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Abstract

Energy systems are increasingly exposed to the threats of extreme events like floods, earthquakes and

hurricanes. In practice, the behaviors of the systems affected by these extreme events are often modeled by

multistate models to facilitate the analysis. In this paper, we develop a generic framework for resilience modelling

and analysis of multistate energy systems. A multistate resilience model is developed based on a Markov reward

process model, where the degradation and recovery of system performance are characterized by a continuous time

discrete state Markov chain and the losses caused by the extreme event is modelled by the reward rates associated

with the sojourns in the degradation states and the transitions among the states. Four numerical metrics are defined

to describe different aspects of system resilience, i.e., the resistant, absorption, recovery and overall resilience.

A simulation-based algorithm is proposed for resilience analysis of multistate energy systems. The developed

methods are applied for resilience modelling and analysis of a Nuclear Power Plant (NPP) under the threat of

earthquakes. The Markov reward process model is developed following a probabilistic seismic hazard analysis,

a fragility analysis and an event tree modelling of accident evolutions. Both a time-static and time-dependent

resilience analysis are conducted and the results show that the developed model is able to comprehensively

describe the resilience of multistate energy systems under the threats of extreme events.

Index Terms

Resilience, energy system, extreme events, multistate system, Markov reward model, accumulated reward.
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A Markov reward process-based framework

for resilience analysis of multistate energy

systems under the threat of extreme events

I. INTRODUCTION1

Extreme events refer to the events that have high impacts but low occurrence probability, e.g., hurricanes,2

windstorms, earthquakes, intentional cyber attacks, terrorist attacks. Modern energy systems are increasingly3

exposed to the threat of extreme events, causing enormous damages to business, economy and society [1]. For4

example, a survey by the U.S. energy information administration observed an significant increase of power5

outages caused by extreme weather events from 1992 to 2002 [2]. In 2008, 14.66 million households were6

affected by power outages caused by a snow storm in southern China [3]. The east Japan earthquake in 20117

made four million households suffering from power outage for seven to nine days [3]. Worse still, the occurrence8

rates of accidents caused by extreme events are expected to keep increasing, for reasons like climate changes9

and aging of energy infrastructures.10

Resilience is generally acknowledged as the ability of a system to resist, mitigate and quickly recover11

from potential disruptions [4]. Faced with the increasing threat from extreme events, resilience has become12

an indispensable requirement on modern energy systems. Hence, a large number of researches on resilience13

modelling and analyses have been conducted (a detailed literature review is presented in Sect. II). Most existing14

works, however, apply only for systems whose performance can be quantified by a continuous variable. In15

practice, however, a lot of energy systems are multistate in nature, or can only be modeled using multistate16

models to control the complexity of modelling. For example, in , the performance of a oil storage tank farm17

is modeled by a discrete multistate model. Demands, capacities and performances of energy systems are often18

described by multistate models [5]. How to quantify the resilience of such multistate systems, then, remains an19

open research issue.20

Markov processes are powerful tools for describing multistate behaviors of energy systems. Rahnamay-21

Naeini et. al. [6] developed a continuous-time Markov model as a scalable and analytically tractable tool for22

analyzing cascading failure dynamics in power grids. A discrete Markov power system model was developed23

in [7] and used to investigate the angle stability of the power grid considering multiple operation conditions24

and possible cascading failures. Sanghavi et. al. [8] used Markov processes to model cascading failures in a25

large-scale cloud computing infrastructure and assessed its dependability. In [9], a Markov model was used for26

searching cascading failure paths in a power grid considering high wind power penetration. However, Markov27

December 7, 2020 DRAFT



2

models cannot be directly applied for modelling system resilience, as the latter requires not only capturing1

system behaviors, but also the losses incurred by performance degradation. Markov Reward Process (MRP)2

is a Markov model with reward structures, where reward rates are defined associated with sojourns in the3

states or state transitions in the Markov model [10]. This provides a natural way to describe the dynamics of4

system performance and losses prior to and after the disruptive event, making MRP an ideal tool for modelling5

resilience of multistate systems. In this paper, we develop a MRP-based model for resilience modelling and6

analysis of multistate energy systems. Compared to the existing works, the contributions of this paper include:7

• a resilience model is developed for multistate systems based on Markov reward processes;8

• four resilience metrics are defined to measure different aspects of resilience;9

• a simulation-based algorithm is developed for resilience analysis of multistate systems.10

The rest of the paper is organized as follow. Sect. II presents a state-of-art review of related works. In Sect. III,11

we present the developed resilience model, numerical metrics and the simulation-based algorithm for resilience12

analysis. In Sect. IV, the developed methods are applied in a real world case study of a Nuclear Power Plant13

(NPP). Finally, the paper is concluded in Sect. V with a discussion of potential future works.14

II. LITERATURE REVIEW15

A. Resilience: Concepts and definitions16

The word “resilience” is originated from the Latin word “resiliere”, which means “to bounce back” [4].17

Although its original meaning only focuses on the capability of recovering to normal states, the concept of18

resilience has been greatly generalized, through applications in different domains, to cover other important19

aspects like the ability to resist and absorb the damages caused by disruptive events. For example, resilience20

is defined by the American Society of Mechanical Engineers (ASME) as “the ability of a system to sustain21

external and internal disruptions without discontinuity of performing the system’s function or, if the function22

is disconnected, to fully recover the function rapidly” [4]. National Infrastructure Advisory Council (NIAC)23

defined the resilience of infrastructure systems as “their ability to predict, absorb, adapt, and/or quickly recover24

from a disruptive event such as natural disasters” [11].25

A large number of resilience definitions can be found in literature. Different definitions, however, concentrate26

on different aspects of resilience. For example, Holling [12] defined resilience as “the persistence of systems and27

of their ability to absorb change and disturbance and still maintain the same relationships between populations28

or state variables.” By doing so, his definition concerns the ability of a system to resist and absorb the potential29

damages of a disruptive event, while do not consider the recovery capability. Similar definitions have been30

adopted by many researchers. For instance, resilience was defined by Pregenzer [13] as the “a system’s ability31

to absorb continuous and unpredictable change and still maintain its vital functions.” Allenby and Fink [14]32

defined resilience as the “capability of a system to maintain its functions and structure in the face of internal and33

external change and to degrade gracefully when it must.” Hollnagel et al. [15] presented a similar definition of34
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engineering resilience: “the intrinsic ability of a system to adjust its functionality in the presence of a disturbance1

and unpredicted changes.”2

Other researchers, on the other hand, view resilience as recovery capability only, and do not consider the3

resistant and absorption capability. For example, Sheffi [16] defined resilience of companies as “the company’s4

ability to, and speed at which they can, return to their normal performance level following disruptive events.”5

Pfefferbaum et al. [17] defined community resilience as “the ability of community members to take meaningful,6

deliberate, collective action to remedy the effect of a problem, including the ability to interpret the environment,7

intervene, and move on.” Iervolino and Giorgio [18] defined the seismic resilience as the characteristic of an8

system which “measures its capability to rapidly recover from a shock.”9

Most researchers, however, adopt a holistic view on resilience that integrate the resistant, absorption and10

recovery capabilities together. For example, resilience is defined in [19] as the “ability of system to withstand11

a major disruption within acceptable degradation parameters and to recover with a suitable time and reasonable12

costs and risks.” Disaster resilience is characterized by Infrastructure Security Partnership [20] as “the capability13

to prevent or protect against significant multi-hazard threats and incidents, including terrorist attacks, and to14

recover and reconstitute critical services with minimum devastation to public safety and health.” Vugrin et al.15

