider the time-dependent behaviors of the safety barriers in the accident protection phase. In this paper,

we develop a non-homogeneous Semi-Markov Reward Process (NHSMRP) model to quantify the resilience of

multi-state systems, considering the time-dependent behaviors of both the pre-disruption protection processes

and the post-disruption recovery processes.

Compared to the existing works, the major contributions of this paper can be summarized as follows:

1) A multi-state resilience model is developed based on NHSMRP.

2) Time-dependent behaviors in both pre- and post-disruption phases are considered.

3) An efficient algorithm is developed for resilience analysis.

The rest of the paper is organized as follows. Section II presents the developed NHSMRP-based resilience

model. Section III develops an efficient simulation method for resilience analysis. Section IV and V applies the

developed methods on real-world case studies of oil storage tank farms and reconfigurable computing systems,

respectively. Finally, section VI concludes this paper with a discussion of future works.

II. A NON-HOMOGENEOUS SEMI-MARKOV REWARD PROCESS-BASED RESILIENCE MODEL

A. The model

Let S be a discrete (finite or countable) space (called state space hereafter) in which a discrete random variable

Xn takes values. Let θn be a continuous random variable taking values in [0,∞) and let τn =
∑n
i=0 θn,

n = 1, 2, · · · Physically, θn is often used to model the inter-arrival time between the nth and (n − 1)th

state transition in Xn, and τn represents the accumulated time up to the nth state transition. A bivariate

process {Xn, τn}, n = 0, 1, 2, · · · is called a non-homogeneous Renewal Process (NHRP) when the following

assumptions hold [27]:

Pr(Xn+1 = j, τn+1 − τn ≤ t |Xn = i, τn = τ,Xn−1, τn−1, · · · , X0, τ0) =

Pr(Xn+1 = j, τn+1 − τn ≤ t |Xn = i, τn = τ).
(1)

and

Pr(X0 = i, τ0 = 0) = Pr(X0 = i). (2)

Let N(t) = supn{τn ≤ t}, n = 0, 1, · · · Then, a stochastic process {X(t), t ≥ 0} with piecewise constant

and right continuous sample paths given by X(t) = XN(t) is called a non-homogeneous Semi-Markov Process

(NHSMP) associated with the NHRP {Xn, τn} [27]. It is called NHSMP as it is a semi-Markov process with

reward structure. A semi-Markov process is called "semi", as it has Markov property only at instants when

state transitions occur. In an NHSMP model, future system behaviors depend not only on the current state but

also on the age of the system, which makes it an ideal tool to capture time-dependent system behaviors.

Let us assume that the performance of the system can be characterized by an NHSMP X(t) with n + 1

performance levels: X(t) ∈ S = {0, 1, 2, · · · , n}, as shown in Figure 1. Without loss of generality, we assume

that the system performance decrease as the value of X(t) increases (i.e., X(t) = 0 indicates perfect performance

while X(t) = n indicates the worst performance). Disruptive events might impair system performances and

cause the system to jump from a higher performance level to a lower performance level. After the disruptions,
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recovery measures can be taken to restore the system performances, resulting in backward jumps from lower

performance levels to higher ones. The NHSMP can be determined by initial distribution and renewal kernel

[27]. Initial distribution is a probability vector representing the distribution of states at t = 0. Let ~π0 =

[Pr(X(0) = i) : i ∈ S] represent the initial probability vector of the NHSMP. In this paper, we assume that at

t = 0, the system starts operation from the perfect performance state. Hence, we have ~π0 = [1, 0, · · · , 0]. Let

Q(t, τ) = [Qi,j(t, τ) : i, j ∈ S] represent the renewal kernel, where

Qi,j(t, τ) = Pr(Xn+1 = j, θn+1 ≤ t |Xn = i, τn = τ). (3)

In Eq. (3), τn represents the time when the nth state transition occurs; θn+1 is the inter arrival time between

the (n+ 1)th and the nth state transition: θn+1 = τn+1 − τn, where τn+1 is the time when the (n+ 1)th state

transition occurs. The physical meaning of the renewal kernel Qi,j(t, τ) is the joint probability that the next

state is j and the time to next transition is no greater than t, given that the current state is i and that the age

up to the nth transition is τ .

When rewards can be accumulated when system jumps between states and/or stays in a state, a NHSMP

becomes a NHSMRP. In this paper, we use a NHSMRP to characterize the resilience of the system of interest,

as shown in Figure 1, where the rewards represent the direct and indirect losses caused by disruptive events.

Direct losses are generated directly by disruptive events and do not depend on the length of the disruption.

The degraded system performances cause indirect losses before the system is fully recovered (e.g., revenue

losses) [28]. Hence, indirect loss depends on the length of the recovery process. In this paper, reward rates di,j

represents the direct loss suffered by the system when it degrades from state i to state j. It is easy to verify

that 
di,j > 0, if i < j,

di,j = 0, if i ≥ j,
(4)

as i < j indicates performance degradation, while i ≥ j indicates recovery. Similarly, the indirect losses per

unit of time of sojourn in the performance degraded state i, i = 1, 2, · · · , n are modeled by reward rate li.

Please note that l0 = 0 as state 0 represent perfect performance and there is no indirect loss for this state.

Fig. 1: An illustration of the NHSMRP-based resilience model.
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B. Resilience metrics

Achieving resilience requires the system to possess various capabilities. In the previous works, different papers

might emphasize different aspects of these capabilities. For example, in the classical definition by Holling [29],

resilience is defined as “the persistence of systems and of their ability to absorb change and disturbance and

still maintain the same relationships between populations or state variables”. This definition mainly focuses on

the system capability to resist and absorb the potential damages caused by disruptive events. Other definitions

of resilience concentrate more on the recovery aspect. For example, Iervolino and Giorgio [30] defined seismic

resilience as the characteristic of a system which “measures its capability to recover from a shock rapidly.” Du

et al. summarized the different capabilities required for resilience into three categories [25]:

• resistant capability, which refers to the capability of the system to resist the impact of the disruptive event

and remain normal operations [29];

• absorption capability, which refers to the capability of the system to absorb the influence of the disruptive

event (possibly by degrading its performance) and remains resilient, so that the system can return to normal

operation states when the disruptive event disappears [31];

• recovery capability, which refers to the capability of the system to quickly restore normal operation after

the disruptive event disappears [32].

Four numerical metrics have been developed in [25] to measure resilience based on the three resilience-related

capabilities. However, as they were defined based on Markov reward process model, they only apply to time-

static problems. In this paper, we extended these numerical metrics to consider time-dependent system behaviors

based on the NHSMRP model.

Suppose we are interested in the resilience behavior in (0, t). The first resilience metric is called resistant

probability and is defined as [25]:

pRs(t) = Pr (X(τ) = X0, ∀τ ∈ (0, t)) , (5)

where X0 is the system state with perfect performance. The physical meaning of pRs(t) is the probability that

the system successfully resisted the attack of disruptive events, so that its performance remains unaffected in

(0, t). As shown in Figure 2, the system might encounter several disruptive events in (0, t). To resist these

attacks, safety barriers need to be designed and the resistant probability depends on the performances of these

safety systems. The resistant probability takes values in [0, 1] and a larger value of pRs indicates better resistant

capability.

