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Abstract 

Keen interest in the development and utilization of multi-state weighted k-out-of-n systems 

(MSWKNS) has been currently observed. In real-life cases, considering that multiple 

different MSWKNS structures are provided beforehand, system designers need to select an 

optimal one among numbers of different structure designs. Thus, screening of the optimal 

MSWKNS structure is meaningful and critical. Moreover, the system reliability becomes an 

increasingly important factor that should be assessed in structure screening. However, when 

facing a large-scale MSWKNS whose number of states is enormous, exact reliability 

evaluation can be rather complicated. Meanwhile, due to the large number of system structure 

designs, the computational burden of screening can be very huge. To effectively select the 

optimal structure among enormous MSWKNSs under reliability constraints, an optimal 

structure screening method named as ordinal structure screening (OSS) is proposed. Ordinal 

optimization (OO) algorithm is adopted with a novel utilization of continuization 

discretization approximation (CDA) method. To shorten the reliability evaluation time, CDA 

is employed to approximate reliabilities. Based on the approximate reliabilities, OO is applied 

to reduce the number of system structures to b evaluated, which accelerates the screening 

process. Illustrative results show that the proposed method appeals in improving 

computational efficiency with satisfactory accuracy performance. 
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Notations 

iS  MSWKNS i 

n  total number of components connected in parallel in a MSWKNS 

N  total number of MSWKNSs 

M  total number of components versions 

,i jv  version of component j in iS  

,i jw  weight of component i in state j 

,i jp  probability of component i in state j 

jk  minimum total weight required to ensure that the system is in state j or above 

*( )R k  reliability of a MSWKNS 

*( )R k  approximate reliability of a MSWKNS 

iC  total cost of iS  

,i jc  purchase cost of a component in version j of iS  
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1. Introduction 

Wide application of multi-state systems (MSSs) in reliability evaluation of real-life 

engineering systems has been observed [1]. In the MSS, the components and the systems have 

several performance levels. The system total performance can be evaluated by the 

contributions of each component at different states [2]. As one of the most typical MSS 

topologies, multi-state weighted k-out-of-n system (MSWKNS) is widely accepted by every 

aspect of industry [2]. In a MSWKNS, component i in state j carries a performance weight of 

,i jw . One of the basic conditions for the system to be working is that the total weight of all 

components is at least a predefined threshold value k. The structure of MSWKNS has been 

intensively investigated in recent researches [3]. 
Structure screening is one of the most important challenges that system designers 

encounter. In some real-life cases, there are multiple possible MSWKNS structure designs to 

satisfy different system needs. Each MSWKNS structure design has its unique characteristics, 

such as system cost. It is inevitable for system designers to efficiently select the optimal one 

among those structure designs. For example, there are 50 different MSWKNS structure 

designs in a planning of power systems. System designers need to select the optimal one 

which has minimal system cost [1]. Hence, screening of an optimal MSWKNS structure in 

terms of system cost has practical significance. 

The structure screening of MSWKNSs should take different factors into account. Fpr 

example, the optimal system structure should be both economical and reliable [4], [5]. In 

addition to the system cost, maintaining a high reliability level of engineering systems is 

extremely important. For example, if the reliability of a generator does not meet the 

requirement, adequate electricity cannot be provided and the stable operation of power system 

will be affected. To ensure the reliability of a structure is no less than the required value, 

reliability evaluation of MSWKNSs is inevitable. In this paper, the structure screening can be 
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regarded as a problem that needs to find the optimal option with the smallest system cost 

under the reliability constraints.  

However, as the industry develops, the scale of engineering systems increases. In a large-

scale system, both the number of components and the system possible states are enormous [6], 

[7]. The great number of components and possible states makes reliability evaluation for  

large-scale systems extremely complex. Moreover, not only the scale of each system structure 

can be large, but also the number of possible structure designs can be numerous. It is 

inefficient to detailly and exactly calculate the system cost and reliability for each structure, 

especially for a structure screening containing plenty of large-scale structure designs. 

Considering the challenge of large-scale MSWKNS structures mentioned above, efficient 

structure screening among a wide variety of large-scale structures is urgent to be investigated. 

Universal generating function (UGF) technique and recursive method are two primary 

algorithms for exact reliabilities evaluation of MSWKNSs. Reference [8] provided a recursive 

algorithm for reliability evaluation of MSWKNS. The UGF method was firstly introduced in 

[9] to reduce computational complexity for the MSS. By defining different operators, it can be 

applied to many different system structures [10], including k-out-of-n structure. The Monte 

Carlo simulation (MCS) method [11], [12], and Markov process method [13] are also 

applicable in reliability evaluation. However, to evaluate the exact reliabilities of multiple 

large-scale MSWKNSs in structure screening, huge computational resource is required. In 

some real-life cases, the exact reliability is not necessary. The accuracy of reliability 

evaluation can be sacrificed to some extent for reducing the computational time. Therefore, 

considering the challenge of the large-scale MSWKNSs, an approximate reliability evaluation 

approach is needed. 