[21] defined system resilience as: “given the occurrence of a particular disruptive event (or set of events), the16

resilience of a system to that event (or events) is that system’s ability to reduce efficiently both the magnitude17

and duration of deviation from targeted system performance levels.” The resilience of an organization is defined18

by Sheffi [22] as “the inherent ability to keep or recover a steady state, thereby allowing it to continue normal19

operations after a disruptive event or in the presence of continuous stress.” Resilience is defined in [23] as a result20

of a system (i) preventing adverse consequences, (ii) minimizing adverse consequences, and (iii) recovering21

quickly from adverse consequences.22

To conclude, it can be seen from above discussions that a complete description of resilience should cover23

the following aspects:24

• resistant capability, i.e., the capability to resist the impact of the disruptive event and remain normal25

operations;26

• absorption capability, i.e., the capability to absorb the influence of the disruptive event (possibly by27

degrading its performance) and still remains resilient, so that the system can return to normal operation28

states when the disruptive event disappears;29

• recovery capability, i.e., the capability to quickly restore normal operation after the disruptive event30

disappears.31

Most of the current works on resilience focus on only some of these aspects. A unified and comprehensive32

framework for resilience quantification, which is able to consider all the aspects mentioned above, both separately33

and collectively, is lacking. In this paper, we develop a comprehensive resilience modelling and analysis34

framework that covers the three aspects, both separately and collectively.35
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B. Resilience modelling and analysis of energy systems against extreme events1

There are a number of works dedicating to quantifying resilience of energy systems, and, more broadly,2

engineering systems, against extreme events [1]. Hosseini et al. [4] classifies these efforts into two categories:3

the general measure-based methods and the structure-based methods. In the general measure-based methods,4

resilience is quantified based on empirically observable quantities, while the system-specific characteristics like5

system structures are not considered. The structure-based methods, on the contrary, develop resilience models6

by considering the system-specific characteristics [4].7

1) General measure-based methods: A typical example of the general measure-based methods is the re-8

silience triangle model proposed by Bruneau et al. [24] for quantifying resilience against seismic risks. In this9

model, resilience is quantified based on the performance loses (which is empirically observable) induced by10

the earthquake and during the recovery process. The resilience triangle model has been adopted and extended11

by many researchers and applied in various domains [25]. In particular, Zobel and Khansa [26] extended12

the resilience triangle model to consider the resilience against multiple extreme events by assuming a linear13

recovery process. Panteli et al. [27] considered the situation in power system resilience analysis where a delay14

time is needed before recovery process starts. The resilience triangle is extended to resilience trapezoid. Henry15

and Ramirez-Marquez [28] proposed a resilience model by comparing the recovered system performance to16

the reduction of performance from the normal state after the disruption. Amirioun et al. [29] developed a17

model that integrates the effect of restoration actions, system reinforcement and event severity to quantify the18

resilience of micro grid against windstorms. The approaches reviewed so far are deterministic in nature and19

do not consider the uncertain or stochastic factors that may influence the resilience [4]. To considered these20

uncertain factors, probabilistic approaches are developed. For example, Chang and Shinozuka [30] introduced a21

probabilistic approach to measure the resilience following an earthquake, in which the resilience is quantifies by22

the probability that either damage or recovery time exceeds acceptable thresholds. Ouyang et al. [31] proposed23

a probabilistic extension of the resilience triangle and used it to quantify resilience under multiple extreme24

events.25

2) Structure-based methods: Typical structure-based methods include, according to [4] and [32], optimization-26

based methods, topology-based methods and simulation-based methods. In optimization-based methods, re-27

silience is evaluated by solving an optimization model that aims to restore the system within the required time28

while minimizing the potential losses [32]. For example, Alderson et al. [33] quantified the resilience of critical29

infrastructures by using a mixed integer non-linear programming model to find out the best defense strategies30

that minimizes the total cost. A bi-level optimization model is proposed by Manshadi and Khodayar [34] for31

resilience analysis of interconnected natural gas and electricity infrastructures. Chen et al. [35] considered32

the resilience of power networks after major faults caused by natural disasters by developing a mixed-integer33

linear programming model that maximizes the total prioritized loads restored while satisfying self-adequacy34

and operation constraints of each microgrid. Yuan et al. [36] considered resilience planning for distribution35
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system with hardening and distributed generators by developing a two-stage optimization model. Fang et al.1

[37] developed a combinational multi-objective optimization model to maximize the resilience of electricity2

transmission systems against cascading failure and minimize investment costs.3

In topology-based methods, the resilience is modelled and analyzed based on topological model of the4

systems (usually in terms of network models). This type of model is often used in vulnerability analyses, which5

is related to the resistant capability in the definition of resilience. For example, Page et al. [38] proposed a6

topological model-based framework for modelling, simulating and optimizing the vulnerability and resilience7

of energy networks. Chen et al. [39] proposed a hybrid model for vulnerability (resilience) analysis that8

combines topological models with important characteristics of the power transmission networks like power9

flow distributions. In Liu et al. [40], the topological model was combined with system dynamic models for10

resilience quantification of interconnected gas and electricity networks.11

In simulation-based methods, simulation methods like Monte Carlo simulations are used to capture the12

uncertain behaviors involved in the resilience quantifications. For example, in [41], a time-series simulation13

model based on Monte Carlo methods is developed to evaluate the resilience of power system under the impact14

of extreme whether events. Cardini et al. [42] developed a simulation model that is able to consider the system15

behavior under both normal and extreme whether events for resilience quantification. Li et al. [43] applied the16

simulation-based method to investigate the resilience of power distribution systems against hurricanes. Rocchetta17

et al. [44] proposed a simulation-based framework to evaluate the resilience of power grids subject to extreme18

weather-induced failures.19

Most of the existing resilience modelling and analysis approaches, as reviewed above, are designed for systems20

with a continuous performance levels. In practice, however, a lot of energy systems are modelled as multistate21

systems, where the system performance takes only discrete values [45]. How to quantify the resilience of these22

multistate system remains an open issue. Hence, we develop a MRP-based model which allows a comprehensive23

resilience assessment of multistate energy systems in this paper.24

III. THE DEVELOPED RESILIENCE MODEL25

In this section, we present the developed MRP-based resilience model in Sect. III-A. Then, four numerical26

metrics are defined in Sect. III-B for measuring resilience. In Sect. III-C, we discuss how to use the developed27

model for resilience analysis and present a simulation-based method for evaluating the defined resilience metrics.28

A. A Markov reward process model for resilience29

Let X(t), t > 0 represents the performance of a system at t under the threat of possible disruptive events.30

Without losing generality, let us assume that X(t) takes (m + 1) discrete values: X(t) ∈ [0, 1, 2, · · · ,m],31

where 0 represents the highest performance (perfect state) while m represents the lowest one, and that X(t)32

is a continuous time discrete state Markov with a transition rate matrix Q (also called intensity matrix or33
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infinitestimal generator matrix in some literature):1

Q =



q00 q01 . . . q0m

q10 q11 . . . q1m
...

...
. . .

