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Abstract—In engineering scenarios, expert judgements play an 

essential role in reliability assessment, especially for those systems 

with few historical data. To achieve a rational result, experts from 

different areas should be involved, and the uncertainties in their 

assessments should be properly addressed. Such information is 

often referred to as multi-source imprecise information (MSII) 

and might contain high degree of conflicts, as different experts 

usually have different expertise and knowledge. Properly 

quantifying the conflicts among the MSII, then, becomes a critical 

issue, as the subsequent processing of MSII (e.g., combination and 

calibration), depends on the degree of conflict in the MSII. To this 

end, a new conflict measure is put forth based on the Dempster-

Shafer theory (DST) to quantify and visualize the conflict in the 

MSII from a group of experts. In the first place, the MSII from 

each expert is used to construct the basic belief assignment (BBA) 

of the reliability estimates for the corresponding expert under the 

DST. A two-dimensional conflict measure, which combines the 

conflict factor and Jousselme distance in DST, is, then, proposed 

to measure the conflict between the experts’ BBAs. The conflict is 

quantified from two perspectives, viz., mutual conflict and total 

conflict. Finally, a Bhattacharyya distance-based method is 

developed to further quantify the informativeness of each expert’s 

MSII to the system reliability estimate. A numerical example along 

with an engineering case is used to validate the effectiveness of the 

proposed approach.  

 
Index Terms—multi-state system (MSS), conflict measure, 

multi-source imprecise information (MSII), Dempster-Shafer 

theory, Bhattacharyya distance. 

NOMENCLATURE 

MSS Multi-State System 

MSII Multi-Source Imprecise Information 

DST  Dempster-Shafer Theory 

FoD  Frame of Discernment 

BBA Basic Belief Assignment 

MTTF Mean Time To Failure 

CRC  Conjunctive Rule of Combination 

 

 

 

 

 

 

 

 

 

 

DRC Dempster Rule of Combination 

( )SR t  System reliability at time instant t 

, ( )SL kR t  Lower bound of system reliability function 

estimated based on the kth expert’s MSII 

, ( )SU kR t  Upper bound of system reliability function 

estimated based on the kth expert’s MSII 

( )SLR t  Lower bound of system reliability function 

estimated based on all the experts’ MSII 

( )SUR t  Upper bound of system reliability function 

estimated based on all the experts’ MSII 

( )k tm   BBA induced by the kth expert’s MSII 

i jk    The average conflict factor between the ith 

and jth experts’ BBAs 

( , )i jJD m m  The average Jousselme distance between 

the ith and jth experts’ BBAs 

i i
k

m m
 The average conflict factor between the ith 

and the other experts’ BBAs 

( , )i i
JD


m m  The average Jousselme distance between 

the ith and the other experts’ BBAs 

( ) ( )( , )
SU SLB R t R tq q  The Bhattacharya distance of the PDFs of 

the upper and lower system lifetime 

distributions 

, ,
( ) ( )( , )

SU k SL k
B R t R tq q  The Bhattacharya distance of the PDFs of 

the upper and lower system lifetime 

distributions without the kth expert’s MSII 

I. INTRODUCTION 

DVANCED engineering systems are getting ever-

increasingly complex and sophisticated nowadays. 

Traditional system reliability models, which are binary-state 

(failed/working) in nature, are not able to characterize the 

complicated deterioration profiles arising from the increasing 

system complexity. The complex degradation profiles can be 

considered by multi-state system (MSS) reliability models, as 

they introduce intermediate states between perfectly working 

and completely failed state. MSS reliability models have, 

therefore, received tremendous attention in the past a few 

decades [1]-[3]. In engineering practices, many systems execute 

their planned missions with multiple levels of damage severities 

or performance capacities. These systems can be naturally 

modelled as MSSs. As MSSs are more complicated than binary-

state systems, novel methods are needed for their reliability 

assessment, e.g., universal generating function (UGF) [4], 
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multi-valued decision diagram [5], stochastic processes [6], and 

simulation-based methods [7]. 

Most of the researches on reliability assessment of MSSs are 

based on the premise that the state probabilities of an MSS and 

its components can be precisely known, through by rigorous 

statistical estimation based on a large amount of test/event data. 

In practice, however, due to the limited reliability testing 

resources (e.g., time, budget, manpower), the collected 

test/event data are often scarce and cannot satisfy the large-

sample-size requirement for rigorous statistical analyses. 

Traditional MSS reliability assessment methods are, therefore, 

unable to handle such a challenge. Expert judgements are often 

used, as an alternative to statistical data, to assess the state 

probabilities under such scenarios. Typical procedures of 

reliability assessment using expert judgements contains three 

steps: elicitation of expert judgements, combination of expert 

judgements, and calibration of expert judgements [8]. The latter 

two steps are oftentimes carried out in an interactive manner in 

order to achieve a rational consensus among a group of experts 

on the elicited information. 