Facing the difficulties of enormous searching space and exact reliability evaluation in 

structure screening, ordinal optimization (OO) algorithm is adopted in this paper. This novel 
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method is capable of effectively reducing the large searching space into a relatively small 

selected subset [14], [15], which can improve the computational efficiency. For example, 

reference [16] incorporated the OO into automation learning algorithm to improve the 

learning efficiency. The most important characteristics of OO is the consideration of “order” 

rather than the “value” during optimization [17], [18]. Therefore, an efficient performance 

approximation method to achieve a performance order of structures is inevitable. In this 

paper, continuization discretization approximation (CDA) method is utilized to evaluate the 

approximate reliabilities of MSWKNS structures. CDA can approximate the discrete 

probability distribution by a continuous Gaussian distribution and reduce the computational 

complexity [19] [20]. With the approximate reliabilities evaluated by CDA, OO can quickly 

narrow the searching space by comparing the reliability order first [15]. 

In this paper, an optimal structure screening method, referred as ordinal structure screening 

(OSS), is proposed, which consists of CDA, OO and UGF methods. OSS can effectively 

select the optimal one among multiple large-scale MSWKNS structure designs under 

reliability constraints. To reduce the reliability evaluation time, the approximate reliabilities 

of MSWKNSs is evaluated by CDA. Based on the pre-determined approximate reliabilities, 

OO can eliminate those large-scale MSWKNS structure designs with low reliabilities and 

largely minimize the number of designs employed in the final step. Thus, it can statistically 

improve the calculation efficiency. In structure screening, approximate reliability is unable to 

ensure that the reliability of a structure is no less than the required reliability. Thus, the exact 

reliability evaluation is indispensable. In the final step, UGF technique is used to evaluate the 

exact reliabilities for those pick-out MSWKNSs.  

The major contributions of this paper are list as follows: 

1) A novel analytical method in structure screening is proposed, which can efficiently and 

accurately select the optimal structure among multiple MSWKNSs.   
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2) A new ordinal optimization method in structure screening with multiple MSWKNS 

designs is presented, which can restrict the large searching space into a small selected space. 

3) An approximate reliability evaluation method in structure screening is developed with 

the combination of CDA and OO. 

The paper is structured as follows. Section 2 introduces the MSWKNS model and structure 

screening. Section 3 proposes the OSS method and its detailed explanation. Section 4 

analyzes the performances of the proposed method by comparing with the existing 

techniques. Finally, the conclusion is presented in Section 5. 

2. Descriptions of MSWKNS and structure screening  

Descriptions of MSWKNS and structure screening are provided in this section. We 

assume that a MSWKNS consists of n components connected in parallel. Different versions 

and numbers can be chosen for any given components. Different versions of components have 

different performance characteristics. Each component ( 1, 2,..., )i i n=  has is  different states, 

from totally failure state to perfectly functioning state. Let ,i jw  represent the performance 

weight of component i in state ( 1 2,..., )ij j s= ， . Thus, the set of all performance weights of 

component i is represented by ,1 ,2 .{ , , , }
ii i i i sw w w w=  . Let the random variable iW  represents 

the performance weight of component i, which takes value in the set : . 

, ,Ρr( )i j i i jp W w= =  is the probability that iW  is equal to ,i jw  (in state j of component i) [3].  

The system weight 
sW  of the entire MSWKNS depends on the parallel interaction 

between components and on the distribution of the components’ performances. The system 

performance level 
1 2 1

( , ,..., )
n

s n ii
W f W W W W

=
= =  is determined by the system structure 

function. The system is in state j or above if sW  is greater than or equal to a predefined 

threshold weight jk . Let   represent the state of the system. We then have 



 7 

Pr( ) Pr( )s jj W k  =  . Since state 0 is the worst state of the system, we have Pr( 0) 1  = . 

The reliability of a MSWKNS 
*( )R k  is the probability that the system weight is greater than 

or equal to *k , which is expressed by 
* *( ) Pr( )sR k W k=   [3].  

The goal of this work is to comprehensively select an optimal system structure which can 

satisfy different system requirements. Particularly, in real-life cases, to design an economical 

and reliable MSWKNS structure, enormous system structure designs are provided by system 

designers. Moreover, the structure characteristics of each MSWKNS, including the number 

and version of system components, are usually pre-determined. Based on that, system 

designers need to select the optimal system structure among multiple MSWKNS designs. An 

illustration of structure screening is given in Fig. 1. 