...

qm0 qm1 . . . qmm


where qi,j , 0 ≤ i, j ≤ m, i 6= j are the rates that the system departs from state i and ends in state j and2

qi,i = −
∑
j 6=i qi,j , , 0 ≤ i ≤ m. At t = 0, it is assumed that the system is in the perfect state (X(0) = 0).3

The jumps that degrade the system’s performance (from state i to state j where i < j) are results of damages4

caused by disruptive events, while the jumps that improve the performance represent recovery of the system.5

Typically, disruptive events can incur two types of losses on the system: the direct losses, which are generated6

directly by the disruptive event and do not depend on the length of the disruption; and the indirect losses,7

which are caused by the degraded system performances and depend on the length of the recovery process (e.g.,8

downtime costs) [46]. Take an NPP as an example. When an earthquake occurs, damages might be caused to9

the NPP as a direct result of the earthquake shake (e.g., structural damages to the NPP, failure of components).10

The losses associated with these damages are called direct losses. After the earthquake, the NPP might be11

shut down for repairs. Financial losses are also incurred during this shutdown period due to the lost potential12

revenues. This kind of losses is an example of indirect losses.13

To model the losses caused by the extreme events, we introduce the MRP model in Figure 1: the system14

suffers a direct loss of di,j when it jumps from state i to state j due to the disruptive event, where15 
di,j > 0, if i < j,

di,j = 0, if i ≥ j.
(1)

Besides, the system also suffers an indirect loss of li (per unit of time) for its sojourn in the performance16

degradation state i, 1 ≤ i ≤ m.17

Fig. 1: Markov reward model for resilience against extreme events.
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B. Resilience metrics1

As shown in Sect. II-A, resilience of a system includes requirements on the resistant, absorption and recovery2

capabilities. In the following, we propose formal definitions and numerical metrics for the three aspects of3

resilience individually, and then propose a collective numerical metric to quantify the overall resilience of the4

system of interest.5

Definition 1 (Resistant resilience). Resistant resilience is the ability of a system to resist the influence of extreme6

events without degrading its performance.7

As shown in Definition 1, resistant resilience requires the system to remain operational without performance8

degradations after being hit by the extreme event. In other words, a system with high resistant resilience is9

able to operate at full capacity after the extreme event, without the need of being repaired. Resistant resilience10

is often achieved through strengthening system designs, e.g., strengthening structure strengths, selecting highly11

reliable components.12

Based on the MRP model in Sect. III-A, we define a numerical metric, called resistant probability (pRs), to13

measure the resistant resilience of a system at time t.14

Definition 2 (Resistant probability). Resistant probability at time t is defined as the probability that the system15

can be operated at perfect performance in (0, t).16

From Definition 2, pRS can be calculated by17

pRs(t) = Pr (X(τ) = X0, ∀τ ∈ (0, t)) , (2)

where X0 is the state with perfect system performance level. The physical meaning of pRs is the probability18

that the system is able to resist the impact of the extreme event. It is easy to see that pRs takes values in [0, 1]19

and that a larger value of pRs indicates better resistant resilience. It should be noted that if we regard the event20

X(t) 6= X0 as system failure, resilient probability is equivalent to the reliability of the system (probability of21

no system failure up to time t), which, according to some researchers, is an important contributor to system22

resilience [47].23

Definition 3 (Absorption resilience). Absorption resilience is the capacity of a system to absorb the impact of24

extreme events so that it can be recovered to normal operation state after the extreme event vanishes, without25

causing permanent damages to the system.26

Absorption resilience is less demanding compared to the resistant resilience. Performance degradation is27

allowed as long as the impact of the extreme events can be absorbed so that the system remains in resilient28

states. Resilient states represent the states without permanent damages, so that the system is recoverable after29

the extreme events disappear. In contract, in some states, the system loses resilience. For example, an NPP30
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attacked by an earthquake loses its resilience if the safety systems fail to promptly shutdown the NPP and a1

core meltdown accident occurs, like what happens in the Fukushima or Chernobyl accident. In both cases, the2

system loses resilience as the NPPs have to be abandoned and cannot be repaired.3

To measure the absorption resilience, let us first group the state space of X(t) into two classes: B0, which4

contains all the resilient states, and B1, which includes all states in which the system loses its resilience (core5

meltdown accidents in NPPs, complete broken down of dams by flooding, etc.). Then, a numerical metric,6

called resilient probability (pRe), can be defined to measure the absorption resilience:7

Definition 4 (Resilient probability). Resilient probability at time t is defined as the conditional probability that8

the system remains resilient up to time t, given that disruptions occurred before t:9

pRe(t) = Pr (X(t) ∈ B0 |X(τ) > 0,∃τ ∈ (0, t)) . (3)

It should be noted that as the non-resilient states are unrecoverable, we only need to require that X(t) ∈ B0,10

rather than X(τ) ∈ B0,∀τ ∈ (0, t). The physical meaning of pRe is the probability that the system is able to11

absorb the impact of the extreme event (possibly with performance degradation) without losing resilience. It is12

easy to see that pRe takes values in [0, 1] and that a larger value of pRe indicates better absorption resilience. It13

should be noted that if we regard the states in B1 as an undesired consequence in conventional risk analyses, pRe14

is equivalent to the non-occurrence probability of such consequence. In engineering practice, safety barriers15

are often designed to prevent the system from entering the loss-of-resilience states. For example, in NPPs,16

a number of safety barriers (high pressure coolant injection system, automatic depressurization system, low17

pressure coolant injection system, etc.) are used in a defence-in-depth architecture to prevent severe consequences18

like core meltdown from happening. Adding safety barriers like these can help reduce pRe and improve the19

absorption resilience.20

Definition 5 (Recovery resilience). Recovery resilience is the capacity of a system to recover to normal operation21

state within required time limits after its performance is disrupted by the extreme event.22

As shown in Definition 5, recovery resilience is about whether a system can be repaired promptly within a23

prescribed time limit. In practice, recovery resilience depends largely on the distribution of the time needed24

to recover the system, which further depends on factors like maintenance resources prepared for the system,25

training of the maintenance personnel, etc. A numerical metric, called recovery probability (pRc), is defined to26

measure the recovery resilience:27

Definition 6 (Recovery probability). Recovery probability at time t is defined as the conditional probability28

that the system operated in (0, t) is recovered to normal operation state within a prescribed time limit Tth,Rc,29

given that its performance is disrupted by an extreme event.30
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Let us define a random variable Ti(t) to represent the accumulated sojourn time at state i, i = 0, 1, · · · ,m1

in (0, t) :2

Ti(t) =

∫ t

0

1 {X(u) = i} du, (4)

where 1 {X(u) = i} is an indicator function:3

1 {X(u) = i} =


1, if X(u) = i,

0, otherwise.
(5)

4

Then, pRc can be calculated by:5

pRc(t) = Pr (TRc(t) ≤ Tth,Rc |X(τ) > 0,∃τ ∈ (0, t)) . (6)

where Tth,Rc is the prescribed time threshold for system recovery; TRc(t) is the accumulated recovery time in6

(0, t) and is given by7

TRc(t) =
∑
i>0

Ti(t). (7)