The second resilience metric is related to the absorption capacity. It is defined based on the resilience limit

of the system beyond which the system collapses since it can no longer absorb the damages. Let us first divide

the state space S into two groups B0 and B1. Group B0 contains all the resilient states in which the damages

of the disruptive event can be absorbed and the system is recoverable after the disruptive events disappears;

while B1 contains all the non-resilient states where the system loses its resilience so that it can no longer be

recovered after the disruptions. An example of the non-resilient states is the Fukushima nuclear accident. As the

safety barriers fail to stop the initiating damages promptly, the damages propagate and become so severe that

the power plant cannot be repaired and has to be abandoned. It is easy to see that in the NHSMRP model, the

states in B1 are absorbing states. The second resilience metric, called resilient probability (denoted by pRe(t)),
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Fig. 2: An illustration of the resilience metrics

is defined as [25]:

pRe(t) = Pr (X(t) ∈ B0 |X(τ) > 0,∃τ ∈ (0, t)) . (6)

The physical meaning of pRe(t) is the conditional probability that the system can absorb the damages from

the disruptive events (performance degradation might be caused) and remain in resilient states in (0, t), given

that initial damages were caused by the disruptive events, as shown in Figure 2. It takes values in [0, 1] and a

larger value indicates better absorption capability.

The third resilience metric is related to recovery capability and defined based on recovery time. Let us

introduce a random variable TRc(t) to represent the accumulated time spent in recovering system performances

for a system that is operating in (0, t). Let Tth,Rc represent the maximal tolerable recovery time. Then, the

recovery capability can be measured by the recovery probability pRc(t) [25]:

pRc(t) = Pr (TRc(t) ≤ Tth,Rc |X(τ) > 0,∃τ ∈ (0, t)) . (7)

It can be seen from Eq. (7) that the physical meaning of the recovery probability is that, given that damages

have been caused by the disruptive events, the conditional probability that the system recovery time is within a

acceptable threshold. The recovery probability takes values in [0, 1] and a larger value indicates better recovery

capability.

Apart from measuring the three aspects of resilience separately, an integrated resilience metric can also be

defined based on the total loss caused by disruptive event. Let LD(t), LID(t) and L(t) denote the direct, indirect

and total loss in (0, t), respectively. For the NHSMRP model defined in Figure 1, it is easy to show that the
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total loss is

L(t) = LD(t) + LID(t)

=

n∑
i=0

n∑
j=0

di,j ·Ni,j(t) +

n∑
i=0

li · Ti(t),
(8)

where Ni,j(t) denotes the number of state transition from state i to j that occur in (0, t); di,j is defined in

Eq. (4) and represents the direct loss associated with each state transition; li represents the indirect loss per

unit of sojourn time in state i (see Figure 1); while Ti(t) represents the accumulated sojourn time in state i

for a system operating in (0, t). The L(t) in Eq. (8) naturally integrates the resistant, absorption and recovery

capabilities: the resistant and absorption capabilities affect the direct loss, while the recovery capability affects

the indirect loss. A numerical metric of overall resilience is, then, defined based on L(t) [25]:

Re(t) = Pr(L(t) < Ltol), (9)

where Re(t) is called overall resilience and Ltol is a predefined threshold value representing the maximal

tolerable losses. An underlying assumption behind this definition is that the resilience objective of the system

is that the total loss caused by the disruptive event should not exceed Ltol. It is easy to see that Re(t) takes

values in [0, 1] and that a larger value of Re(t) indicates better overall resilience. It has been shown in [25]

that the overall resilience defined in Eq. (9) is equivalent to the Cumulative Distribution Function (CDF) of the

resilience triangle defined in [2] (see also Figure 2 for illustration). Out of the four resilience metrics, resistant,

resilient, and recovery probability are individual measures of resistant, absorption and recovery capabilities,

respectively. They are independent from one another. Overall resilience is an integrated resilience metric, which

considers the joint contribution of resistant, absorption and recovery capabilities. Therefore, overall resilience

depends on the three aforementioned resilience metrics.

III. RESILIENCE ANALYSIS BASED ON NON-HOMOGENEOUS SEMI-MARKOV REWARD PROCESSES

A. Procedures of applying the model

Figure 3 summarizes the procedures for applying the developed model for resilience modeling and analysis.

The analysis starts with identifying the disruptive events that might threaten the system of interest. Typical

disruptive events considered in the resilience analysis of energy systems include extreme weather, failure of

components, natural disasters, etc. In this paper, we limit our analysis to the case where the system is subject to

the threat of only one disruptive event. The developed methods can also be extended naturally to systems subject

to multiple disruptive events. Homogeneous Poisson processes are widely used for modeling the occurrence of

disruptive events like earthquakes, floods, hurricanes, etc [33]. As these existing works, we also assume that

the occurrence of the disruptive event follows a homogeneous Poisson process with a rate λD. The value of

λD can be estimated from historical data or based on expert judgment [34].

Various safety barriers protect the system from the disruptive event. Depending on the performance of these

safety barriers, different consequences can result following the occurrence of a disruptive event. For example,

when an earthquake occurs, safety barriers like NPP structure strengthening, emergency trip system, emergency

cooling systems, etc., are activated to protect a NPP from severe consequence like core meltdown. Depending

on whether these safety barriers successfully perform their designed function, different consequences can result,
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e.g., (in ascending order of severity), unaffected operation, operation interruption, core meltdown. In the second

step of the analysis, a consequence analysis determines the possible consequences that might be caused by

the disruptive event and the losses associated with each consequence. The losses include both direct and

indirect losses: the former are determined directly by estimating the financial losses caused to the system by

the disruptive event, while the latter is determined by estimating the cost per unit of time of sojourn in the

performance degraded states. Each consequence is mapped into a state in the NHSMRP model (see Figure

1). The values of di,j and li, i, j = 0, 1, · · · , n are determined based on the estimated losses caused by the

corresponding consequences.

Then, a probabilistic analysis calculates the occurrence probability of each consequence. When the perfor-

mance of the safety barriers does not change with time, the analysis can be easily done by combining the

Poisson process model with probabilistic combinational models like event tree [25]. In this paper, we consider

safety barriers with time-dependent performances, for which the existing models cannot be directly applied. In

Sect. III-B, we develop an analytical approach to calculate the Probability Density Function (PDF) and CDF

of the occurrence time for each consequence.

The next step is estimating the recovery time. The estimation can be done by collecting field recovery time

data or recovery exercise data and estimate the CDF of the time needed to recover to a given performance level.

These CDFs, together with the distribution of the occurrence time for each consequence, are used to derive the

renewal kernel matrix of the NHSMRP.

Following the previous steps, a NHSMRP is constructed for resilience analysis. Compactly, let us denote the

developed model by a tuple < ~π0, Q(t, τ), D,~l >, where D = [di,j : i, j ∈ S] is a matrix whose elements

represent the corresponding direct losses and ~l = [l0, l1, · · · , ln] is a vector that contains the unit indirect loss

for each state. Based on the developed model, the four resilience metrics defined in Sect. II-B are calculated

for resilience analysis. In Sect. III-C, we present an efficient Monte Carlo simulation algorithm to calculate the

resilience metrics.

Fig. 3: Procedures of applying the developed model for resilience analysis
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B. Determining renewal kernels based on time-dependent probabilistic analysis

Event tree is a widely used model in risk analysis. In an event tree, possible event combinations are enumerated

through a tree structure to calculate the occurrence probability of the consequences, as shown in Figure 4. In

Figure 4, the initiating event is the occurrence of the disruptive event, and each intermediate event corresponds

to the state of one safety barrier. In the traditional event tree analysis, the occurrence probabilities are constants.

In this paper, we extend the traditional methods to consider time-dependent behaviors arising from the arrival

process of the disruptive events and the degradation/repair behavior of the safety barriers.