 

Fig. 1 Structure screening 

Suppose there are N MSWKNS structure designs. MSWKNS ( 1, 2,..., )iS i N=  contains in  

components. The components in iS  can be divided into iM  versions. Components from the 

same version have the same performance characteristics, such as component cost, 

performance weights and the corresponding probabilities. Assume that the iM  versions of 

components in iS  are denoted as , ( 1,2,..., , 1,2,..., )i j iV i N j M= = . The total number of 

components in version j ,i jV  is .i jn  and the cost for a component in ,i jV  is ,i jc . In this paper, 
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the system cost is considered as the sum of total purchase costs for all components, which is 

the function of the number of components purchased simultaneously. Consequently, the 

system cost can be characterized as , ,1
( )iM

i i j i jj
C c n

=
=  . The reliability iR  of structure 

iS can be assessed by reliability evaluation methods.  

In structure screening, the reliability is served as the screening constraints. Among all the 

designs, the optimal structure is the most economical and reliable system whose system cost 

is minimal and its reliability is no less than the required value. As can be seen in Fig. 1, the 

framework of structure screening can be divided into 3 steps. The first step of structure 

screening is to evaluate the reliability iR  for every MSWKNS ( 1, 2,..., )iS i N= , then select the 

 feasible MSWKNS structures into next step. The m feasible structures are the 

MSWKNSs whose reliabilities are no less than the required reliability R . Finally, estimate 

the system cost 'iC  for every feasible MSWKNS ' ( 1,2,..., )iS i m=  and select the optimal 

structure which has minimal system cost. Through these three steps, the N MSWKNS 

structure designs are screened into one optimal structure. 

However, the computational burden for structure screening may be huge. For example, the 

number of possible MSWKNS structures can be large in structure screening. Suppose that 

there are g different MSWKNS structure designs. Then, the system reliability has to be 

evaluated g times, which requires huge computational resources to evaluate. Moreover, the 

exact reliability evaluation of a large-scale MSWKNS can be complicated. Taking reliability 

evaluation method UGF as an example, if a MSWKNS has n components and each 

component has k states, the computational complexity for this MSWKNS is ( )nO k . With the 

increasing number of components and states, the computational complexity can grow 

exponentially [21]. Therefore, the structure screening with exact reliability evaluation for 

multiple large-scale MSWKNS structure designs requires tremendous computational 
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resources. To efficiently and accurately cope with the computational burden mentioned above, 

a novel structure screening framework named as OSS is presented in section 3. 

3. Formulation of OSS method 

In this section, OSS method is proposed to efficiently determine the optimal MSWKNS 

structure under reliability constraints. Suppose there are N MSWKNS structure designs. Each 

system consists of n components and m states for each component. The computational 

complexity for structure screening together with exact reliability evaluation by UGF is 

( )nO N m . Aiming at reducing the complexity for screening with numerous large-scale 

structure designs, OSS method is proposed. Firstly, reliability evaluation method utilized in 

OSS approximates discrete probability distribution by a continuous Gaussian distribution 

when the exact reliability is not available [19], whose computational complexity is much 

smaller than UGF. Secondly, the structure screening rule adopted in OSS efficiently cuts 

down the number of structure designs that need exact reliabilities evaluation. The procedures 

of OSS method are illustrated in Fig. 2. 

 

Fig. 2 OSS method 

The OSS method consists of three algorithms, OO, CDA and UGF. CDA can evaluate the 

approximate reliabilities of MSWKNSs. Additionally, OO can eliminate the MSWKNS 

structure designs based on the approximate reliabilities. UGF is employed to assess the exact 

reliabilities of the remaining MSWKNS structures. The procedure of OSS in structure 
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screening is presented as follows. Firstly, CDA is applied for evaluating the approximate 

reliabilities of MSWKNSs. Secondly, utilizing screening rule in OO and the approximate 

reliabilities evaluated by CDA, the top-s MSWKNS structures with highest approximate 

reliabilities are selected. The theory of OO ensures that the selected top-s MSWKNS 

structures contain at least k truly good structure designs with high probability [16]. The 

screening rule in OO can reduce the screening time by decreasing the number of structure 

designs. Thirdly, considering the reliability constraints, the exact reliabilities of selected top-s 

MSWKNSs are evaluated by UGF technique. By comparing the exact reliabilities with 

required reliability, the feasible structures whose exact reliabilities meet the reliability 

constraints can be selected. Finally, comparing the system cost of each feasible structure, the 

optimal structure with minimum system cost can be screened. Particularly, the computational 

burden for the structure screening of MSWKNSs is dramatically reduced by the CDA and OO 

methods in the former steps.  