8

The physical meaning of pRc is the probability that the system is able to recover to normal operation states9

within required time limits. It is easy to see that pRe takes values in [0, 1] and that a large value of pRc indicates10

better recovery resilience. Similar metrics have been seen in literature to measure the resilience from a recovery11

capability-based perspective. For example, in [48], resilience is measured by the conditional probability that a12

failed item will be recovered in the next time step, which is equivalent to Eq. (6) if we considered Tth,Rc to13

be “the next time step”.14

Definition 7 (Overall resilience). Overall resilience is the capacity of a system to sustain external and internal15

disruptions without degrading its performance or, if the performance is degraded, to fully recover the function16

rapidly after the disruption vanishes.17

Overall resilience integrates the resistant, absorption and recovery resilience and provides a more complete18

description of system resilience. Similar definitions can also be found in literature (e.g., [19], [21] and [22]).19

To quantitatively measure the overall resilience, let us first note that the resistant, absorption and recovery20

resilience can be naturally integrated through the potential losses suffered by the system:21

L(t) = LD(t) + LID(t)

=

m∑
i=0

m∑
j=0

di,j ·Ni,j(t) +

m∑
i=0

li · Ti(t),
(8)

where LD(t), LID(t) and L(t) are the direct, indirect and total loss in (0, t), respectively; Ni,j(t) is the number22

of system transitions from state i to j in in (0, t); di,j and li are defined in Figure 1 while Ti(t) is defined23
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in Eq. (4). In the above definition, the resistant and absorption resilience affect the direct losses, while the1

recovery resilience mostly affects the indirect loss. Assume that a resilience objective is set in such a way2

that the potential loss for the system operating in [0, t] should not exceed a prescribed value of Ltol. Then, a3

numerical metric for the overall resilience, called overall resilience metric (Re), can be defined.4

Definition 8 (Overall resilience metric). Overall resilience metric at time t is defined as the probability that5

the potential losses caused by extreme events are within the tolerable loss Ltol:6

Re(t) = Pr(L(t) < Ltol). (9)

The physical meaning of Re is the probability that the system does not suffer financial losses higher than a7

predefined threshold value Ltol. It is easy to see that Re takes values in [0, 1] and that a larger value of Re8

indicates better overall resilience. The idea of using losses to quantify resilience has been adopted by various9

researchers. For example, it is easy to verify from Figure 2 that if we set di,j = 0 and li = m − i, i, j =10

0, 1, · · · ,m, the total loss in Eq. (8) (the shaded area in Figure 2) is equivalent to the resilience triangle defined11

in [24]. The expected value of L(t) has been widely used as a reliability metric [49], and also as a resilience12

metric recently [44], for electrical power system. Similar metrics are found in areas similar to resilience, e.g.,13

business continuity modelling [46], performability analysis [50]. In this paper, we also call Re overall resilience14

for simplicity if no confusion will be caused.15

Fig. 2: A sample trajectory of X(t) and L(t) with di,j = 0 and li = m− i.

C. Resilience modelling and analysis against the extreme events16

Figure 3 depicts a typical event sequence after the system is hit by an extreme event. In the response phase,17

the built-in safety systems are activated to contain the damage caused by the extreme event. Depending on the18

performance of the safety systems, different consequences with different degree of damages can be resulted.19

After the extreme event vanishes, efforts are made to recover the system to normal operation state. Depending20

on the severity of consequence and also on the maintainability of the system, the required time to recovery21

might differ significantly.22

Homogeneous Poisson processes are widely used in literature for modelling extreme events such as earth-23

quakes [51], floods [52], hurricanes [53], etc. In this paper, we assume that the severity of the extreme event24
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Fig. 3: An illustration of the event sequence after the extreme event.

can be classified into nS discrete levels, and the occurrence of an extreme event with severity level S = Si1

is modelled by a homogeneous Poisson process with a rate λS,i, i = 1, 2, · · · , nS . The values of λS,i can be2

estimated from historical data. For example, [54] proposed a method to estimate the discretized values of λS,i3

for earthquakes based on historical data and an empirical relationship called Gutenberg-Richter relationship.4

Once the extreme event occurs, the system’s performance might degrade, depending on the performance of5

the safety systems. Probabilistic combinational models, such as event trees, fault trees, binary decision diagrams,6

etc. [55], can be used to describe the performance of the safety systems and calculate the conditional probability7

for the system to be in each performance degradation state, given that an extreme event with a certain severity8

occurs, as shown in Figure 4. It is well known that the split and merge of Poisson processes are also Poisson9

processes [56]. Therefore, the occurrence of each system state X = i, i = 0, 1, · · · ,m can be modelled by a10

homogeneous Poisson process with a rate λi, which is given by11

λi =

nS∑
j=1

λS,j · Pr (X = i | S = j) , 0 ≤ i ≤ m. (10)

12

Fig. 4: System states after the disruptive events.
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Algorithm 1: Resilience analysis based on Markov reward model
input : Q, di,j , li
output: pRs(t), pRe(t), pRc(t), Re(t)
nRs = 0, nAb = 0, nRc = 0, nRe = 0;
for i← 1 to NS do

Set xprev , xcur, τ , τnext, LD, LID, tRc to zeros;
while τ < t do

if xcur 6= m then LD, LID, tRc ← FnUpdateStates;
else break;
xprev ← xcur;
xcur, τnext ← Simulate the next jump of the Markov model using FnNextJump;
τ ← τ + τnext;

end
if τ == τnext then nRs = nRs + 1;
if xcur 6= m then nAb = nAb + 1;
if tRc < Tth,Rc && tRc > 0 then nRc = nRc + 1;
if LD + LID < Ltol then nRe = nRe + 1;

end
pRs(t)← nRs/NS , pRe(t)← nAb/(NS − nRs), pRc(t)← nRc/(NS − nRs), Re(t)← nRe/NS ;
Calculate the confidence intervals.
Function FnNextJump(xprev, Q)

output: xcur, τnext
λ← −1 ·Q(xprev, xprev);
τnext ← Generate a random number from Exponential(λ);
pi ← Q(xprev, i)/λ, i = 0, 1, · · · ,m, i 6= xprev;
xcur ← Generate a random number where xcur = i with a probability pi;

end
Function FnUpdateStates(xprev, xcur, τnext, di,j , li, LD, LID, tRc)

output: LD, LID, tRc
if xprev < xcur then LD = LD + dxprev,xcur

;
if xprev > xcur then LID = LID + lxprev

· τnext;
if xprev 6= 0 then tRc = tRc + τnext;

end

Without losing generality, we make the following assumptions:1

1) states X = 0, 1, · · · ,m − 1 are resilient states while state X = m is a non-resilient state (absorbing2

state), i.e., the system cannot be recovered if entering this state;3

2) the time required to recover from state i to state j (i > j) follows an exponential distribution with a rate4

µi,j ;5

3) there are no damages caused by extreme events during the recovery processes.6

Then, a MRP model defined in Sect. III-A can be established with the Q-matrix given by:7

Q =



−
∑m
i=1 λi λ1 λ2 λ3 λ4 . . . λm

µ10 −µ10 0 0 0 . . . 0

µ20 µ21 −
∑1
j=0 µ2,j 0 0 . . . 0

...
...

. . .
...

...
. . .

...