Fig. 4: An illustration of an event tree

Let us consider a system with age τ ; that is, at t = 0, the system has been operating for τ units of time.

Let TC,i represent the time when the ith consequence occurs for the first time after τ . As TC,i is a random

variable, we are interested in its PDF and CDF. First, let us consider an arbitrary time x, 0 < x < t. From the

event tree model, it is easy to see that for dx→ 0, we have:

Pr(x < TC,i ≤ x+ dx) = Pr(x < TD ≤ x+ ∆x) ·
nCi∑
j=1

nE,i,j∏
k=1

Pr(XSB,k(τ + x) = q) (10)

where TD represents the occurrence time of the disruptive event; nCi is the number of event sequences leading

to the ith consequence; nE,i,j is the number of events in the jth event sequence leading to the ith consequence;

XSB,k(τ + x) represents the state of the kth safety barrier at the current time and the value of q depends on

the state of the corresponding safety barrier in the event sequence (from the event tree), where q = 0 indicates

that the safety barrier cannot perform its intended function while q = 1 indicates otherwise. For non-repairable

safety barriers, Pr(XSB,k(τ + x) = 1) refers to its reliability at τ + x; while for repairable safety barriers,

Pr(XSB,k(τ +x) = 1) is its instantaneous availability at τ +x. Reliability/availability analysis can be used to

calculate these values [35].

As we assumed that the arrival of the disruptive event follows a homogeneous Poisson process with rate λD,

TD is exponentially distributed [27]:

Pr(x < TD ≤ x+ dx) = λDe
−λDxdx. (11)

Eqs. (10) and (11) define the PDF of TC,i, from which its CDF can be calculated:

Pr(TC,i < t) =

∫ t

0

λD · e−λDx ·
nCi∑
j=1

nE,i,j∏
k=1

Pr(XSB,k(τ + x) = q)dx

=

nCi∑
j=1

∫ t

0

λD · e−λDx ·
nE,i,j∏
k=1

Pr(XSB,k(τ + x) = q)dx.

(12)
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Let ηi,j(τ) denote the time for a system aged τ to make a transition from state i to state j, irrespective of

the transition times to the other states. Let fηi,j (t, τ) and Fηi,j (t, τ) represent the PDF and CDF of ηi,j(τ),

respectively. It is easy to see that the state transitions i→ j (i < j) are results of disruptive events. Hence, the

distribution of ηi,j(τ), i < j can be determined based on Eqs. (11) and (12). The state transitions i →, i > j

are caused by system recovery. The distributions of ηi,j(τ), i > j can, therefore, be determined based on the

associated time-to-repair distributions. Then, from Eq. (3), the elements of the renewal kernel of the NHSMP

can be derived:

Qi,j(t, τ) =

∫ t

0

fηi,j (x, τ)
∏

k∈S,k 6=j

Pr (ηi,k(τ) > x | ηi,j = x) dx

=

∫ t

0

fηi,j (x, τ)
∏

k∈S,k 6=j

(
1− Fηi,k | ηi,j (x, τ)

)
dx.

(13)

In Eq. (13), Fηi,k | ηi,j (x, τ) is the conditional CDF of ηi,k(x, τ) given the value of ηi,j . When ηi,k is independent

from ηi,j , Fηi,k | ηi,j (x, τ) = Fηi,k(x, τ).

C. Efficient Monte Carlo simulation for resilience analysis

Resilience analysis of the developed NHSMRP model requires analyzing its time-dependent behavior. Al-

though there are a few existing approaches for transient analysis of an NHSMRP model, a common challenge is

the high computational burden, especially when the state space of the NHSMRP gets large. In this section, we

develop an efficient Monte Carlo simulation algorithm to improve the computational performance of resilience

analysis. The performance of this algorithm will be discussed through both theoretical analyses and numerical

experiments in the next section.

The algorithm is based on the embedded chain and holding time distributions of the NHSMP. Let τi, i =

1, 2, · · · be the time instant when the ith system state transition (Xi) occurs. For an NHSMP described in

Figure 1, it is well-known that Xi follows a non-homogeneous discrete time discrete state Markov chain with

a initial distribution ~π0 and a transition probability matrix P (τ) = [pi,j(τ) : i, j ∈ S], where pi,j(τ) is given

by [27]:

pi,j(τ) = lim
t→∞

Qi,j(t, τ). (14)

The discrete time Markov chain Xi, i = 0, 1, · · · is called the embedded chain of the NHSMP. Let Fi,j(t, τ)

denote the CDF of the holding time Ti,j , which is defined by:

Fi,j(t, τ) = Pr(Ti,j ≤ t)

= Pr(θn+1 ≤ t |Xn = i,Xn+1 = j, τn = τ), i, j ∈ S, t ≥ 0.
(15)

In Eq. (15), θn+1 denote the interarrival time between the n and (n + 1)th state transition, and τn is the

accumulated time up to the nth state transition. It is easy to see that [27]

Fi,j(t, τ) =
Pr(θn+1 ≤ t,Xn = i,Xn+1 = j, τn = τ)

Pr(Xn = i,Xn+1 = j, τn = τ)

=
Pr(θn+1 ≤ t,Xn = i |Xn+1 = j, τn = τ)

Pr(Xn = i |Xn+1 = j, τn = τ)

=
Qi,j(t, τ)

pi,j(τ)
.

(16)
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The PDF of Ti,j can also be derived:

fi,j(t, τ) =
dFi,j(t, τ)

dt

=
1

pi,j(τ)

dQi,j(t, τ)

dt

=
1

pi,j(τ)
fηi,j (x, τ)

∏
k∈S,k 6=j

(
1− Fηi,k | ηi,j (x, τ)

)
.

(17)

Having derived pi,j(τ) and Fi,j(t, τ), The NHSMRP can be easily simulated for resilience analysis. In

practice, however, calculating pi,j(τ) through Eq. (14) often requires numerical integration, as the integration

in Eq. (13) is often too complicated to have analytical solutions. The numerical integration could bring very

high computational burdens, as it has to be evaluated for each generated sample. In the developed algorithm,

we attempt to solve this problem by introducing a linear interpolation model (Algorithm 1 - Algorithm 3). The

developed algorithms comprise of two phases. In the training phase, a linear interpolation model is trained based

on ntr training samples and used to approximate the transition probability matrix P (τ) of the embedded chain

Xi, i = 0, 1, · · · The trained linear interpolation model is, then, used in the simulation phase to generate state

jumps. In this way, numerical integration of Eq. (14) can be avoided in the simulation phase. When ntr is large,

the linear interpolation model can approximate P (τ) fairly accurately. At the same time, the computational costs

of running the linear interpolation model are much less than directly doing a numerical integration. Since P (τ)

needs to be evaluated for each generated state jump, the linear interpolation model can greatly improve the

computational efficiency of the algorithm. In general, a larger value of ntr would have better approximation

accuracy, but paying the price of increasing computational costs. In practice, a trade-off needs to be made

to balance the accuracy and computational costs. Another major difference between the developed algorithms

and the traditional Monte Carlo simulation is that, in the developed algorithms, samples are generated using

the idea of vectorization. Instead of generating state jumps interactively using loops, vectorized functions are

designed that take vector inputs and generate vectors of the state jumps directly. Vectorization can greatly

reduce the overhead cost of the program, and, therefore, dramatically improve the computational efficiency of

the algorithm. Algorithm 1 - Algorithm 3 also apply to Markov reward models. In this case, only pi,j(τ) and

Fi,j(t, τ) need to be replaced by their counterparts in the Markov reward models, while the algorithms can

remain unchanged.