3.1. Approximate reliabilities of N MSWKNSs 

This part introduces the technique to approximate MSWKNS reliability by applying the 

CDA in structure screening. With the increasing number of components and states, the 

number of terms considered in the reliability evaluation can grow exponentially [19]. The 

reliability evaluation complexity for a MSWKNS with n components by UGF is ( )nO K , 

where K is the number of states a component may have, while the computational complexity 

of CDA is ( )O Kn . Compared with UGF, the CDA is much more efficient [19]. Therefore, we 

apply CDA to evaluate the approximate reliability of a MSWKNS. 

As mentioned in [19], it is a widely-employed assumption that the system components are 

independent. Thus, the random performance of these components ( 1, 2,..., )iW i n=  are also 

assumed to be independent. Then, the simplified Lindeberg’s central limit theory [20] can be 

applied in reliability evaluation of a MSWKNS.   
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The random performance of system components ( 1, 2,..., )iW i n=  are regarded as a 

sequence of independent discrete random variables. Their sum is the system performance 

weight 
1

n

s ii
W W

=
= . Denote the mean and variance of sW  by nm  and 

2
ns , respectively. 

According to [19], the random variable ( ) /s n nW m s−  will converge to the Gaussian 

distribution. The system performance weight 
sW  will converge to the Gaussian distribution 

2( ,  )n nN m s , where 
2( ,  )n nN m s  is the Gaussian distribution with expect value nm  and variance 

2
ns . 

With the assumption of independence between system components, the mean value nm  

and the variance 
2
ns  can be calculated directly from the mean value ( 1, 2,..., )i i n =  and the 

variance 
2 ( 1,2,..., )i i n =  of component i:  

                                                    2 2

1 1
     s

n n

n i n ii i
m  

= =
= =                                            (1) 

And the mean value i  and the variance 
2
i  of component i can be evaluated by Eq. (2). 

2 2
, , , ,1 1

     ( )i is s

i i j i j i i j i j ii i
u p w p w u

= =
=  =  −                            (2) 

where is  is the number of  states of component i. ,i jw  is the performance weight of 

component i with the corresponding probability ,i jp  in state ( 1 2,..., )ij j s= ， . 

Therefore, the approximate reliability ( )R k 
 of a MSWKNS satisfying the given system 

demand kcan be approximated as [19]: 

( ) ( )

( )

( )

( ) Pr Pr ( ) / ( ) /

1 Pr ( ) / ( ) /

1 ( ) /

s s n n n n

s n n n n

n n

R k W k W m s k m s

W m s k m s

k m s

  





=  = −  −

= − −  −

 − −

                (3) 
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where   is the cumulative probability function of a standard normal distribution, whose 

calculation process is summarized in [19]. 

In structure screening, there are N MSWKNS structure designs ( 1, 2,..., )iS i N= . By 

employing CDA to all the MSWKNS structures, approximate reliabilities ( )R k 
 of 

MSWKNSs can be evaluated. These MSWKNS structures with highest approximate 

reliabilities are picked out into next steps by OO algorithm. 

3.2. Ordered performance curve for N MSWKNSs 

As we know, “order” is easier than “value” [15]. It is much easier to estimate whether 

design A is better than B than to estimate the difference between A and B. Moreover, nothing 

but the best is very costly [15]. The idea of relaxing the goal of performance evaluation from 

“nothing but the best” to “settle for anything in the top choices” can buy quite a bit in the 

easing of computational burden. It is noticeable that to quickly narrow the search for optimal 

structure to a “good enough” subset is more important than to estimate accurately the 

performances of systems in structure screening. OO can solve the computational problem by 

comparing “order” first and estimating “value” second [15]. Therefore, OO algorithm is 

adopted to improve the computation efficiency. 

Based on CDA, the approximate reliabilities 1 2( ) { ( ), ( ),..., ( )}NR k R k R k R k   =  of all the 

MSWKNS structure designs 1 2{ , ,..., }NS S S S=  have been evaluated. These approximate 

reliabilities are plotted from the smallest to the largest to form a nondecreasing curve, which 

is named as ordered performance curve (OPC) in OO. There are five basic classes for OPCs, 

Steep, U-Shaped, Neutral, Bell and Flat, respectively [16]. The OPC in structure screening 

can be seen in Fig. 3. In Fig. 3, the x-axis represents the order of N MSWKNS structures. The 

y-axis shows its corresponding approximate reliabilities. The five solid curves represent the 

five basic classes of OPCs, which are Steep, Bell, Neutral, U-Shaped and Flat, respectively. 
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The class of OPC determines the value of screening coefficients 0z ,  ,   and   [15]. The 

relationship between coefficients and the classes of OPCs are shown in Appendix [15]. 

Together with screening rule mentioned below, these coefficients decide the number of top 

MSWKNS structure designs with highest approximate reliabilities that can be selected into 

next steps. 