Expert judgement elicitation is a process where experts are 

asked to express their judgements and the associated 

uncertainties. Typical approaches to represent the uncertainty 

include Bayesian approach [9], interval set theory [10], 

Dempster-Shafer theory (DST) [11],[12], and fuzzy set theory 

[13]. For example, Ding and Lisnianski [13] defined the fuzzy 

MSSs (FMSSs) and investigated a fuzzy universal generating 

function (FUGF)-based approach to calculate the fuzzy 

reliability of an MSS, where the performance capacity and state 

probability of components were elicited from experts and 

modelled by triangular fuzzy numbers. The FUGF-based 

reliability assessment of FMSSs was extended by Liu and 

Huang [14] into a fuzzy Markov model. Parametric 

programming was used to assess the instantaneous fuzzy state 

probabilities of MSSs. Under the interval set theory, Li et al. 

[15] developed an affined interval UGF (AIUGF) method to 

evaluate the stationary state probabilities of MSSs when the 

state probabilities of components were elicited as interval 

values. Under the DST, Destercke and Sallak [16] represented 

the state probabilities of components as mass functions and 

used several combination rules to evaluate the MSS reliability. 

Their method can effectively handle the credibility of expert 

judgements and their interdependences. Nonetheless, all the 

above methods can be applied when only the imprecise state 

probability of components need to be elicited. In engineering 

scenarios, many MSSs may exhibit a hierarchical structure in 

which the system can be decomposed into many subsystems 

and each subsystem can contain more than one component. The 

imprecise expert judgements need, therefore, be elicited on 

multiple levels of an MSS, e.g., component-level, subsystem-

level, and system-level. On the other hand, as experts may 

possess distinct knowledge backgrounds, the imprecise expert 

judgements are heterogeneous in nature. Further, different 

experts might provide imprecise information regarding the 

system reliability at distinct time instants. If expert judgement 

possesses the three foregoing characteristics, it is defined as 

multi-source imprecise information (MSII) [10].  

After eliciting expert judgements, the expert judgements are 

combined for system reliability assessment, the results also 

indicate whether the reliability estimate is satisfactory. If not, 

we need to calibrate the expert judgements [28]. Specifically, 

by taking account of the aforementioned MSII, system 

reliability bounds were assessed in our earlier work [10] by 

formulating a pair of constrained optimization models. In the 

constrained optimization models, the optimization objective 

was the system reliability function, whereas the constraints 

were constructed to represent the MSII from the experts as 

functions of the unknown parameters. By maximizing and 

minimizing the system reliability function under these 

constraints, the upper and lower bounds of system reliability 

were estimated over time. As observed from our earlier work, 

the resulting reliability bounds from different experts can vary 

from one another. In other words, the reliability bounds 

constructed individually based on each expert’s MSII might 

conflict partially or completely with each other. When the 

reliability bounds were not completely conflicting, the 

narrowest reliability bound which satisfies all the constraints 

should be selected as the final result. In contrast, when 

reliability bounds from the MSII of a group of experts have no 

intersections, the combination of expert judgements cannot 

reach consensus on the reliability estimate. Calibration of 

expert judgements should, then, be carried out [28]. 

Calibration of expert judgments is not trivial as decision 

makers should decide which one (ones) of the expert 

judgement(s) need to be calibrated and to what extent [8]. To 

facilitate such choices, it is of great significance to 

quantitatively measure and visualize the conflict and/or 

consistency among experts’ judgements, as well as the 

informativeness of each expert judgment with respect to 

estimating the system reliability. An illustration of the 

reliability assessment of an apogee engine is provided to show 

the importance of measuring the conflict and informativeness 

of MSII from experts. The apogee engine intends to complete 

the mission of starting at apogee and sending the satellite into 

the synchronous orbit [27]. To ensure the success of the 

mission, multiple domain experts with different knowledge 

backgrounds are invited to elicit their knowledge for the 

reliability assessment of the apogee engine. The engine mainly 

consists of three parts: an ignition structure, an engine shell, and 

a nozzle. The ignition structure can be further decomposed into 

three kinds of components, namely, an igniter, two spark plugs, 

and an ignition composition. The ignition composition and 

nozzle are innovative products with few failure data, only the 

bounds of the mean time to failure (MTTF) of these two 

components are elicited from two experts, while the reliability 

bounds of the subsystems, i.e., the ignition structure, engine 

shell, and the propellant grain are, respectively, elicited from 

another three experts. The experts’ imprecise information is, 

therefore, a typical type of MSII. However, as both the bound 

of MTTF of the ignition composition and the reliability bound 

of the ignition structure are information related to the ignition 

structure, these two pieces of information may be quite 

conflicting as they come from two different experts. In order to 

achieve a consensus on the reliability assessment of the entire 
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apogee engine, it, therefore, necessitates manipulate the conflict 

quantification among the experts’ information in order to 

decide which is to be calibrated or refined. Meanwhile, the 

informativeness of the experts’ MSII is also critical to the 

refinement of the experts, that is, to decide whom to keep and 

whom to get rid of. 