In Algorithm 1, T represent the evaluation horizon; ~xcur and ~xnext represent the current and the next state,

respectively; ~tcur and ~tnext present the time instant for the current and the next jump, respectively; ~θ represents

the holding times. The logical operations on vectors, e.g., ~θ > 0, returns a logical index vector whose element

is 1 if the the logical operation on the corresponding element of ~θ is true (and 0 otherwise). In programming

languages like Matlab, the logical index vector can be directly used to access the corresponding elements in

the original vector. For example, ~θ(~θ > 0) returns the positive elements in ~θ.

Algorithm 2 is vectorized generations of the inverse transform sampling method for generating random

numbers [36]. The inputs xcur is the current state; ~τ is a column vector that contains the ages of the samples;

p̃xcur,j , j = 1, 2, · · · , nstate are the linear interpolation models to approximate the transition probabilities

pxcur,j , j = 1, 2, · · · , nstate, respectively. The output ~xnext is a vector of the same size as ~τ , which contains

the generated next states for samples with current state xcur and age ~τ .
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Algorithm 1: Resilience analysis based on the NHSMRP model.
Training phase:

~τtr ← Equally insert ntr points into [0, T ];

for i, j ∈ S do

~ptr ← Evaluate Eq. (14) with τ = ~τtr, using numerical integration methods;

p̃i,j(τ)← Train a linear interpolation model based on training data (~τtr, ~ptr);

end

Simulation phase:

Set ~xcur, ~xnext, ~θ, ~tcur, ~tnext to column vectors with NS elements of zeros;

while At least one element in ~tcur < T do

for xcur = Unique states in ~xcur do

~τ ← ~tcur(~xcur == xcur);

~xnext(~xcur == xcur)← Starting from state xcur, generate the next state with parameter ~τ

(Algorithm 2);

~θ(~xcur == xcur)← Starting from state xcur and ending with states ~xnext(~xcur == xcur),

generate holding times with parameter ~τ based on Algorithm 3;

~tnext(~xcur == xcur)← ~τ + ~θ(~xcur == xcur);

~tnext(~tnext > T )← T ; ~xnext(~tnext > T )← ~xcur(~tnext > T ) ;

~L(~xcur == xcur)← Update the total losses based on Eq. (8);

end

~xcur ← ~xnext; ~tcur ← ~tnext;

end

Estimate resilience metrics based on Eqs. (5) - (9).

Algorithm 2: Vectorized simulation to generate the next jump
input : xcur, ~τ , p̃xcur,j , j = 1, 2, · · · , nstate
output: ~xnext

P = [pi,j ]← p̃xcur,j(~τ(i)), i = 1, 2, · · · , length(~τ), j = 0, 1, · · · , n ;

C ← Calculate the column-wised cumulative sum of the matrix P ;

~u← Generate a column vector of random numbers with the same size as ~τ from U [0, 1];

~xnext ← For each row in C, find the index of the first element larger than the element in the same row

of ~u;

Algorithm 3 is a vectorized generation of the acceptance rejection sampling method [36]. The inputs fi,j(x, τ)

is the PDF of the holding time, as defined in Eq. (17); gi,j(x, τ) is a proposal density function which is easier

to simulate; c(τ) is a function that satisfies fi,j(x, τ) ≤ c(τ) · gi,j(x, τ),∀x and τ. The operators .∗ and ./

represent multiplication and division operators for vectors, i.e., apply the corresponding operations on each

element of the vectors.
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Algorithm 3: Generate holding times using vectorized acceptance-rejection method.
input : fi,j(x, τ), gi,j(x, τ), ci,j(τ), ~τ

output: ~θ

while ~τ is not empty do

~u← Generate a column vector of random numbers with the same size as ~τ from U [0, 1];

~θ ← Generate a column vector of random numbers with the same size as ~τ from gi,j(x, ~τ);

Keep the elements in ~θ which satisfy ~u. ∗ ci,j(~τ) ≤ fij(~θ, ~τ)./gij(~θ, ~τ) and discard the other

elements;

Delete the elements in ~τ whose holding time has been sampled in ~θ;

end

D. Performance analysis and numerical experiments

1) Theoretical analysis: The computational complexity of the developed method, denoted by Od, depends

on the complexity of the simulation algorithm Osim, and the overhead cost Ooc :

Od = Osim +Ooc

= O(nsn̄tnst)Op +O(nsn̄t)Oht +O(n̄t)Ooh,
(18)

where ns is the sample size of the simulation, n̄t is the average number of state jumps in (0, t), nst is the number

of states, Op is the computational complexity of evaluating one element of Eq. (14), Oht is the computational

complexity of generating one sample from the hitting time distribution, and Ooh represents the overhead cost

of per loop.

In the literature, there are two types of methods for analyzing the behaviors of Markov/semi-Markov reward

models: Monte Carlo simulations [37] and numerical integrations [38, 39]. Table I lists some of the most widely

used methods in the literature and discusses their computational complexities. It can be seen from the Table

that, compared to the numerical integration methods, a significant benefit of the developed method is that its

computational complexity only grows linearly with the state numbers, while the numerical integration methods

have at least quadratic growth rates. Hence, the computational performance of the developed method would be

significantly better than the numerical integration methods for problems with large state space. Compared to

the standard Monte Carlo simulation, the computational performance of the developed method outperforms in

the two aspects: first, thanks to the linear interpolation model, the Op of the developed methods is much lower;

second, the overhead cost is also much lower in the developed method.

2) Numerical experiment - I: Two numerical studies are conducted to compares the computational perfor-

mances. The first is based on a homogeneous Markov reward process model (a special case of the NHSMP)

described in Sect. 4.2 of [40]. The data used in this experiment are from Table 4.2 of [40]. Let Yt denote the

accumulated reward at t. As in [40], we calculate P (Y10 ≤ 10) under different sizes of state spaces (nst). Three

methods are tested: the developed method, Tijms’ method [39] and standard Monte Carlo simulation [37]. The

parameter values, i.e., the step size ∆ in the Tijms’ method and the sample size ns in the other two methods,
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TABLE I: Similar methods in the literature.

Method Category Applicable models Computational complexity

Tijms’ method [39] Numerical integration Markov reward model O

(
n2
stty

∆2

)
[40]

Janssen’s method [38] Numerical integration Semi-Markov reward model O
(
n2
st

(
t2

∆2 + t
∆

))
Standard Monte Carlo [37] Monte Carlo simulation Both Markov and semi-

Markov reward model

O(nsn̄tnst)Op+O(nsn̄t)Oht+

O(ns)Ooh

are set to be ∆ = 0.01, ns = 106. The reason for setting parameters like this is that it can ensure the three

methods achieve the same degree of errors.

The computational experiment has been carried out on a computer with a CPU of 2.59 GHz (12 cores) and 64

GB RAM. Table II presents the results of the numerical experiment. In Table II, M is a parameter that defines

the problem and controls the size of the state space (see [40] for details), and nst is the number of states of

the derived model. Theoretical values for M = 4, 5, 6, 7 are provided in [40] through high-precision numerical

integrations and are used in this study as reference values. As in [40], we keep increasing the state space

until the running time of the algorithm exceeds 300 (seconds) with ∆ = 0.01, ns = 106. Figure 5 shows the

comparisons of the running times in log-scales. It can be seen from the comparisons that when the state space

is small, the Tijms’ method performs better than the developed methods. While as the state space increases,

the developed method outperforms. This is because, as discussed in the theoretical analysis, the computation

time of the numerical integration methods increases quadratically with the state space, while the developed

method has a linear increasing rate. The developed method performs always better than the standard Monte

Carlo simulations. This is due to the benefits from the reduced overhead costs through vectorization, and also

from the reduced cost of simulating next jumps through the use of linear interpolation.