 

Fig. 3 OPC in structure screening. 

After sorting the approximate reliabilities of N MSWKNS structures from smallest to 

largest, the new order of N MSWKNS structure designs 
OPCS  and its corresponding 

approximate reliabilities 
*( )OPCR k  are noted as: 

1 2{ , ,..., }OPC OPC OPC OPC

NS S S S=                                          

(4) 

* * * *

1 2( ) { ( ), ( ),..., ( )}OPC OPC OPC OPC

NR k R k R k R k=                              

(5) 

And the reliabilities satisfy the condition: 

1 2( ) ( ) ... ( )OPC OPC OPC

NR k R k R k      
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where 
OPC

iS  is the MSWKNS which has the ( 1)thN i− +  largest approximate reliability 

*( )OPC

iR k among all the MSWKNSs. 

Based on the orders above, the OPC of MSWKNS structures can be plotted. According to 

the shape of OPC made by approximate reliabilities in structure screening, the related class of 

OPC can be decided by comparing it to the five basic OPCs. For instance, if the OPC by 

approximate reliabilities is like the dotted red curve in Fig. 3, its related OPC class can be 

considered as Steep, as it illustrates the same tendency as the basic class of Steep. Once the 

class of OPC in structure screening is determined, its corresponding screening coefficients 

can be decided as well. These coefficients are utilized into next steps with the structure 

screening rule. 

3.3. Structure screening rule 

In OO algorithm, selected subset is defined, which is the set of selected designs in N 

MSWKNS structures (usually the estimated top-s of N). Every optimization problem can be 

conceived as the goal of matching a selected subset with the searching space. The degree of 

matching is called the alignment level k, and the confidence of achieving a certain alignment 

level is referred as the alignment probability  [16]. k is a predefined value by engineering 

and  is no less than 0.95 in OO [16]. It is noted that the value of s indicates how large the 

selected subset must be to guarantee that selected subset contains at least k superior designs 

with high probability. Therefore, the selection of top-s MSWKNS structures is very 

significant. The structure screening rule is used to determine the size of selected subset using 

the screening coefficients calculated by the estimated crude performance [16]. 

In this paper, we apply Horse Racing rule (HR) as the structure screening rule. The HR can 

be pictured as having all designs competing at the same time, similar to g horses running a 

race. The positions of the designs are determined by their estimated performance values [15]. 
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HR is used to determine the value of s, which can be formulated as Eq. (6). Eq. (6) gives 

suggestions on the subset size s when the alignment level k and class of OPC are given. 

0z
s e k g   =   +

 
                                        

(6) 

where 0z ,  ,   and   are constants depending on the OPC. g is the number of MSWKNS 

structure designs. 

In structure screening, the approximate reliabilities 
*( )OPCR k  of N MSWKNSs 

OPCS  are 

plotted from the smallest to the largest. The corresponding screening coefficients are 

determined by the related class of OPC, such as the dotted red curve in Fig. 3. The value of s 

in structure screening can be calculated by Eq. (6). The top-s MSWKNS structures with 

higher approximate reliabilities are selected from the N MSWKNSs, which can be seen in Fig. 

3. The new ascending order of approximate reliabilities ( )TOPR k 
 and its corresponding top-s 

MSWKNS structures TOPS  are characterized as: 

1 2{ , ,..., }TOP TOP TOP TOP

sS S S S=                                              

(7) 

1 2( ) { ( ), ( ),..., ( )}TOP TOP TOP TOP

sR k R k R k R k   =                               

(8) 

where 
TOP

iS  is the MSWKNS which has approximate reliability ( )TOP

iR k 
among the top-s 

( )s N  MSWKNSs. 

By applying HR in structure screening, the top-s systems are chosen in selected subset. The 

optimal MSWKNS structure is selected from these top-s systems considering system cost and 

exact reliability constraints. We only need to evaluate the exact reliabilities and system cost of 

s MSWKNSs, which is less than the number of N. The selected MSWKNS structures 
TOPS  are 

employed into next steps with UGF technique. 
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3.4. Exact reliabilities of s MSWKNSs 

After the application of CDA and OO algorithm, the top-s MSWKNS structures TOPS  are 

selected among N structure designs. As the reliability of optimal system structure should 

satisfied the reliability constricts, the exact reliabilities of these selected systems should be 

evaluated. UGF technique is utilized to exact reliability assessment. In OSS method, the 

computational burden for reliability evaluation is dramatically reduced as only s MSWKNSs 

that need to evaluate. 

Based on the definitions of components mentioned above, the UGF of a component states 

associating different weights ,i jw  with its probability ,i jp  is ,
,1

( ) i i jk w

i i jj
u z p z

=
=  . Applied 

on the UGF of n components, the UGF of a MSWKNS is calculated by the   composition 

operator and P  structure function [10]. 