DST is a natural and widely accepted non-probabilistic 

framework for such task [25]. There are numerous ways to 

quantify conflicts among evidences from experts under the 

DST. Dempster is the pioneer to provide the definition of 

conflicts and used the conflict factor for their quantification 

[19]. Schubert [21] used the degree of falsity for conflict 

management of evidences. Destercke and Burger [22] defined 

an interval-valued conflict measure based on the contour 

functions in DST to measure the disagreement between 

evidences. Many researches used distance measures, such as 

Jousselme distance [23], cosine measure [24], and Minkowski 

measures [25], to quantify the conflict between evidences. It 

bears noting that even though a plethora of research efforts have 

been devoted to quantifying the conflict among experts’ 

evidences under the DST, these conflict measures can merely 

tackle homogeneous evidences, which is referred to as the 

evidences that are elicited from the same frame of discernment 

(FoD) at the same time instants [22]. They cannot be directly 

implemented on MSII: MSII is inhomogeneous, since it 

involves hierarchical structures which are defined in different 

FoDs and can be given at distinct time instants during the 

system’s life cycle.  

To fill the aforementioned research gaps, this article aims at 

developing a framework to quantify the conflict among the 

MSII of a group of experts for reliability assessment. Firstly, 

the different MSII is unified by transforming then into the 

reliability of MSSs. This is mainly done by using the reliability 

bound assessment method proposed in our previous work [10]. 

Secondly, we use the reliability bound induced from each 

expert’s MSII to derive their corresponding basic belief 

assignments (BBAs) via the interval-to-mass transformation 

[17]. Therefore, the experts’ MSII are converted into a set of 

evidences about the reliability of the MSSs. Thirdly, a two-

dimensional conflict measure, which combines the conflict 

factor [19] and Jousselme distance [23] in DST, is proposed to 

measure the conflicts among these pieces of evidences. We 

quantify the conflicts from two perspectives, viz., mutual 

conflict and total conflict. Mutual conflict is defined as the 

conflict between any two pieces of evidences whereas total 

conflict is defined as the conflict of a specific piece of evidence 

with respect to all the other evidences. The mutual conflict is 

quantified by applying the two-dimensional conflict measure on 

each pair of the experts, while the total conflict quantification 

considers the conflict of each expert’s evidence against 

aggregated evidence, constructed by combining the rest of the 

experts via Dempster’s rule of combination (DRC). Lastly, in 

order to further quantify the informativeness of a specific 

expert’s MSII, a Bhattacharyya distance-based informativeness 

measure is put forth. Two examples, a multi-state flow 

transmission system and a cutter feeding control system, are 

presented to validate the developed framework. 

The remainder of this article is structured as follows. Section 

II offers a brief review of the MSS and the reliability bound 

assessment approach developed in our earlier work. A two-

dimensional conflict measure is put forth in Section III and a 

framework of conflict quantification among experts’ MSII by 

the two-dimensional conflict measure is presented in Section 

IV. Section V presents a Bhattacharyya distance-based measure 

to quantify the informativeness of each expert. The 

effectiveness of the proposed method is demonstrated in 

Section VI via a numerical example along with an engineering 

application of the cutter feeding control system of CNC lathes. 

Section VII is the conclusion and a summary of future works.  

II. MULTI-STATE SYSTEM RELIABILITY MODEL AND MSII  

A. Multi-State Systems 

In this article, we consider an MSS with a hierarchical 

structure, that is, the system can be decomposed into 

subsystems and each subsystem contains at least one multi-state 

component. MSII can be collected from all of these hierarchies, 

i.e., it can be collected from the system level, the subsystem 

level, and the component level. In practice, the state in the MSS 

can be used to describe performance capacity or damage 

severity that has discrete levels. The state of the subsystem and 

system can be determined by the corresponding structure 

functions.  

A flow transmission system, delineated in Fig. 1, is used for 

the illustration of an MSS. The flow transmission system is 

composed of three pipes, in which Pipes #1 and #2 are 

connected in parallel and then serially connected to Pipe #3. 

Pipes #1 and #2 can be viewed as a subsystem, denoted as 1S . 

The performance capacity of the system and its components is  

measured by the transmission capacity (tons/min). Pipes #1 and 

#2 are assumed to have three states, where State 0 represents 

complete failure corresponding to a capacity of 0; State 2 

manifests a full capacity, and State 1 represents a partial failure. 