TABLE II: Pr(Y10 ≤ 10) calculated by different methods.

M nst Developed method Tijms’ method [39] Standard Monte Carlo [37] Theoretical value from [40]

4 5 0.445951 0.444693 0.444687 0.434068

5 13 0.226824 0.226727 0.226679 0.214623

6 25 0.171730 0.170841 0.171006 0.160671

7 41 0.142809 0.142358 0.142764 0.137375

9 81 0.121781 0.121266 0.121818 –

30 1513 0.085572 – 0.085364 –

60 6613 0.080194 – – –

–: Running time exceeds 300 (seconds).

3) Numerical experiment - II: A second numerical experiment is conducted to compare the performances

of developed method with Janssen’s method [38] and standard Monte Carlo simulation [37] on an NHSMRP

model. We design a simple case study following the same protocol as [38]. A three-state system is defined

to describe the event tree model in Figure 4 and used in this case study. The arrival of the initiating event

is assumed to be a Poisson process with rate λ and pII is assumed to be a time-dependent function whose

values are given by the inverse CDF of a Weibull distribution with parameters ηf and βf . The recovery time
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Fig. 5: Running times of the first numerical experiment.

distribution from state 1 to state 0 is assumed to follow a Weibull distribution with parameters ηr and βr. The

parameter values used in the analysis are summarized in Table III.

TABLE III: Parameter values of the second numerical experiment (in arbitrary units).

Parameters λ pI ηf βf ηr βr

Values 10−3 1.6× 10−3 100 2 1 2

The three methods are used to calculate the state probabilities at t = 1000 : Pr(X(1000) = i), i = 0, 1, 2.

The computational experiment has been carried out on a computer with a CPU of 2.59 GHz (12 cores) and 64

GB RAM. The results and computation times are compared in Table IV. For the two Monte Carlo simulation

methods, the two-sided confidence intervals with a confidence level α = 0.05 are also given. It can be seen from

the comparison that even for a relatively small-scale NHSMP, the developed efficient Monte Carlo simulation

performs much better than the numerical integration method. As shown in the previous section, when the sample

size grows larger, the computational benefits of the developed method over the numerical integration methods

would become more significant. This is because, since the system is nonhomogeneous, considering a given

time t requires considering all the history up to t, which makes numerical integration method computationally

expensive. Compared to the standard Monte Carlo simulation, the developed method can achieve significant

performance improvement. This confirms our theoretical analysis that the developed method improves the

standard Monte Carlo simulation by reducing the computational costs in evaluating the transition probability

matrix of the embedded chain through linear interpolation, and also by reducing the overhead cost through

vectorization.

IV. APPLICATION ON CRUDE OIL STORAGE TANKS

A. System descriptions

A crude oil storage tank farm, initially reported in [41], is considered as a case study to apply the developed

resilience model. It should be noted that in the original case study, only time-static behavior is considered, i.e.,
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TABLE IV: Results of the second numerical experiment.

Methods Developed method Standard Monte Carlo Janssen’s method

Pr(X(1000) = 0) 0.996768± 0.000883 0.996701± 0.000915 0.995583

Pr(X(1000) = 1) 0.002349± 0.000111 0.002384± 0.000112 0.002022

Pr(X(1000) = 2) 0.000058± 0.000095 0.000059± 0.000096 0.002394

Computation time (s) 6.80 328.78 172.12

all the failure probabilities of safety barriers were assumed to be constants; while in the present work, time-

dependent failure probabilities are considered, thanks to the non-homogeneous semi-Markov reward model.

The tank farm comprises of ten External Floating Roof (EFR) storage tanks. Each tank has a storage capacity

of 1 × 105 (m3), and the tank farm has a total storage capacity of 1 × 106 (m3) [41]. Lightning is the most

frequently encountered threat to oil storage tanks [42]. Therefore, we consider the resilience of the oil storage

tank against the threat of lightning.

When lightning hits a storage tank, it might catch fire due to two possible mechanisms [42]. The first is the

ignition of the leaked oil due to the puncturing of the tank wall by the lightning. The second is the ignition of

flammable vapors that exists inside the tank by the lightning. Safety barriers are often designed to protect the

oil tank and contain the propagation of the fire if it occurs. In this paper, we consider four safety barriers, i.e.,

Lightning Protection Mast (LPM), Automatic Rim seal fire Extinguishing System (ARES), Fixed Foam System

(FFS) and fire brigade. Detailed descriptions can be found in Table 1 of [28]. If a fire is caused by lightning

but not contained promptly by the fire extinguishing system or the fire brigade, it could spread to neighboring

tanks (domino effect) and cause severe damages to the tank farm and also social well beings [43].

B. Resilience modelling

1) Occurrence of the disruptive event: As in [28], we assume that the lightning that hits one storage tank

arrives following a homogeneous Poisson process with a rate λL. In this paper, we use the estimated value of

λL from [28]: λL = 9.842× 10−4 (y−1). Let ntank = 10 be the number of storage tanks and let us consider

an initiating event as at least one tank hit by the lightning. The initiating event can, then, be modeled as a

homogeneous Poisson process with a rate λD = ntank · λL [28].

2) Consequences and losses: Depending on the performance of the safety barriers, different consequences

might be caused. An event tree model is developed in Figure 7 of [28] to describe the possible consequences.

Depending on the severity of the consequences, they can be classified into three categories, as shown in Table

V. The event occurrence probabilities in the event tree model are summarized in Table VI. Unlike most of

the existing works that assume time-invariant event occurrence probabilities (e.g., see [28]), in this paper, we

consider the time-dependent behaviors of the LPM, ARES, FFS to better reflect the reality, as in practice, a large

number of factors degrade these safety barriers physically, making their reliability decrease over time [44]. For

example, the lightning protection mast is subject to corrosion failure that degrades its reliability significantly

over time [45]. To simplify the analysis, let us assume that the time to failure of the three safety barriers follow

Weibull distributions. Then, the time-dependent failure probabilities characterize their time-dependent failure
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behavior:

pL(t+ τ) = Pr(XLPM (t+ τ) = 1)

= e
−
(
t+τ
ηL

)βL
,

(19)

where ηL and βL represent the characteristic life and shape parameter of the LPM, respectively. The same

expression also applies to the ARES and FFS. The values of these parameters are summarized in Table VI.

In this case study, the performance of the tank farm can be represented by the number of damaged tanks,

as if a tank is damaged, it has to be shut down for repair and cannot be used to generate profits [28]. Let

X(t) = 0, 1, · · · 5 represent the number of damaged tanks when less than half of the tanks are damaged

(X(t) ≤ 5). When more than half of the tanks are damaged, it is considered an unrecoverable state because the

costs become too high to make a recovery economically reasonable. Let X(t) = 6 represent this unrecoverable

state. Therefore, the state space of the NHSMRP model can be defined by S = [0, 1, · · · , 6], where the first

five states are resilience state while the last one is non-resilient state (B0 = [0, 1, 2, 3, 4, 5] and B1 = [6]).