µi0 µi1 . . . −
∑i−1
j=0 µi,j 0 . . . 0

0 0 0 0 0 . . . 0


. (11)
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The zeros in the last row indicates that the state X = m is an absorbing state. The direct (di,j) and indirect1

losses (li) associated with the system states can, then, be determined from historical data.2

A simulation method is, then, designed to calculate the resilience metrics, as shown in Algorithm 1. In

Algorithm 1, NS is the sample size of the simulation and X = m indicates the state where the system

loses resilience. The meaning of the other parameters can be found in the nomenclature. The algorithm used

uniformization techniques [57] to generate the next state jumps. As shown in subfunction FnNextJump, the

arrival time for the next jump is generated based on the largest element in each row of Q, while the next state

is sampled with a probability proportional to the associated elements in Q. Once the sample paths are generated,

the resilience metrics can be easily calculated by counting the direct and indirect losses. The confidence interval

with a confidence level α is estimated by [56]:

[
p̂− Z1−α/2 · σ̂, p̂+ Z1−α/2 · σ̂

]
,

where p̂ is the estimated probabilities (pRs, pRe, pRc and Re), Zθ is the θ percentile of a standard normal

distribution and σ̂ is estimated by:

σ̂ =

√
1

N(N − 1)
(n(1− p̂2)− (NS − n)p̂2),

where n is the number of occurrence of the associated event and NS is the sample size.3

IV. APPLICATION4

In this section, we apply the developed methods for resilience analysis of a nuclear power plant under the5

threat of earthquakes. The NPP under investigation is briefly introduction in Sect. IV-A. A Probabilistic Seismic6

Hazard Analysis (PSHA) is, then, conducted in Sect. IV-B to model the occurrence likelihood and magnitude of7

the earthquake. In Sect. IV-C, a fragility analysis is made to calculate the failure probability of the subsystems8

of the NPP caused by the earthquake. In Sect. IV-D, event tree analyses are combined with fault tree analyses9

to calculate the occurrence probabilities of each possible consequence. A MRP model is developed in Sect.10

IV-E for resilience modelling and analysis. The results and some discussions are presented in Sect. IV-F.11

A. System description12

In this case study, we consider an NPP with a total power generation capacity of 1898 (MW). The NPP13

comprises of two units: unit 1 has a power generation capacity of 540 (MW) and unit 2 has power generation14

capacity of 1358 (MW). The configuration of the NPP is set based on the Shika NPP described in [58]. For15

simplicity, let us assume that both units could be in one of the three states after the earthquake:16

• fully functional (Xi = 0), in which the unit is unaffected by the earthquake and can continue normal17

operation at its full capacity;18
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• shutdown (Xi = 1), in which critical functions of the unit are damaged but the unit is promptly shut down1

by the safety systems;2

• core damage (Xi = 2), in which the safety systems fail to promptly shut down the unit. As a consequence,3

damage is caused to the reactor core and radioactive materials are released to the environment.4

In the above definitions, Xi, i = 1, 2 represent the state of the first and the second unit, respectively. The5

severity of the consequence increases from Xi = 0 to Xi = 2. The severity of the consequences are coherent6

with the nuclear and radiological event scale defined by IAEA [59]:7

• Xi = 0 corresponds to IAEA level 0 (deviations, i.e., events without safety significance);8

• Xi = 1 corresponds to IAEA levels 1− 3 (incidents);9

• Xi = 2 corresponds to IAEA levels 4− 7 (accidents).10

Depending on the states of the units, the NPP has four possible states (denoted by XS), with different levels11

of remaining power generation capacity (QS), as shown in Table I.12

TABLE I: States of the NPP.

State of the NPP Meaning State of the units
QSX1 X2

XS = 4 Accident with core damages occurs. X1 = 2 or X2 = 2
XS = 3 Both units are shut down for maintenance. 1 1 0 (MW)
XS = 2 Unit 1 is working but unit 2 is shut down for maintenance. 0 1 540 (MW)
XS = 1 Unit 2 is working but unit 1 is shut down for maintenance. 1 0 1358 (MW)
XS = 0 Both units are working. 0 0 1898 (MW)

To maintain the NPP in safe state after earthquake, each unit must be provided with electrical and water13

inputs to absorb the heat generated by the nuclear reaction. As in [60], we assume that for each unit, two14

safety systems are available to protect the NPP: internal and external safety systems. As shown in Figure 5,15

the internal safety system comprises of a pump, a water pool and electricity supply systems. The electricity16

supplies can be from either an external power generation station or from an emergency diesel generator. Either17

one of the two power source is sufficient to drive the pump for cooling the reactor core using the cooling water18

from the water pool. The external safety system uses cooling water from a local river. As the internal safety19

system, the electricity supplies of the external safety system can be also from the external power generation20

station or from an emergency diesel generator. The external power station is shared between the internal and21

external safety systems, while both the internal and the external safety system have its own emergency diesel22

generator. The external power station is also shared between the two reactor units.23

B. Probabilistic seismic hazard analysis24

The purpose of PSHA is to estimate the ground motion caused by earthquake that may occur at the NPP,25

considering all the possible uncertainties. Normally, the ground motion is measured by the Peak Ground26

Acceleration (PGA) at the site, denoted by A (in units of g). According to [54, 61], PGA depends on27
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Fig. 5: Illustration of the safety systems of the NPP.

the magnitude of the earthquake (M , in Richter magnitude scale) and the source-to-site distance of the1

earthquake (D, in kilometers). Cornell et al. [62] assumed that the PGA follows Lognormal distribution, i.e.,2

lnA ∼ Normal(µ, σ2), where σ = 0.57 and µ (in units of g) is calculated by an empirical equation:3

µ = −0.152 + 0.859M − 1.803 ln(D + 25). (12)

1) Poisson process model for the earthquake magnitudes: In PSHA, it is often assumed that the occurrence4

of earthquakes follows a homogeneous Poisson process [51]. The rate for the accumulated number of earth-5

quakes with a magnitude no less than m, denoted by λC(M ≥ m) (in year−1), follows Gutenberg-Richter6

relationship [54]:7

log λC(M ≥ m) = a− bm. (13)

where a and b are two constants that need to be estimated from historical earthquake data. In this paper, for8

illustrative purposes, we use the parameter values fitted from the southern California earthquake data between9

1903 and 1997: â = 5.9, b̂ = 1.0 [63].10

To simplify the analysis, We adopt the approach in [54] to discretize the magnitudes into six discrete levels11

mi, i = 1, 2, · · · , 6:12

λ(M = mi) =


λC(M ≥ mi)− λC(M ≥ mi+1), if 1 ≤ i < 6.

λC(M ≥ mi), if i = 6.

(14)

The calculation is based on the assumption that all the probabilities associated with the magnitudes between13
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mi and mi+1 are assigned to the discrete value mi. The results of the discretization are as given in Table II.1

It should be noted that by making a discretization like this, we only consider the earthquake with magnitudes2

between 6.5 and 9.0 in our analysis. The earthquakes whose M < 6.5 are not considered, as their magnitude3

is too small to cause any severe damages; the earthquakes with M > 9.0 are not considered either, as their4

occurrence rates are very small.5

TABLE II: Discretized magnitude values.

mi λC(M ≥ mi) λ(M = mi)
6.5 0.2512 0.1718
7.0 0.0794 0.0543
7.5 0.0251 0.0172
8.0 0.0079 0.0054
8.5 0.0025 0.0017
9.0 0.0008 0.0008

2) Modelling the source-to-site distance: As in [54], we use the area source model to model the the source-6

to-site distance (denoted by D). This model assumes that earthquakes appear randomly and with equal likelihood7

anywhere within a circular area with a radius Ra from the site of interest (the NPP), as shown in Figure 6.8

This model indicates that the earthquake source is truncated at some distance Ra beyond which earthquakes are9

not expected to cause damage to the NPP. As we used the southern California earthquake data to estimate the10

parameters of the Gutenberg-Richter model in Eq. (13), Ra is selected based on the area of southern California11

(146, 347 (km2)):12

Ra =

√
146, 347

π
= 215.83 (km). (15)

Fig. 6: Illustration of an example area source.