Pipe #3 has only two states: State 0 represents failure and State 

1 represents working. The capacities of all the components are 

tabulated in Table I. Based on the system configuration, both 

subsystem 1S  and the whole flow transmission system can 

exhibit seven states, as tabulated in Table II and Table III, 

respectively. 

Without loss of generality, the MSS can be defined based on 

the following assumptions: 

(1) An MSS contains CM  components, which are grouped 

into subM  subsystems. Component l ( 1, 2,..., Cl M= ) possesses 

a finite number of states, denoted by 0,1,2,...,
lCN . Due to the 

multi-state nature of components, subsystem m  (

sub1, 2,...,m M= ) and the entire system also manifest multiple 

states, denoted by 0,1,2,...,
mSN  and 0,1,2,..., SN , respectively. 

Among these states, State 0 is the worst state, whereas the states 

lCN , 
mSN , and SN

 
represent the states with best 

performances, respectively.  

(2) To quantitatively characterize the behaviors of the 

components of the studied system, the stochastic behavior of 

component l  ( {1, 2,..., }Cl M ) is characterized by 

homogenous discrete-state continuous-time Markov models 
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[6]. For the homogenous Markov model of component l, the 

transition intensity ,( , )l i j  ( j i ) from state i to state j is a  

 
Fig. 1.  The configuration of the flow transmission system [10]. 

 
TABLE I 

THE PERFORMANCE CAPACITY OF ALL THE COMPONENTS 

Pipe ID State 2 State 1 State 0 

#1 1.5 tons/min 1.0 tons/min 0.0 tons/min 

#2 2.0 tons/min 1.5 tons/min 0.0 tons/min 

#3 — 4.0 tons/min 0.0 tons/min 

TABLE II 

THE STATES OF SUBSYSTEM 1S  AND ITS CORRESPONDING STATE 

COMBINATIONS OF PIPES #1 AND #2. 

State of  

subsystem 1S  

Performance 

 capacity 

State of  

Pipe #1 

State of 

Pipe #2 

0 0.0 tons/min 0 0 

1 1.0 tons/min 1 0 

2 1.5 tons/min 
0 1 

2 0 

3 2.0 tons/min 0 2 

4 2.5 tons/min 1 1 

5 3.0 tons/min 
1 2 

2 1 

6 3.5 tons/min 2 2 

TABLE III 

THE SYSTEM STATES AND ITS CORRESPONDING STATE 

COMBINATIONS OF SUBSYSTEM 1S  AND PIPE #3. 

State of  

system  

Performance  

capacity 

State of  

subsystem 1S  

State of  

Pipe #3 

0 0.0 tons/min 
0,1,2,3,4,5,6 0 

0 1 

1 1.0 tons/min 1 1 

2 1.5 tons/min 2 1 

3 2.0 tons/min 3 1 

4 2.5 tons/min 4 1 

5 3.0 tons/min 5 1 

6 3.5 tons/min 6 1 

constant. The state probability , ( )l ip t  ( =0,1,2,...,
lCi N ) can be 

derived by solving the Kolmogorov differential equations: 

 
( )

( ) ( )
1

,

,( , ) , , ,( , )

1 0

Cl
N i

l i

l k i l k l i l i k

k i k

dp t
p t p t

dt
 

−

= + =

= −  , (1) 

with the initial conditions that , (0) 1
Cl

l Np =  and , (0) 0l ip =  (

lCi N ), that is, components are in the best state at the 

beginning of use. Note that, the parameters associated with the 

Markov models are unknown and need to be identified by the 

MSII [10]. 

(3) The structure function of subsystem m ( sub1, 2,...,m M= ) 

and the entire MSS, denoted by ( )
mS  and ( )S , respectively, 

are assumed to be deterministic and known. Therefore, the state 

of an MSS at any time t can be completely determined by the 

combination of all the component states. For example, for the 

flow transmission system, the structure function 
1
( )S  is the 

sum of the performance capacities of Pipes #1 and #2. The 

structure function ( )S  is the minimum of the performance 

capacities of the subsystem 1S  and Pipe #3. 

(4) Reliability of an MSS is defined as the probability that 

the system remains in acceptable states, and can be 

mathematically written as: 

 ,( ) 1 ( ) 1 ( )S S S i

i

R t F t p t


= − = −
D

, (2) 

where ( )SF t  is the failure probability of the MSS, , ( )S ip t  is 

the probability of the system being in state i, and D  is a set of 

unacceptable states. For instance, if the set of unacceptable 

states of the flow transmission system is defined as {0,1}=D , 

i.e., the system flow rate is lower than 1.5 ton/min. The system 

reliability function can be, then, formulated as: 

 

( )

,

3,1 2,2 2,1 2,0 1,2

( ) 1 ( )

( ) ( ) ( ) ( ) ( )

S S i

i

R t p t

p t p t p t p t p t



= −

=  + + 


D . (3) 

B. Calculating the Reliability Bounds of MSSs By Fusing MSII  

For an MSS, MSII can be gathered from different experts in 

different forms and regarding distinct reliability measures. 