As shown in Table V, when local damages occur, X(t) jumps from i to i + 1, 0 ≤ i ≤ 5. When global

damages occur, more than half of the tanks would be affected, i.e., the system directly enters state 6. We also

assume that due to limited recovery resource, only one storage tank can be repaired at a time and minimal

repair policy is taken [28]. The possible state transitions of the NHSMRP is summarized in Figure 6. For the

direct and indirect losses associated with the state transitions, we assume the values based on those in [28] (in

arbitrary units):

di,j =


6, 0 ≤ i ≤ 5, j = i+ 1,

60, 0 ≤ i ≤ 4, j = 6,

0, otherwise.

(20)

li = 0.6 · i (arbitrary unit per day), 0 ≤ i ≤ 5. (21)

TABLE V: Classification of the consequences.

Category Event sequences Descriptions

Normal functioning (C0) S0 No damage is caused by the lightning.

Local damage (C1) S1, S3, S4, S5 Fire was caused by lightning but contained promptly. Only one tank is affected.

Global damage (C2) S2, S6 Fire spread to other tanks and caused large-scale damages that affect more than half of the tanks.

3) Construct the renewal kernel: The renewal kernel matrix can be determined based on Eq. (13). To show

how to apply this equation, we take Qi,i+1(t, τ), 1 ≤ i ≤ 5 as an example. As can be seen from Figure 6, from

state i, there are four possible destinations: state i− 1, i, i + 1 and 6. Also, from the event tree model, it can

be seen that the transitions to states i, i+ 1 and 6 are mutually exclusive, given the occurrence of the initiating

event. Hence, for Qi,i+1(t, τ), Eq. (13) becomes

Qi,i+1(t, τ) =

∫ t

0

fT,i,i+1(x, τ) (1− FT,i,i−1(x, τ)) dx. (22)
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Fig. 6: State transition diagram of the NHSMRP.

The transition from state i to state i + 1 is caused by local damages. From the event tree model (Figure 7 of

[28]) and Table V, fT,i,i+1(x, τ) can be calculated by

fT,i,i+1(x, τ) = λD · e−λDx(1− pL(x+ τ))·

(pDDpB + (1− pDD)(pA(x+ τ) + (1− pA(x+ τ))(pF (x+ τ) + (1− pF (x+ τ))(1− pB)))) ,

(23)

where pDD represents the probability that a direct damage is caused by the lightning strike; pB represents the

probability that the fire brigade responds correctly and promptly; pL(x+τ), pA(x+τ) and pF (x+τ) represent

respectively the probability that the LPM, ARES and FFS work properly at time (x+ τ).

The repair of the damaged tank causes the transition from state i to i−1. As in [28], we assume that only one

tank can be repaired at a time, and the recovery time between adjacent states follows a LogNormal distribution.

Therefore, we have

fT,i,i−1(x, τ) =
1√

2πσrx
e
− (ln(x)−µr)2

2σ2r , t > 0, i = 1, 2, · · · , 5. (24)

where µr and σr are the mean and standard deviation of the associated normal distribution, whose values are

given in Table VI.

Similarly, we can derive Qi,i−1(t, τ), Qi,i(t, τ) and Qi,6(t, τ):

Qi,i(t, τ) =

∫ t

0

fT,i,i(x, τ) (1− FT,i,i−1(x, τ)) dx, (25)

Qi,i−1(t, τ) =

∫ t

0

fT,i,i−1(x, τ) (1− FT,i,i(x, τ)− FT,i,i+1(x, τ)− FT,i,6(x, τ)) dx

=

∫ t

0

fT,i,i−1(x, τ) · eλD·xdx,
(26)

Qi,6(t, τ) =

∫ t

0

fT,i,6(x, τ) (1− FT,i,i−1(x, τ)) dx, (27)
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where fT,i,i(t+ τ) and fT,i,6(t+ τ) can be derived based on the event tree model:

fT,i,i(t+ τ) = λDe
−λDt · pL(t+ τ). (28)

fT,i,6(t+ τ) = λDe
−λDt · (1− pL(t+ τ))·

(pDD(1− pB(t+ τ)) + (1− pDD)(1− pA(t+ τ))(1− pF (t+ τ))(1− pB)) .
(29)

For state 0, there are three possible destinations: state 0, 1 and state 6. We can derive the corresponding

renewal kernels in a similar way:

Q0,0(t, τ) =

∫ t

0

fT,0,0(x, τ)dx =

∫ t

0

fT,i,i(x, τ)dx, (30)

Q0,1(t, τ) =

∫ t

0

fT,0,1(x, τ)dx =

∫ t

0

fT,i,i+1(x, τ)dx, (31)

Q0,6(t, τ) =

∫ t

0

fT,0,6(x, τ)dx =

∫ t

0

fT,i,6(x, τ)dx. (32)

Eqs. (22) - (32) define the renewal kernel of the developed NHSMRP. The values of the model parameters

are summarized in Table VI. It should be noted that in our data source [28], the failure probabilities of LPM,

ARES and FFS are assumed to be constant values. As we consider the time-dependent failure behavior of three

safety barriers in this paper, the parameters of their lifetime distributions need to be set based on the original

values in [28]. To do this, we assume that the failure probabilities of these safety barriers at 2 (years) equal the

original values in [28], and that the failure probabilities at T = 50 (years) increase to 0.99. The distribution

parameters are obtained by solving these two equations, given that the failure probabilities have been defined

in Eq. (19).

TABLE VI: Parameter values of the developed model

Parameter Value Source

λD 9.842× 10−3 (year−1) [41]

ηLPM 24.889 (year) Assumed based on [28]

βLPM 2.189 Assumed based on [28]

ηARES 19.616 (year) Assumed based on [28]

βARES 1.632 Assumed based on [28]

ηFFS 23.419 (year) Assumed based on [28]

βFFS 2.014 Assumed based on [28]

µr 3.388 (d) [28]

σr 0.166 (d) [28]

pDD 1.6× 10−2 [41]

pFB 0.693 [28]

Tth,Rc 45 (d) [28]

Ltol 70 (arbitrary unit) Assumed based on [28]
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C. Numerical experiment

We conduct an experiment to test the computational efficiency of the developed resilience analysis method

(Algorithm 1). Ten groups of experiments are designed, and the sample size of each group increases evenly

from 104 to 106. In each group, both the developed method and a standard Monte Carlo simulation are used

to evaluate the resilience of the tank farm in (0, 50) (years). The experiment is repeated five times, as elapsed

time of the program depends on the number of lightning that hit the tank farm in the evaluation horizon,

which is uncertain and varies in each run of the simulation. Average CPU times over the five runs are used to

compare the computational efficiency of the two methods in Figure 7. As the computational time of both the

two methods depend on the number of events that need to be generated in the evaluation horizon. In Figure

7, we present two cases: in Figure 7 (a), the arrival rate is set to a low value λD = 9.42 × 10−3 (year−1),

which indicates an average number of 2.12 initiating events would occur per simulation run; while in Figure

7 (b), we select a high value of λD = 9.42 × 10−2 (year−1), which makes the average number of initiating

events in the evaluation horizon to be 21.2. The computer that runs the experiment has a CPU of 2.59 GHz

(12 cores) and 64 GB RAM.

Figure 7 shows that in both cases, the computational times of both the two methods increase linearly with

sample size, but the developed method has a significantly smaller slope. The smaller slope means that the

computational time of the developed method increases much slower compared to standard Monte Carlo methods.

The numerical values of the slopes are given in Figure 7. Based on these values, a detailed comparison can be

made: the developed method is 10.89 times faster compared to the standard Monte Carlo methods in case (a),

while in case (b), the advantage increases to 29.74. The main reason for the benefit of the developed method is

that implements vectorization in simulation and uses a linear interpolation model to reduce the computational

burden in evaluating the renewal kernels. The comparison between case (a) and (b) also reveals that as the

number of needed simulations increases, the efficiency of the developed simulation method also improves.