( )1, ,1 1

1

1

( , , )

,1 1 1

( ) ( ( ),  ,  ( ))

P j n jn n

in

n

w wnk k

i jj j i

U z u z u z

p z



 

= = =

=  

=   
               (9) 

The structure function P  is defined as [10]: 

1 1
( , , )

n

P n ii
W W W

=
 =                                (10) 

Based on the UGF of the whole MSWKNS, the exact reliability ( )R k  is evaluated by Eq. 

(11). 

*

1
( ) Pr( ) ( )

K

s i ii
R w W k p w w 

=
=  =  −                 (11) 

where K is the number of states of a system with its UGF representation 
1

( )= i
K w

ii
z p zU

= . 

ip  is the probability associated with the MSWKNS in state i with performance weight iw . 

The function   is defined as the step function ( ) 1( 0)x x =  , which equals to 0 if the 

variable x is less than 0 and equals to 1 otherwise [10] 
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By employing UGF technique to the selected top-s MSWKNSs, the set of exact reliabilities 

of TOPS  is evaluated, which is represented by 1 2( ) { ( ), ( ),..., ( )}sR k R k R k R k   = . The feasible 

MSWKNS structure designs whose exact reliabilities are no less than the required reliability 

R  can be screened. Assume that the number of feasible MSWKNS structure designs is 

( )q q s . Thus, the set of all feasible MSWKNS structure designs UGFS  and its corresponding 

exact reliabilities ( )R k 
 are formed as: 

1 2{ , ,..., }UGF UGF UGF UGF

gS S S S=                                        

(12) 

1 2( ) { ( ), ( ),..., ( )}gR k R k R k R k   =                                     

(13) 

where 
UGF

iS  is the MSWKNS structure whose exact reliability is ( )iR k 
. 

3.5. Optimal system among q MSWKNSs 

The q feasible MSWKNS structure designs 
UGFS  are selected by UGF. Each MSWKNS 

structure 
UGF

iS  has iM  versions of components , ( 1,2,..., )i j iV j M= . The total number of 

components in version j ,i jV is .i jn  and the purchase cost for a component in ,i jV  is ,i jc . 

COST
iC  is the system cost for MSWKNS 

UGF

iS , which can be evaluated by Eq. (14). The set 

of the system costs for all feasible MSWKNS structure designs 
UGFS  is characterized as 

1 2{ , ,..., }COST COST COST COST

gC C C C= . 

, ,1
( )

 cos   ( )i

UGF UGF
i i

MCOST
i i j i jj

S R k R

System t C n c
 

=


=                                  (14) 

According to the calculated system costs 
COSTC , the optimal MSWKNS structure with 

minimal system cost under reliability constraints can be determined. 

3.6. OSS method 
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Based on OO, UGF, CDA and structure screening rule mentioned above, OSS method in 

structure screening is formulated. The procedure of the OSS method is illustrated in Fig. 4. 

 

Fig. 4 Flow chart of OSS. 

Step 1) Approximate reliabilities evaluation: Apply CDA to evaluate the approximate 

reliabilities ( )R k 
of N MSWKNS structure designs by Eq. (3). 

Step 2) Ordered performance curve: Determine the class of OPC and the values of 0z ,  , 

  and   by sorting the approximate reliabilities 
*( )OPCR k  in ascending order. 

Step 3) Structure screening rule: Apply HR rule in structure screening to determine the 

top-s MSWKNS structures ( )TOPS s N  with highest approximate reliabilities ( )OPCR k 
. 

Step 4) Exact reliabilities evaluation: Evaluate the exact reliabilities ( )R k 
 of the selected 

top-s MSWKNS structures by UGF technique and screen the g feasible MSWKNS structure 

designs ( )UGFS g s  whose exact reliabilities ( )R k 
 are no less than the required reliability. 

Step 5) Optimal system determination: Calculate the system cost 
COSTC  by Eq. (14) and 

determine the optimal system among the feasible MSWKNS structure designs 
UGFS . 
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4. Numerical Studies 

4.1. Case 1: The standard MSWKNS 

This example is to illustrate the proposed method in detail and analyze the accuracy and 

efficiency of OSS. 

We consider the system structure composed of 15 components. There are five versions of 

component, presented as ( 1, 2,...,5)iv i =  . The performances of components in version iv  is 

measured by its purchase component cost ic , probability ,i jp  and performance weight ,i jw  

corresponding to state j, respectively. The parameters of components from five versions are 

list in Table 1. The component cost from different versions is equal to 0.8, 0.9, 0.95, 0.74 and 

1, respectively [21]. Moreover, the total number of MSWKNS structures applied in this case is 

equal to 28. The system required demand is 5. Suppose the required reliability is 0.88. 