Examples of the MSII include: the interval values of 

components’ state probabilities, interval values of the system’s 

state probabilities, interval value of MTTF of the 

components/subsystems, and interval value of sojourn time at 

some particular states. In our previous work [10], a constrained 

optimization model was developed to evaluate the reliability 

bounds of MSSs, where the MSII is used to construct the 

constraints of the optimization model. For instance, if there are 

ke  pieces of imprecise information provided by the kth expert, 

the system reliability bounds can be found by: 

 
, ,[ ( ), ( )] min/ max ( )

. . ( , ) 0 1,2,....,

SL k SU k S

i k k

R t R t R t

s t g t i e

=

 =λ
 (4) 

where ( , )i kg tλ  is the ith normalized constraints provided by 

the kth expert at time kt ; λ  is a vector of decision variables, 

which comprises of the transition intensities of all the 

components. By setting time t in Eq. (4) at any time instant, the 

reliability bounds of the MSS over time can be assessed. 

Moreover, when there are 
1

K

kk
e

=  pieces of MSII elicited from 

K experts, the reliability bounds of the MSS can be evaluated 

by the following constraint optimization model: 

1 1

2 2

[ ( ), ( )] min/ max ( )

. . ( , ) 0 1, 2,....,

( , ) 0 1, 2,....,

( , ) 0 1, 2,....,

SL SU S

i

i

i K K

R t R t R t

s t g t i e

g t i e

g t i e

=

 =

 =

 =

λ

λ

λ

. (5) 

Note that, the reliability bound assessed by Eq. (5) should be 

no wider than that by Eq. (4), because there are more constraints 

in Eq. (5). To illustrate the use of Eqs. (4) and (5), here we 

consider a simple example of an MSS with only a three-state 

Subsystem S1

Pipe #1

1 0

1 02

1 02

Pipe #2

Pipe #3
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component where State 0 is the failure state, States 1, and 2 are 

the working states. Suppose that the MSII is collected from two 

 
Fig. 2.  Reliability bounds of the parallel-connected system by fusing the MSII. 

 

experts: 

Expert 1: The intervals of the state probabilities of the 

component at 300t =  days are provided as 1,20.30 (300)p  

0.38 ; 1,10.22 (300) 0.32p  ; 1,00.30 (300) 0.48p  . 

Expert 2: The interval of the MTTF of the component is 

1450 600MTTF   days. 

The reliability bounds of the component can be obtained by 

considering the imprecise information from each expert 

separately: 

 

,1 ,1 1,2 1,1

1,2

1,1

1,0

[ ( ), ( )] min/ max ( )= ( )+ ( )

0.30 (300) 0.38

. . 0.22 (300) 0.32

0.30 (300) 0.48

SL SU SR t R t R t p t p t

p

s t p

p

=

  


 


 

, (6) 

and 

 

,2 ,2 1,2 1,1

1

2

1 1 1,
0 0

1

[ ( ), ( )] min/ max ( )= ( )+ ( )

450 600

. .
( ) ( )

SL SU S

i

i

R t R t R t p t p t

MTTF

s t
MTTF R t dt p t dt

+ +

=

=

 


 
= =  

 
 

. (7) 

The MSII from the two experts can be fused to assess the 

reliability bound based on Eq. (5): 

 

1,2 1,1

1,2

1,1

1,0

1

[ ( ), ( )] min/ max ( )= ( )+ ( )

0.30 (300) 0.38

0.22 (300) 0.32
. .

0.30 (300) 0.48

450 600

SL SU SR t R t R t p t p t

p

p
s t

p

MTTF

=

 


 


 
  

. (8) 

Figure 2 depicts the obtained reliability bounds. The results 

are achieved by running the optimization models in Eqs. (6)-(8) 

pointwisely at different values of t from 0 to 2500 days. As 

shown in Fig. 2, fusing the two experts’ MSII through Eq. (8), 

yields narrower reliability bounds. More importantly, as 

illustrated in Fig. 2, the reliability bounds from the individual 

expert MSII are not fully consistent, that is, conflicts still exist. 

To achieve a more rational consensus on the reliability 

estimates, the conflict should be properly quantified. Once the 

experts can see the conflicts between their judgements, they 

could exchange opinions and further calibrate their judgements. 