Figure 8 investigates the accuracy of the developed methods by comparing it to a benchmark of 107

simulations using the standard Monte Carlo simulation method. Average relative errors over the five repetitions

are used as a measure of simulation accuracy. As a comparison, we also present the result of the standard Monte

Carlo simulation under the same conditions. We can see that the accuracy of the developed method is comparable

to the standard Monte Carlo simulation. We should note that the relative errors for the resilient and recovery

probabilities are higher compared to the other two metrics. The reason is that these two metrics are conditional

probabilities conditioned on the occurrence of initial damages. Hence, the sample sizes for these two metrics

are smaller than the other two metrics, which results in high errors. Compared to the standard Monte Carlo

simulation, the only source for systematic error is the approximation error of the linear interpolation model,

which is controlled by the training sample size. A larger training sample size would reduce the evaluation error,

but requires longer execution time.

D. Resilience analyses

1) Time-dependent resilience analysis: The parameters in Table VI are used to investigate the resilience

behavior of the tank farm in [0, t] using Algorithm 1. In the training phase of Algorithm 1, 105 training
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(a) Low arrival rate: λD = 9.42× 10−3 (year−1).

(b) High arrival rate: λD = 9.42× 10−2 (year−1).

Fig. 7: Comparison of computational efficiency.

samples are used to train the linear interpolation model. Fifty analyses were considered with t = 1, 2, · · · , 50

(years), respectively. The sample size of the simulation is 106. The results of the analysis are given in Figure

9. We test the correctness of the developed method by comparing its results to those from a standard Monte

Carlo simulation (without vectorization and interpolation). In the standard Monte Carlo simulation, one sample

path is generated per simulation run by simulating sequentially occurrences of disruptive events, consequences

of disruptive events (based on the event tree model in Figure 7 of [28]) and recovery times (Eq. (24)). The

comparisons show that developed methods are able to estimate the resilience metrics accurately.

Figure 9 also reveals that as the evaluation horizon (t) gets longer, all the four resilience metrics decrease.

Two reasons mainly cause this. First, as shown in Figure 10, the reliabilities of the three key safety barriers,

i.e., LPM, ARES and FFS, degrade over time. The degradation of these key safety barriers impairs the system’s

ability to stay resilient and, as a result, worsens the evaluated resilience metrics. Besides, more disruptive

events (lightning) are expected in a longer interval with a larger t, as predicted by the Poisson process model.

Since lightning triggers the initiating event in the resilience analysis, more lightning arrivals could decrease the

resilience, even though failure probabilities of safety barriers do not degrade over time. This finding suggests

the necessity to monitor the degradation of resilience to ensure that it can operate with high degree of resilience.

Also, intervention measures like preventive maintenance can be planned based on the measured resilience. When

the resilience metrics drop below tolerable values, the systems need to stop for maintenance to regain resilience.

At a first glance, the overall resilience is Figure 9 (d) seems quite satisfactory (above 0.99) in (0, 50) (years),
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(i) Low arrival rate: λD = 9.42× 10−3 (year−1).

(ii) High arrival rate: λD = 9.42× 10−2 (year−1).

Fig. 8: Accuracy of the developed method.

indicating that we have high confidence (above 99%) that the total costs of operating the tank farm for 50 years

would not exceed the tolerance. However, a closer examination on Figure 9 (b) and (c) reveals that the system

is actually quite vulnerable. Once the lightning arrives and the protection mask fails, it is highly likely that the

tank farm will enter non-resilient states and/or fail to satisfy recovery requirements. This is caused by the fact

that the safety barriers degrade over time, which increases significantly the risks when the protection barriers

fail. The overall resilience (and similar ones like the resilience triangle) still yield satisfactory results mainly

because its value also depends on the occurrence probability of the initiating events (which is usually very low).

The low occurrence probability of the initiating events provides us with "fake confidence" in this case. Resilient

and recovery probability, on the other hand, can complement overall resilience as they are defined conditional

probabilities that draw our attention directly to the performance of safety barriers and recovery processes. It

should be noted that it seems the uncertainty bounds in the beginning range of Figure 9 (c) is larger than the
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other three metrics. This is because we have relatively small number of samples in this range.

Fig. 9: Time-dependent resilience analysis (Sample size: 106).

Fig. 10: Reliability of the three major safety barriers.

Figure 11 compares the developed time-dependent resilience model to the time-static ones [28]. In the time-

static model, failure probabilities of LPM, ARES and FFS are assumed to be constants and takes the values

in [28]. In Figure 11, we also present the result of a worst-case time-static resilience analysis, where the

failure probabilities of LPM, ARES and FFS are all assumed to be one. The comparison shows that depending

on the parameter values chosen, time-dependent resilience analysis might overestimate (in the first case) or

underestimate the resilience (in the second case). The difference is mainly determined by whether the assumed

constant-value failure probabilities of safety barriers overestimate or underestimate the true failure probabilities.

As the developed method allows capturing the realistic time-dependent behaviors of safety barriers, it is more

accurate than the existing time-static resilience analysis method in [25].
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Fig. 11: Comparison to time-static resilience analysis.

2) Improving the resilience: There are different design measures that can improve resilience. Depending

on which phase in the accident evolution process these measures take place, we consider three types of

design measures as summarized in Table VII. In the analysis, we improve the associated parameters by 25%

to investigate their effectiveness for improving different resilience metrics. Note that ηLPM , ηARES , ηFFS

are characteristic life of the corresponding safety barriers. Improving them improves the reliabilities of the

corresponding safety barriers.

TABLE VII: Improvement measures.

Category Target Affected parameters

Improve protection measure Improve the capability to resist the damages of disruptive events. ηLPM

Improve safety barrier Reduce the likelihood of system collapse. ηARES , ηFFS

Improve recovery measure Reduce the recovery time. µr

The results of the analysis are presented in Figure 12. It can be seen that only improving protection measures

(i.e., increase the reliability of the lightning protection mask) can improve the resistant probability. This can be

explained from the event tree model in Figure 7 of [28]: only the protection mask can protect the tank farm

from the damages caused by lightning. The resilient probability can only be improved through improving safety

barriers (i.e., the ARES and FFS). The most efficient way of improving recovery probability is to improve the

recovery measures, as the recovery measures directly affect the recovery time distribution. However, improving

the protection and safety barriers can also help improve the recovery probability. The result is caused by the fact
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taht the two improvement measures can reduce the probability that the system enters non-resilient states. From

the definition of recovery probability in Eq. (7), we can see that entering non-resilient states could decrease

the resilient probability, as non-resilient states are not recoverable. All three measures can improve overall

resilience. Among them, improving protection measures is the most efficient one. This is because improving

protection measures reduces the occurrence probability of the initiating events in the event tree model (see

Figure 7 of [28]). Without initiating events, no subsequent damages and losses would occur. However, being

more efficient does not mean that improving protection measures alone is enough. From Figure 12, we can see

that protection measures cannot improve the resilient and recovery probability. Hence, different improvement

measures need to be combined to achieve better resilience.

Fig. 12: Effectiveness of different improvement measures.