Structure of each MSWKNS can be seen in Fig. 5. In Fig. 5, the x-axis represents the order of 

component versions and the y-axis shows the number of components in each version. 

Table 1 Parameters of components from five versions 

State j 0 1 2 State j 0 1 2 

1, jw
 

0 1 2.1 1, jp
 

0.1 0.4 0.5 

2, jw
 

0 1.2 2 2, jp
 

0.2 0.2 0.6 

3, jw
 

0 1.1 1.9 3, jp
 

0.1 0.1 0.8 

4, jw
 

0 1.3 2 4, jp
 

0.1 0.2 0.7 

5, jw
 

0 1.5 2.2 5, jp
 

0.2 0.3 0.5 
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(a) 

 

(b) 

Fig. 5 MSWKNS structures in case 1. (a) Structure 1 to structure 14. (b) Structure 15 to structure 

28. 

4.1.1. Results of OSS method 

Approximate reliabilities of 28 MSWKNS structure designs are evaluated by CDA. The 

difference between the accurate reliabilities calculated by UGF and the approximate 

reliabilities can be used as a measure of the error performance, which can be seen in Fig. 6. In 

Fig. 6, the x-axis represents the reliability order of structure designs. The system structure 

with higher order is the system with higher reliability. The y-axis shows the reliabilities by 

two methods. The blue and green bar charts are the exact reliabilities by UGF and the 

approximate reliabilities by CDA, respectively. It can be noticed from Fig. 6 that two bar 

charts are almost coincident, which means that the reliabilities evaluated by CDA method is 

in good approximation having high accuracy performance. 
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Fig. 6 System reliabilities obtained by different techniques 

The class of OPC in this case is Steep based on the trend line of CDA in Fig. 6. Thus, the 

value of 0z ,  ,   and   are 7.7998, 1.5099, -2.0719, 10, respectively [17]. %  and k are 

95% and 1 in this case, respectively. Then s is calculated as 15 by Eq. (6), which means top-

15 MSWKNS structures should be sorted into selected subset. Finally, cost and exact 

reliabilities for top-15 MSWKNS structures are evaluated, which can be seen in Table 2. 

MSWKNS structure 18 can be selected as optimal structure which has minimal system cost 

and desirable reliability. 

Table 2 Exact reliabilities and cost for MSWKNSs in selected subset 

System Reliability Cost System Reliability Cost 

1 0.8779 13.37 12 0.8722 13.38 

2 0.8815 13.22 14 0.8861 13.02 

3 0.8886 13.11 15 0.8873 12.81 

4 0.8804 13.43 17 0.8731 13.49 

5 0.8786 13.58 18 0.8830 12.50 

7 0.9004 12.96 19 0.8648 13.33 

10 0.8898 13.22 21 0.8745 13.28 

11 0.8805 12.60    

4.1.2. Accuracy and efficiency comparison between UGF and OSS methods 

Comparisons between OSS and UGF technique are demonstrated in this part in terms of 

accuracy and computational time.  

Table 3 Exact reliabilities and cost for all the MSWKNSs 

System Reliability Cost System Reliability Cost 

1 0.8779 13.37 15 0.8873 13.37 

2 0.8815 13.22 16 0.8355 13.22 

3 0.8886 13.11 17 0.8731 13.11 
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4 0.8804 13.43 18 0.8830 13.43 

5 0.8786 13.58 19 0.8648 13.58 

6 0.8509 13.64 20 0.8453 13.64 

7 0.9004 12.96 21 0.8745 12.96 

8 0.8575 13.12 22 0.8204 13.12 

9 0.7243 13.59 23 0.8636 13.59 

10 0.8898 13.22 24 0.8436 13.22 

11 0.8805 12.60 25 0.8309 12.60 

12 0.8722 13.38 26 0.8543 13.38 

13 0.8327 13.64 27 0.8473 13.64 

14 0.8861 13.02 28 0.8458 13.02 

We apply UGF technique to evaluate the exact reliabilities for all the MSWKNS structures 

and select the feasible structures whose exact reliabilities are no less than the required one. 

Then calculate the system cost for all the feasible MSWKNS structures. The results are 

presented in Table 3. It can be noticed from Table 3 that structure 18 can be considered as 

optimal MSWKNS, which is the same result as OSS. Thus, OSS method presents its 

computational accuracy in structure screening. 

Moreover, experiment below shows the efficiency of OSS method in reducing the number 

of reliability evaluation systems. The component in this comparison is treated as a multi-state 

component, whose number of states is varying from 2 to 5. The versions of components for 

each structure are five. Moreover, the total number of components is also enlarged to 

demonstrate the efficiency of OSS. The experiments were developed by MATLAB2017b, in a 

computer with 2.60GHz CPU and 4 GB of RAM. The computational time for OSS and UGF 

methods is compared in Table 4 and Fig. 7. In Fig. 7, the x-axis represents the number of 

states a component has. The y-axis reflects the computational time by UGF and OSS, 

respectively. 