In the subsequent section, we present a two-dimensional 

conflict measure under the Dempster-Shafer theory to quantify 

and visualize the conflict among experts’ MSII.  

III. A NEW CONFLICT MEASURE UNDER DST 

In this section, a new conflict measure under DST, named as 

two-dimensional conflict measure, is defined. The two-

dimensional conflict measure takes the conflict factor and the 

Jousselme distance as two complementary conflict measures. 

Before defining the new conflict measure, some basic 

definitions of DST are briefly introduced. 

A. Dempster-Shafer Theory  

DST is a generalized extension of probability theory by 

assigning probability masses to non-singleton sets [19],[20]. In 

general, let   be the frame of discernment (FoD) that contains 

all mutually exclusive propositions. A mass function, also 

called the BBA, is a mapping function : 2 [0,1]m  →  

satisfying the normalization axiom: 

 ( ) 1
A

m A


= . (9) 

A mass function is said to be defined under the closed-world 

assumption if ( ) 0m  = . If ( ) 0m A  , the set A is called a 

focal element. A simple mass is the mass function such that: 

( ) , ( ) 1m A s m s=  = −  where | |=1A . The simple mass 

degenerates to a categorical mass if 1s = , and a vacuous mass 

if 0s = . Apart from the mass function, the DST employs an 

interval measure [Bel(A), Pl(A)] to quantify the belief degree on 

set A. The lower bound, called the belief function, is defined as 

the total amount of the masses that support set A: 

 ( ) ( )
B A

Bel A m B


= . (10) 

The upper bound, named as the plausibility function, is 

defined as the sum of all the masses of propositions that 

partially or totally agree with set A: 

 ( ) ( )
B A

Pl A m B
 

= . (11) 

Given two mass functions 1m  and 2m  corresponding to two 

independent sources of evidence defined in the same FoD  , 

the mass function 1 2 1 2m m m =   resulting from the 

conjunctive rule of combination (CRC) is defined as: 

 1 2 1 2

, ,

( ) ( ) ( ) ,
B C A B C

m A m B m C A

 = 

=    . (12) 

The CRC is proven to be commutative and associative, and it is 

often referred to as the unnormalized Dempster’s rule. 

However, if the frame of discernment is assumed to be 

exhaustive, the mass ( )m   should be reallocated to other 

subsets, leading to the well-known Dempster’s rule of 

combination   (DRC) (or orthogonal rule of combination):  

 
1 2 1 2

1 2 1 21 2

( ) ( )
= if

1 1 ( )( )

0 if

m A m A
A

k mm A

A

 

 


 

− − = 
 = 

, (13) 

where 

 
1 2 1 2 1 2

, ,

( ) ( ) ( )
B C B C

k m m B m C 

 = 

=  =   (14) 

is the conflict factor between the two pieces of evidence. If there 

is no conflict between 1m  and 2m , the result of DRC is the 

same as that of CRC. Note that if 1m  (or 2m ) is a vacuous mass, 

the results of the DRC 1 2m   is exactly the same as 2m  (or 1m ). 
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In this work, the conflict factor in the DRC, i.e., Eq. (14), plays 

an essential role in quantifying the conflict of MSII from a 

group of experts.  

For an arbitrary mass function, its corresponding Pignistic 

probability function is defined as [29]: 

 
| | ( )

( )
| | 1 ( )

m

B

B A m B
BetP A

B m


=

− 
 . (15) 

This transformation is the so-called Pignistic transformation 

(PT). The Pignisctic probability function ( )mBetP A  is also 

called the betting commitment to set A.  

Apart from the conflict factor, there are many other conflict 

measures developed from various perspectives in the literature. 

The cosine measure is a well-known inner product measure of 

similarity in the DST, which is defined as: 

 1 2

1 2

1 2

cos( , )
|| || || ||

m m
m m

m m
=


 (16) 

where 1 2m m  is the inner product of two vectors 1m  and 2m , 

|| ||  is the length of the vector. Thereby, the conflict between 

1m  and 2m  is 1 21-cos( , )m m . 

Moreover, the supremum norm of the difference of betting 

commitment, denoted as diffBetP i

j

m

m , is also a well-known 

distance measure to measure the conflict in the DST. 
1

2
diffBetP

m

m of two pieces of BBAs 1m  and 2m  can be written 

as: 

 
( )

1

2 1 2

1 2

diffBetP ( ) ( )

max ( ) ( )

m

m m m

A m m

BetP A BetP A

BetP A BetP A





= −

= −
 (17) 

where 
1
( )mBetP A  and 

2
( )mBetP A  are the betting commitments 

of element A ( A   ) induced by 1m  and 2m  respectively.  