V. APPLICATION ON A RE-CONFIGURABLE COMPUTING SYSTEM

A. System descriptions

In this section, we apply the developed model on a second case study, a re-configurable computing system

from [46]. The system has 16 processors, 16 memories an interconnection network that allows each processor

to access any memory. For the system to be operational, a minimal number of 4 processors, 4 memories and

one interconnection network are required. Otherwise, the system enters a non-operational state. Above these

threshold values, more available processors and memories indicate better performance. Let c,m and s represent

the number of working processors, memories and interconnection networks, respectively. Then, the performance

of the computing system could be quantified by [46]

r =


max(c,m)

(
1−

(
1− 1

max(c,m)

)min(c,m)
)
, if c,m ≥ 4, s = 1,

0, otherwise.

(33)
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All the three types of components could fail. According to [46], the failure times can be assumed to follow

exponential distributions. Once failure occurs, the computing system can be reconfigured: there are automatic

mechanisms for failure detection and isolation, which locates the failed component and remove it from the

normal ones. Therefore, the system can still operate, but with a degraded performance level. The reconfiguration

might also fail with a probability of (1− pc), where pc is called coverage probability. Once a reconfiguration

fails, the computing system goes into a non-operational state. The reconfigured system can be recovered by

repairing the isolated failed component. In this paper, we take the same assumption as [46] that only one failed

component can be repaired at a time and the repair times are also exponentially distributed. The failure rates

and repair rates are given in Sect. II of [46].

B. Resilience modeling

The system state can be defined by a tuple (c,m, s). The state space comprises all the combinations of

(c,m, s), with 4 ≤ c,m ≤ 16, s = 0, 1, and an additional state F, which represents the non-operational state.

Unlike the original case study in [46], we assume in this paper that the computing system provides essential

service so that its breakdown is unacceptable. Once the system enters the non-operational state, it cannot be

recovered and remains in the non-operational state. Hence, the non-operational state is an absorbing state. The

behavior of the system can be characterized by deriving the renewal kernels. Let’s take the jump from (16, 16, 1)

to (16, 15, 1) as an example. From state (16, 16, 1), we can reach three states, i.e., (16, 15, 1), (15, 16, 1) and

F. From Eq. (13), the corresponding element in the renewal kernel can be derived:

Q(16,16,1),(16,15,1)(t) = Pr(Xn+1 = (16, 15, 1), θn+1 ≤ t |Xn = (16, 16, 1))

=

∫ t

0

λme
−λmxPr(Tc > x)Pr(Ts > x)dx

=

∫ t

0

λme
−λmxe−λcxe−λsxdx

=
λm

λm + λc + λs

(
1− e−(λm+λc+λs)t

)
,

where λm, λc and λs are the failure rates of the memory, processor and network switch, respectively. It should

be noted that in this case study, the state transitions are homogeneous. Therefore, the τ in Eq. (13) can be

dropped. From Eq. (14) and Eq. (15), we can further derive the transition probability of the embedded chain,

and the associated holding time distributions:

P(16,16,1),(16,15,1) = lim
t→∞

Q(16,16,1),(16,15,1)(t)

=
λm

λm + λc + λs
.

F(16,16,1),(16,15,1)(t) =
Q(16,16,1),(16,15,1)(t)

P(16,16,1),(16,15,1)

= 1− e−(λm+λc+λs)t.

It can be seen that the holding time distribution is an exponential distribution. Hence, the system degenerates

to a homogeneous Markov reward process. The system has 170 states and the other elements in the renewal

kernel can be determined in a similar way.
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Both direct and indirect losses can be observed in the computing system. In this case study, we assume the

values of the direct losses to be

di,j =


10 · nf (arbitrary unit), if remaining in operational states,

60 (arbitrary unit), if entering the non-operational state,

0, otherwise,

where nf is the total number of failed memories and processors. The indirect cost per unit time li is assumed

to be proportional to the performance loss:

li = 10 ·
(

max
i
ri − ri

)
(arbitrary unit per hour), for all the working states,

where ri is the performance rate for state i and can be calculated by Eq. (33).

C. Results and discussions

A time-dependent resilience analysis is conducted based on Algorithm 1 to calculate the four resilience

metrics. The threshold for maximal allowable recovery time is taken to be Tth,Rc = 10 (hours) and the maximal

allowable loss is taken to be Ltol = 50 (arbitrary unit). The evaluation is done every 36 (hours), up to 720

(hours). The other parameters take the same values as those in [46]. The sample size of the simulation is 106.

The results are given in Figure 13. From Figure 13, it can be seen that all the four resilience metrics decrease

as the evaluation horizon (t) increases. This is mainly because, as t increases, the reliabilities of the components

drop. Thus, more component failures are expected, causing severe performance loss and lowering the resilience.

Such an analysis can help decision makers make operational decisions considering resilience. For example, it is

not recommended to operate the computing system continuously for the whole evaluation horizon (720 hours),

as the analyses reveal that we would have very high risks to suffer resilience problems. For example, from

Figure 13 (d), if the system is operating for 720 hours, the risk that the loss is beyond tolerance is 66.64%.

Fig. 13: Time-dependent resilience analysis for the computing system.
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VI. CONCLUSION

In this paper, we developed a non-homogeneous Semi-Markov reward process-based resilience model for

multi-state systems. The time-dependent behavior of system resilience can be captured in the developed model

thanks to its non-homogeneous nature. Four resilience metrics, i.e., resistant probability, resilient probability,

recovery probability, and overall resilience, were used to quantify system resilience. A simulation algorithm was

developed for resilience analysis based on vectorization and linear interpolation. Computational experiments

were designed to compare the computational performance of the developed algorithm to existing methods.

The results showed that the developed outperforms the existing methods, thanks to the reduced overhead costs

through vectorization and the reduced computational costs of generating samples through linear interpolation.

The developed methods were applied on two real-world case studies. The main findings from th case studies

include: first, compared to existing time-state analysis methods, the developed method can more accurately

describe the actual resilience behavior, due to its capability to capture time-dependent features. Second, existing

methods based on global resilience metrics like resilience triangle might be overconfident in some cases,

especially when the occurrence probability of disruptive events is small. Applying the developed four-metric

framework can alleviate this overconfidence as resilient probability and recovery probability focus on system

behavior after the disruptive event occurs. Third, if we want to improve the resilience of the system, the most

efficient way is to improve the reliability of protection measures. However, doing this alone is not enough,

as it does not affect resilient and recovery probability. Thus, decision-makers need to coordinate the different

improvement measures for designing a system toward comprehensive resilience.

In the future, some improvements might be considered to the developed methods. First, the developed

resilience analysis methods are still based on simulation. Analytical methods could be investigated to reduce

the computational burden of the analysis further. Second, the developed model is multi-state in the sense that

the system performance takes discrete values. In practice, some systems might have discrete and continuous

performance levels at the same time. The developed model can be extended to these systems. Third, maintenance,

especially preventive maintenance and predictive maintenance, can be considered in the developed model, so

that optimal maintenance strategies can be planned to maximize the system resilience. Also, in this paper, we

assumed that the parameter values of the NHSMRP model is precisely known to us. In practice, however, we

often have epistemic uncertainty regarding these parameter values. How to handle epistemic uncertainty in the

developed model, then, becomes an interesting question that deserves further investigations. Another limitation

of the current model is that, cascading failures, which are commonly observed in an actual network system [47],

are not considered. However, this can be done by extending the NHSMRP model to include state transitions

corresponding to common cause failures (simultaneous failure of multiple components due to a common cause).

The added state transition can be naturally used to describe cascading failures. Lastly, in a lot of real-world

systems, the reliability of safety barriers might depend on the operation levels of the system. This fact can also

be considered in an extension of the developed model so that joint optimization of operation and resilience can

be considered.
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