Table 4 CPU time for two methods 

Total number of components 

a MSWKNS has 

Number of states a 

component has 
Method CPU time (seconds) 

20 

 

2 
UGF 59 

OSS 20 

3 
UGF 2154 

OSS 705 

4 
UGF 9586 

OSS 3199 

5 UGF ---- 
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OSS 7905 

30 

2 
UGF 308 

OSS 85 

3 
UGF 9540 

OSS 2997 

4 
UGF ---- 

OSS 7910 

 

Fig. 7 Calculation time when the number of components is 20 

From Table 4 and Fig. 7, it can be indicated that the calculation time of OSS is nearly one-

third the time of UGF. Therefore, OSS method can effectively shorten the computational time, 

where its efficiency is more evident when the number of MSWKNS structures and system 

components are in large scale. 

4.2. Case 2: The practical power system 

This case is focused on the application of OSS in an electric power system, which is a 

typical example of MSWKNW. A typical electric power generation system consists of 

various multi-state generating units, and has different demand levels. Therefore, an electric 

power generation system can be represented as a MSWKNS.  

Table 5 Parameters of components from five versions 

State j 0 1 2 3 State j 0 1 2 3 

1, jw
 

0 100 120 180 1, jp
 

0.1 0.3 0.3 0.3 

2, jw
 

0 120 140 250 2, jp
 

0.2 0.4 0.2 0.2 

3, jw
 

0 90 120 170 3, jp
 

0.1 0.1 0.4 0.4 
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The total number of electric power generation system structure designs applied in this case 

is equal to 40. Suppose each generation system has 15 generating units from three versions: 

coal units, gas unit, and oil unit. The parameters of generating units from three versions are 

list in Table 5. The purchase cost for each version of generation unit is equal to $200 million, 

$250 million and $320 million, respectively [21]. The number of components in coal units, 

gas unit, and oil unit of each structure design is varying from one to eight, two to seven, one 

to seven, respectively. The system load is 80 and the required reliability is 0.90.   

According to OSS method mentioned in Section 3 and the class of OPC made by 

approximate reliabilities of 40 MSWKNS structure designs, we choose top-18 MSWKNS 

structures with higher reliabilities in selected subset. The value of 18 is calculated by 

screening coefficients with %  equal to 95% and k equal to 2. Finally, based on the exact 

reliabilities and system costs for those top-18 systems. MSWKNS structure 30 can be 

considered as the optimal structure, whose components in the three versions are 5, 4 and 6, 

respectively. 

The comparisons of accuracy and efficiency between OSS and UGF techniques in case 2 

are provided in this part. The experiments were developed by MATLAB2017b, in a computer 

with 2.60GHz CPU and 4 GB of RAM. We apply UGF to evaluate the exact reliabilities and 

system costs for each MSWKNS structure designs. It is calculated that MSWKNS structure 

30 can be treated as optimal structure, which is the same as OSS method. Moreover, the 

computational time for OSS is 48 minutes which is one-third the time of UGF technique with 

2.5 hours. Therefore, in case 2, OSS method reveals its highly screening accuracy and 

efficiency for the screening among numerous MSWKNS structure designs. 

5. Conclusions 

In this work, structure screening of large-scale MSWKNS structure designs considering 

reliability constraints has been discussed. However, evaluating the exact reliabilities of large-
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scale MSWKNS structures requires expensive calculation cost and unlimited computational 

resource, particularly when the number of MSWKNS designs increases. To efficiently and 

accurately determine the optimal one among numerous structure designs, OSS method has 

been utilized in this paper. Adopted the central limit theory, CDA is used to approximate the 

reliability of a large-scale MSWKNS, which can accelerate the reliability evaluation process. 

The structure screening rule in OO algorithm is applied as a desirable tool to limit the 

searching space, which can effectively reduce the number of large-scale structure designs. 

And finally, UGF is employed to evaluate the exact reliabilities when the number of 

structures has been greatly shorted by the above steps. The results show that there is no 

significant difference between the accuracy of OSS and traditional structure screening 

methods. Moreover, OSS method can reduce the computational resources among large-scale 

MSWKNS structures. 

Appendix 

Table 6 Values of screening coefficients 

OPC class Flat U-Shape Neutral Bell Steep 

0z  8.1378 8.1200 7.9000 8.1998 7.7998 

  0.8974 1.0044 1.0144 1.9164 1.5099 
  -1.2058 -1.3695 -1.3995 -2.0250 -2.0719 
  6.00 9.00 7.00 10.00 10.00 
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