B.  The Two-Dimensional Conflict Measure  

In DST, the conflict factor is the most intensively used 

measure to quantify the conflict among evidences. Without loss 

of generality, let the FoD of the studied system be { , }W F =  

where W and F represent the working and failed states of the 

system, respectively. Then, the power set is 

2 { , , ,{ , }}W F W F =  . Let ( )i tm , ( )j tm  be two BBAs 

assigned to the power set 2  from the ith and jth experts at time 

t, respectively. The conflict between these two pieces of BBAs 

can be quantified by: 

 
, ,

( ) ( ) ( ) ( )A B

i j i j i j

A B A B

k t m t m t m t

 

 = 

= =  , (18) 

where ( )A

im t  and ( )B

jm t  stand for the mass functions of ( )i tm

, ( )j tm , respectively. In reliability engineering, the mass 

functions can be obtained by converting the interval-valued 

reliability estimates from experts into mass beliefs (see Section 

IV.A for details). The range of ( )i jk t  is [0, 1], where 

( ) 0i jk t =  means no conflict exists between the two experts, 

while ( ) 1i jk t =  represents the two experts are totally 

contradicting. Sometimes, the experts may be interested in the 

conflict of their BBAs within a specific time interval. Based on 

Eq. (18), the average conflict factor for the ith and jth experts 

within an interval int [ , ]L UT T T=  can be calculated as: 

 
int

int
, ,

1
= ( )

-

1
( ) ( )

-

i j i j i j

U L t T

A B

i j

A B A BU L t T

k m k t dt
T T

m t m t dt
T T



  



 = 

=

=





. (19) 

The average conflict factor i jk   has the following properties. 

Property 1 (Bounded): The range of the average conflict 

factor is 0 1i jk   . Between the two extremes, a greater value 

of i jk   indicates higher degree of conflicts. 1i jk  =  if and 

only if the two experts’ BBAs are totally conflict. In other 

words, the studied system is completely working according to 

one expert while totally failed according to the other. 0i jk  =  

holds if and only if the two experts’ BBAs are two simple BBAs 

with the same focal elements.  

Property 2. (Commutative): The average conflict factor is 

commutative, i.e., i j j ik k = . 

Property 3. (Imprecision Monotonicity): The average 

conflict factor is nonincreasing when the imprecision of anyone 

of the experts’ information increases, i.e., i j i jk k    with 

( )i tm  is a piece of more precise information than ( )i tm , i.e., 

( )i tm  has less masses assigned to set { , }W F  than ( )i tm . 

Property 4. (Non-Conflict to Ignorance): The average 

conflict factor is not in conflict with ignorance, i.e., the average 

conflict factor of any BBAs with respect to the ignorance is 

zero. It indicates that if one expert tells nothing about the 

reliability of a system, it should not be conflicting with any 

information from the other experts. 

Detailed proofs of Properties 1-4 can be found in Appendix 

A. these properties match well with our intuitive anticipation of 

a conflict measure. However, the conflict factor has been 

criticized for failing to quantify the dissimilarity between two 

identical BBAs [18]. Put it in another way, if two BBAs are 

exactly the same, the conflict factor may not be equal to 0, 

which is a somewhat counterintuitive result. A plethora of 

researches have pointed out that using the conflict factor as the 

unique measure of conflict may be misleading while integrating 

every aspect of conflict into a single measurement is 

challenging [18],[22]. Therefore, we propose to complement 

the conflict factor with other conflict measures. In DST, the 

distance is another effective measure to quantify the conflict 

between BBAs. If two BBAs are conflicting, they should be far 

from each other. Many well-known distance measures, 

including the Jousselme distance [23], the supremum norm of 

the difference of betting commitment [18], and the TBM 

pairwise dissimilarity measure [30], have been proposed and 

implemented on a diversity of applications, such as 

optimization in classification algorithms, parameter estimation 

of combination rules, etc. However, it is noteworthy that none 

of the distance measures prevails on all the conflict 

quantification problems in DST. The choice of an appropriate 

distance measure should be application-specific. Among the 

distance measures in DST, the Jousselme distance is one of the 

most widely-used measure due to its satisfactory properties on 

measuring the dissimilarity between BBAs [25]. In this work, 

the Jousselme distance serves as a complementary measure of 



 7 

the conflict factor. For two BBAs ( )i tm  and ( )j tm  from the 

ith and jth experts at time t, the Jousselme distance is given by: 

1
( ( ), ( )) ( ( ) ( )) ( ( ) ( ))

2

T

i j i j i jJD t t t t t t= − −m m m m Jac m m ,(20) 

where ( ( ) ( ))T

i jt t−m m  stands for the transpose of the vector 

( ) ( )i jt t−m m . Jac  is a 2 2  -dimensional matrix whose 

elements are calculated by the Jaccard index, that is: 

 
| |

( , ) , ,
| |

A B
A B A B

A B


=   


Jac . (21) 