Then, the Probability Density Function (PDF) of D is given by [54]:13

fD(d) =


2d

Ra2
, 0 ≤ d ≤ Ra,

0, otherwise.
(16)
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To simplify the analysis, we use the expected value of D to represent the source-to-site distance:1

ED =

∫ Ra

0

xfD(x)dx =
2

3
Ra = 143.89 (km). (17)

The calculated ED is, then, used in Eq. (12) for evaluating the PGA. Under each magnitude level in Table2

II, the PGA is a random variable that follows a Lognormal distribution. To simplify the analysis, we use the3

median of the Lognormal distribution to represent the PGA value under each magnitude level, as shown in4

Table III.5

TABLE III: PGA under each magnitude level.

mi 6.5 7.0 7.5 8.0 8.5 9.0
ai (g) 0.0220 0.0338 0.0519 0.0798 0.1226 0.1884

C. Fragility analysis6

Table II and III summarize the six typical scenarios considered in this paper with corresponding earthquake7

magnitudes and the resulted PGA at the NPP. Next, a seismic fragility analysis is carried out to determine the8

probability of failure of the safety systems caused by the earthquake for each scenario. The fragility model in9

[45, 61] is used in this paper, where the capacity of a safety system to the impacts of the PGA is assumed10

to be:11

Am · Ea · Ee. (18)

In the model, Am is the best estimate of the capacity and is a constant value; Ea and Ee are two random12

variables that accounts for the aleatory and epistemic uncertainty on Am, respectively. Both Ea and Ee are13

assumed to follow Lognormal distribution with a log mean value of 1. The log standard deviations for Ea and14

Ee are σa and σe, respectively. If the PGA at the NPP exceeds the capacity, the corresponding safety system15

fails. Given a confidence level α, the conditional probability that a safety system is failed by an earthquake16

with a PGA value a can be calculated by [61]:17

pf = Φ

 ln
(

a
Am

)
+ σeΦ

−1(α)

σa

 . (19)

The parameter α is introduced to compensate for the epistemic uncertainty on Am: we have 100·α% confidence18

that the actual probability of failure is less than the calculated pf by Eq. (19). In this case study, we choose19

α = 0.5.20

Let us assume that both units in the NPP share the same design, so that the fragility parameters of the pump,21

DG and pool are the same for both units. The parameter values from [60] are used for the analysis (see Table22

IV). The calculated failure probabilities of the safety systems are given in Table V.23
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TABLE IV: Fragility parameter [60].

Am σa σe
Diesel generator 0.7 0.4 0.2

Pool 0.2 0.1 0.1
Power station 0.7 0.3 0.1

Pump 0.2 0.2 0.3

TABLE V: Results of fragility analyses.

Scenarios Probability of failure
mi ai (g) DG (pf,DG) Pool (pf,pool) Power station (pf,PS) Pump (pf,pump)
6.5 0.0220 2.5839× 10−18 0 0 0
7.0 0.0338 1.7839× 10−14 0 0 3.1140× 10−19

7.5 0.0519 3.9602× 10−11 0 2.1707× 10−18 7.8980× 10−12

8.0 0.0798 2.8438× 10−8 0 2.2800× 10−13 2.1857× 10−6

8.5 0.1226 6.6654× 10−6 5.0218× 10−7 3.1965× 10−9 7.2348× 10−3

9.0 0.1884 5.1747× 10−4 0.2757 6.0864× 10−6 0.3829

D. Consequences of the earthquake1

As shown in Table I, five consequences with different degrees of severity might be caused by the earthquake.2

Event tree analyses are conducted to calculate the occurrence probability of the consequences, given that an3

earthquake with magnitude mi occurs (i = 1, 2, · · · 6). Let us denote the conditional occurrence probabilities4

by pC,j | i, j = 0, 1, · · · , 4, where j corresponds to the state XS = j in Table I.5

For the event XS = 4, an event tree model is constructed in Figure 7, where the Initiating Event (IE)6

is the occurrence of an earthquake with a given magnitude. From the event tree model, pC,4 can be easily7

calculated as:8

pC,4 = Pr(XS = 4 | The initiating event occurs)

= pf,PS · Pr(E1 | EPS) + (1− pf,PS) · Pr(E1 | ĒPS),

(20)

where pf,PS is the failure probability of the power station; events EPS and ĒPS represent that the power9

system fails and does not fail, respectively; event E1 represents that at least one reactor unit loses all the safety10

systems.11

Fault tree models are further developed to describe the event sequences that lead to E1, conditioned on the12

occurrence or non-occurrence of EPS , as shown in Figure 8. Based on the models in Figure 8, Pr(E1 |EPS)13

and Pr(E1 | ĒPS) can be easily derived [55]:14

Pr(E1 | E) = 1− (1− Pr(U1 | E))(1− Pr(U2 | E))

= 1− (1− Pr(U1 | E))2,

(21)

where E takes values in {EPS , ĒPS}, Ui represents the event “unit i lost all the safety systems” and Pr(U1 |E))15
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Fig. 7: Event tree model for XS = 4.

is given by:1

Pr(U1 |E)) =


(1− (1− pf,pump)(1− pf,DG))(1− (1− pf,pump)(1− pf,DG)(1− pf,pool)), if E = EPS ,

pf,pump(1− (1− pf,pump)(1− pf,pool)), if E = ĒPS .

(22)

Substituting the probabilities of failure in Table V into Eqs. (20)-(22), we can calculate the value of pC,4 | i.2

Similarly, we can calculate the probability of occurrence of each consequence, under different earthquake3

magnitudes. The results are summarized in Table VI.4

TABLE VI: Probability of occurrence of the consequences.

mi λ(M = mi) (year−1) pC,0 | i pC,1 | i pC,2 | i pC,3 | i pC,4 | i
6.5 0.1718 1 0 0 0 0
7.0 0.0543 1 0 0 0 0
7.5 0.0172 1 0 0 0 0
8.0 0.0054 0.9999 4.4283× 10−6 4.4283× 10−6 1.9838× 10−11 9.5548× 10−12

8.5 0.0017 0.9712 1.4221× 10−2 1.4221× 10−2 2.0823× 10−4 1.0469× 10−4

9.0 0.0008 0.0412 0.1240 0.1240 0.3261 0.3887

As shown in Table VI, the consequences can be caused by earthquakes with different magnitudes, as shown5

in Figure 9. It is well-known that the aggregation of Poisson processes is also a Poisson process [56]. Therefore,6

the occurrence of consequence j, j = 0, 1, · · · , 4 can be modeled by a Poisson process with a rate λj :7

λj =

6∑
i=1

λ(M = mi) · pC,j | i (23)

where pC,j | i is the occurrence probability for consequence j, given that an earthquake with magnitude M = mi8

occurs. The values of λj , j = 0, 1, · · · , 4 are calculated based on Eq. (23) and the results in Table II and VI,9

as shown in Table VII.10
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(a) The power station fails.

(b) The power station does not fail.

Fig. 8: Fault tree models for E1.

Fig. 9: An illustration of the consequences.
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TABLE VII: Rates for the consequences.

Consequence XS = 0 XS = 1 XS = 2 XS = 3 XS = 4
λj (year−1) 2.5038× 10−1 1.2298× 10−4 1.2298× 10−4 2.5939× 10−4 3.0095× 10−4

E. Resilience modelling1

To model the recovery process after the earthquake, we make the following assumptions:2

1) the repair resource can support repairing only one NPP unit at a time;3

2) if the two units both fail, unit 2 is repaired before unit 1;4

3) the time required to repair one NPP unit (either 1 or 2) follows an exponential distribution with a mean5

value of 1.32 (years);6

4) no damages are caused by earthquakes during the repair period of the NPP.7

The repair sequence defined in Assumption 2 is due to the fact that unit 2 has a larger generation capacity8

than unit 1. The mean repair time in Assumption 3 is estimated based on data from [58]. It should be noted9

that the time includes both repair time and the time required for evaluation and re-licensing from the nuclear10

administrative. Then, the behavior of the NPP under the threat of earthquakes can be modeled by a MRP11

model, as shown in Figure 10. In Figure 10, the transition rates λ0,j = λj that are given in Table VII; the12

repair rate µ = 1/1.32 = 0.76 (year−1). The value of the direct losses d0,j , j = 1, 2, 3 are estimated based on13

the replacement cost data of NPPs in [64]. The values of the unit indirect losses li, i = 0, 1, 2, 3 are estimated14

based on the average electricity price data for house hold users in Europe area given in [65]. The parameter15

values are summarized in Table VIII.16

Fig. 10: Markov reward model for the NPP.

TABLE VIII: Parameter values of the Markov reward model.

Parameter Meaning Value Source
d0,1 Direct loss caused by the failure of unit 1. 1.8× 108 (e) Estimated using the data from [58]
d0,2 Direct loss caused by the failure of unit 2. 1.8× 108 (e) Estimated using the data from [58]
d0,3 Direct loss caused by the failure of unit 1 and 2. 3.6× 108 (e) Estimated using the data from [58]
d0,4 Direct loss caused by core meltdown. 3.6× 1010 (e) Assumed
l0 Indirect loss (downtime cost) per unit time for staying in state 0. 0 (e) Estimated using the data from [64]
l1 Indirect loss (downtime cost) per unit time for staying in state 1. 7.24× 108 (e/year) Estimated using the data from [64]
l2 Indirect loss (downtime cost) per unit time for staying in state 2. 1.82× 109 (e/year) Estimated using the data from [64]
l3 Indirect loss (downtime cost) per unit time for staying in state 3. 2.54× 109 (e/year) Estimated using the data from [64]
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F. Results and discussions1

1) Analyses at a fixed t = 40 (years): The Q-matrix of the MRP model in Figure 10 is2

Q =



−8.0629× 10−4 1.2298× 10−4 1.2298× 10−4 2.5939× 10−4 3.0095× 10−4

0.76 −0.76 0 0 0

0.76 0 −0.76 0 0

0 0.76 0 −0.76 0

0 0 0 0 0


. (24)

Algorithm 1 is used to evaluate the resilience of the NPP for a time horizon of 40 years, which is the designed3

life of the NPP. The sample size of the analysis is 106. The tolerable loss Ltol is assumed to be 2.54 × 1094

(e) and the acceptable time limit for recovery is assumed to be TTh,Rc = 2 (years). The point estimates of the5

four resilience metrics are presented in Figure 11 and the confidence intervals with confidence level α = 0.056

is given in Table IX.7

Fig. 11: Results of the resilience analysis (T = 40 (years)).

TABLE IX: Confidence intervals with α = 0.05.

pRs pRe pRc Re
Lower bound 0.9678 0.6202 0.4045 0.9787
Upper bound 0.9685 0.6233 0.4153 0.9793

It can be seen from Table IX that the confidence intervals are narrow. This indicates that due to the large8

sample size used (106), the estimates are accurate for supporting decision making. The results in Figure 119

describe different aspects of resilience for an NPP being operated up to t = 40 (years). For resistant resilience,10

we have pRs = 0.9681, which indicates that one could have a high degree of belief that the generation capacity11
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of the NPP will not be disrupted at all by earthquakes in its entire life cycle (40 years). In other words,1

the probability that NPP keeps operating continuously in the entire evaluation horizon without performance2

degradation is 0.9681. This is because the design of the NPP and its safety systems is strong for resisting the3

damages caused by the earthquake. As can be seen in Table V, the failure probabilities of the safety systems4

remains at a low levels for earthquake magnitudes up to 8.5.5

For the absorption resilience, we have pRe = 0.6218. This means that if initial disruptions have already6

occurred, there is only a conditional probability of 0.6218 that the system remains in resilient state in the7

evaluation horizon, i.e., no core meltdown accidents happen so that the NPP can be repaired after possible8

performance disruptions caused by the earthquakes. This value might not seem satisfactory, as the core meltdown9

accident has a very high severity but its probability of occurrence is not low enough. To improve the absorption10

resilience, two possible approaches might be adopted. The first is to lower the probability of failure of the safety11

barriers caused by the earthquake by strengthening the anti-seismic designs. The second is to add redundant12

safety systems to the NPP.13

For the recovery resilience, we have pRc = 0.4099, which indicates that there is only a probability of 0.409914

that the recovery time of the NPP can meet its requirements (recovery time should be less than TTh,Rc =15

2 (years)). This value is far from satisfactory and indicates that the recovery resilience of this NPP needs16

improvements. A straightforward way to improve the recovery resilience is to reduce the time-to-repair needed17

under each performance degradation state. There are a number of ways to achieve this, e.g., providing better18

training to the maintenance personnel, preparing enough resources for the recovery of the NPP. Besides, the19

measures that improve the resistant and absorption resilience might also improve the recovery resilience. This20

is because the probability of entering the states with very severe performance degradations (and also requiring21

very long repair times) can be reduced by improving the resistant and absorption resilience.22

For the overall resilience, we have Re = 0.9790. This means that there is a probability of 0.9790 that the23

total losses caused by the earthquake in the evaluation horizon do not exceed Ltol = 2.54 × 109 (e). As24

indicated by Re, the NPP demonstrates high overall resilience as the potential losses caused by the earthquake25

is far below the maximal tolerable losses.26

To have a complete picture of the resilience, the four resilience metrics should be considered together. As27

can be in Figure 11, although the resistant and overall resilience of the NPP are acceptable, its absorption28

and recovery resilience still need improvement. Hence, efforts are needed to reduce the likelihood that the29

NPP enters the non-resilient state (core meltdown) and to reduce the needed time to recover the NPP from30

performance degradation states.31

2) Comparison to the ΦΛEΠ resilience metrics: In the literature, there are other resilience metrics that32

also consider the different stages and aspects of resilience. Among them, the ΦΛEΠ (pronounced as ”FLEP”)33

metrics developed by Panteli et al. [27] is a most-widely used one. Hence, they are used as a benchmark to34

compare the strength and limitations of the developed resilience metrics to the existing ones. The definitions of35
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the ΦΛEΠ metrics are summarized in Table X, highlighting also the specific aspects of resilience each metric1

describes (detailed information could be found in [27]). Since the ΦΛEΠ metrics are defined for individual2

samples rather than the whole population, five typical realizations (shown in Figure 12) are taken from the3

Monte Carlo samples generated in the previous section, and used to calculate the ΦΛEΠ metrics. The results4

are given in Table XI. It should be noted that in Sect. IV-A, we assumed that the performance degradation5

is instantaneous and that the maintenance process starts right after the degradation process finishes. Here, in6

order to calculate the ΦΛEΠ metrics, we replace the first assumption by that the degradation process lasts7

a random period of time, which follows a Normal distribution with a mean value of 7 days and a standard8

deviation of 1 day. Also, we assume that the recovery time to a given performance state can be split into two9

parts: the recovery preparation time, in which the recovery process does not start and the performance remains10

in the postdisturbance degraded state; and the recovery time, in which repairable operations are carried out11

to restore the degraded performance. It is assumed that the two parts equally divide the original recovery time12

in the Monte Carlo samples.13

TABLE X: Definitions of the ΦΛEΠ metrics.

Metric Definition Aspect of resilience concerned
Φ Slopes of performance degradation processes. Resistant and absorption resilience
Λ The remaining performance after the performance degradation ends. Absorption resilience
E The time that the system remains in the postdisturbance degraded state. Recovery resilience
Π Slopes of performance recovery processes. Recovery resilience
A Area of the resilience trapezoid. Overall resilience

Fig. 12: The five trajectories used to calculate the ΦΛEΠ metrics.

It can be seen from the comparison in Figure 11 and Table XI that both the developed resilience metrics and14

the ΦΛEΠ metrics are able to capture different aspects of resilience. However, as shown in Table X, in the15

ΦΛEΠ metrics, some aspects of resilience are mixed, while the developed resilience metrics allow measuring16

the different aspects of resilience separately. Another major difference is that, the ΦΛEΠ metrics are defined for17
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TABLE XI: ΦΛEΠ metrics.

Scenarios Φ (e/day) Λ (e) E (years) Π (e/year) A (e·year)
1 −− −− −− −− 0
2 2.47× 109 1.8× 1010 3.73 −− 6.71× 1010

3 2.68× 107 1.8× 108 1.88 9.57× 107 5.07× 108

4 5.79× 107 3.6× 108 0.38 1.69× 108 5.23× 108

5 2.88× 107 1.8× 108 0.87 2.08× 108 2.35× 108

−−: Not applicable.

individual sample paths, while the developed resilience metrics consider population characteristics. Therefore,1

using the developed resilience metrics could account for the variations caused by uncertainties. Compared to2

the ΦΛEΠ metrics, a major drawback of the developed resilience metrics is that, they cannot explicitly capture3

the speed of performance degradation and recovery, as the metrics Φ and Π do.4

3) Time-dependent resilience analyses: In this subsection, the time-dependent behaviors of the resilience of5

the NPP are investigated by varying the evaluation horizon t from 0 to 80 years. The results are presented in6

Figure 13. It can be seen from the Figures that as the evaluation horizon increases, the resistant probability,7

recovery probability and overall resilience decrease. This is because the longer the NPP operates, the more8

likely that it is hit by an destructive earthquake. It should be noted that in the current model, the degradations9

of the safety systems are not considered. Therefore, the decrease of resilience with time is purely caused by10

the increasing likelihood of earthquake occurrences.11

From Figures 13 (a) and (d), it can be seen that the resistant and overall resilience roughly decrease linearly12

as the evaluation horizon increases. This is because in the MRP-based resilience model, the occurrence of13

extreme event is modelled by a homogeneous Poisson process. For the homogeneous Poisson process, when14

t is small, the event occurrence probability before t can be approximated by a linear function of t [57]. The15

slopes of these linear decreasing functions are dependent on the reliability of the safety systems: the less reliable16

the safety systems, the more steep the slopes. This observation can be used by decision makers to make rough17

estimations and predictions of the resistant, absorption and overall resilience when necessary.18

The resilient probability, as shown in Figure 13 (b), remains constant in the evaluation horizon. This is19

because, the safety barriers are assumed to be degradation-free. The reliabilities of the safety barriers are,20

therefore, constants over the evaluation horizon. As the resilient probability is determined by the reliabilities21

of the safety barriers, it also remains constants.22

The recovery resilience, however, is a convex decreasing function of time (Figure 13 (c)): it deceases sharply23

first, and then becomes almost stable. This is because when t is very small, it is almost impossible to have24

earthquakes with large magnitudes (since their occurrence rates are too low). The damages caused by the25

earthquakes at this range, therefore, are also small and can be repaired in a short time. As t increases, the26

likelihood of having larger earthquakes with greater damages increases. Longer recovery time is, then, needed.27

As a consequence, the recovery resilience drops dramatically. As t further increases, the probability of entering28
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different performance damage states tend to stabilize. Hence, the recovery resilience also becomes stable. This1

finding can help the decision maker determine the optimal operation limit for the NPP. For example, Figure2

13 (c) shows that, from a recovery resilience perspective, operating an NPP for 80 years is almost as good as3

operating it for only 30 years. Hence, if the decision maker wants to extend the life of an NPP from 30 years4

to 80 years, he/she does not concern about recovery resilience and only needs to look at the other three aspects5

of resilience.6

(a) Resistant resilience (pRs). (b) Absorption resilience (pRe).

(c) Recovery resilience (pRc). (d) Overall resilience (Re).

Fig. 13: Results of the time-dependent resilience analyses.

V. CONCLUSION7

A resilience model is developed for multistate energy systems based on Markov reward process models.8

In the developed model, the dynamics of system performances are modelled by a continuous time discrete9

state Markov chain and the losses caused by the extreme events are modeled by the reward rates associated10

with state sojourns or state transitions: the rewards associated with state transitions from higher-performance11

to lower-performance represent the direct losses caused by the extreme event; and the reward associated with12

sojourns in the performance degradation states represent indirect losses (e.g., downtime costs). Four numerical13

metrics are defined to measure the three aspects of system resilience separately (resistant, absorption and14

recovery resilience) and collectively (overall resilience). A simulation-based algorithm is developed to support15

the resilience analysis.16

The developed methods are applied for resilience analysis of a NPP against seismic hazards. The result of the17

analysis, presented as a four-dimensional radar chart, can provide a comprehensive description of the resilience18
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of the NPP for a given evaluation horizon. Since the developed model is able to quantify the three contributing1

elements to resilience (resistant, absorption and recovery capability) separately, it can also be used to plan2

improvement activities for the resilience. A time-dependent analysis is also conducted to investigate how does3

the resilience of the NPP evolves with time. The results show that in the evaluation ranges, as time goes by,4

the resistant, recovery and overall resilience decrease: the recovery resilience decreases dramatically at first and5

then converges to a constant value; while the other two resilience metrics decreases linearly with time. The6

absorption resilience, on the other hand, remains constant. This finding could help to make decisions regarding7

optimal useful life of the NPP.8

Although the developed model provides an useful and efficient way for modelling and analyzing the resilience9

of multistate energy systems, it still has some limitations that could be improved in future researches. First,10

an implicit assumption of the Markov reward model is that the time-to-performance-degradation and time-to-11

recovery follow exponential distributions. This assumption, however, does not always hold in practice. The model12

can be extended to semi-Markov reward models to resolve this issue. Another drawback is that, the developed13

resilience analysis method is based on Monte Carlo simulation, which is computationally demanding. In the14

future, efforts can be made to develop analytical or semi-analytical analysis methods for resilience analysis, in15

order to reduce the computational burden.16
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