The range of ( ( ), ( ))i jJD t tm m  is also [0, 1], where 

( ( ), ( )) 0i jJD t t =m m  holds if and only if the two BBAs are 

identical. ( ( ), ( )) 1i jJD t t =m m  represents the two experts are 

totally contradicting. If the experts are interested in the distance 

of their BBAs within a specific time interval, the average 

Jousselme distance of the ith and jth experts’ BBAs within an 

interval int [ , ]L UT T T=  can be calculated as: 

 

int

1
( , ) ( ( ), ( ))i j i j

U L t T

JD JD t t dt
T T



=
− m m m m . (22) 

It can be proved that the proposed average Jousselme distance 

of BBAs has the following properties (See Appendix B for the 

proofs). 

Property 5. (Bounded): The range of the average distance 

is 0 ( , ) 1i jJD m m . Between the two extremes, a greater 

value of ( , )i jJD m m  indicates higher degree of conflict.  

Property 6. (Extreme Consistent Value): ( , ) 0i jJD =m m  

holds if and only if the two BBAs are exactly the same; 

( , ) 1i jJD =m m  holds if and only if the system is completely 

working believed by one expert while totally failed believed by 

the other. 

Property 7. (Commutative): ( , ) ( , )i j j iJD JD=m m m m . 

Property 8. (Conflict to Ignorance): ( , )i jJD m m  is 

sensitive to ignorance. To be more specific, let =(0,0,0,1)jm  

be a vacuous BBA, we have 

int

21 1
( , (0,0,0,1)) ( ) 0

2
i i i

U L t T

JD m dt
T T





= − 
− m m ,  

where 
2

im is the square norm of im , the equality holds if and 

only if im  is also a vacuous BBA. 

As concluded from Properties 1, 2, 5, and 6, both i jk   and 
( , )i jJD m m  reach the maximum when the two BBAs are 

totally contradictory. However, i jk   and ( , )i jJD m m  reach 

the minimum under different scenarios: i jk   reaches the 

minimum when two BBAs are identical simple BBAs, whereas 
( , )i jJD m m  reaches its minimum when the two BBAs are 

identical. Property 8 of the average Jousselme distance is 

dissatisfied as a conflict measure, because when one expert tells 

nothing about the system reliability, it should not be conflicting 

with any other expert judgements. Both the i jk   and 
( , )i jJD m m  have their shortcomings in measuring the conflict: 

i jk   is prone to measure the conflict to ignorance while 
( , )i jJD m m  is prone to measure the conflict of two identical 

BBAs. However, i jk   and ( , )i jJD m m  can complement the 

shortcomings of each other and provide a comprehensive 

conflict quantification. Hence, a two-dimensional conflict 

measure, which integrates the average conflict factor i jk   and 

the average Jousselme distance ( , )i jJD m m , is proposed in 

this work to quantify the conflict among experts’ BBAs. 

Definition 1: Let im and jm  be two BBAs. Let

( , ) , ( , )i j i j i jTDCM k JD= m m m m  be a two-dimensional 

conflict measure where i jk   is the uncommitted masses when 

combining im  and jm  via DRC and ( , )i jJD m m  is the 

distance between im  and jm . im and jm  are defined as in 

conflict if and only if both i jk    and ( , )i jJD m m  hold, 

where   is a pre-defined threshold of conflict tolerance. 

 
Fig. 3.  Conflict quantification and visualization by the two-dimensional 

conflict measure. 

 

The proposed two-dimensional conflict measure 

( , ) , ( , )i j i j i jTDCM k JD= m m m m  satisfies the following 

two lemmas. 

Lemma 1: ( , ) 1, 1i jTDCM = m m  if and only if 

( ) ( )i jA B   = , where iA  and jB  are the focal elements 

of the BBAs of im  and jm . ( ) ( )i jA B   =  means the 

focal elements of im  and jm  are totally different. Therefore, 

the FoD cannot be a focal element for both im  and jm .  

Lemma 2: ( , ) 0, 0i jTDCM = m m  if and only if both im  

and jm  are two identical simple BBAs. This can be readily 

concluded from that: =0i jk   if and only if im  and jm  are two 

simple BBAs with the same focal elements, while 

( , )=0i jJD m m  means the two BBAs are identical.  

The above two lemmas of ( , )i jTDCM m m  can be readily 

proofed by the properties of the average conflict factor and 

average Jousselme distance. As concluded from Lemma 1, 

( , )i jTDCM m m  reaches its maximum value of 1, 1   when 

the system is believed to be working by one expert while 

believed to be failed by another expert. As concluded from 

Lemma 2, ( , )i jTDCM m m  reaches its minimum value of 

0, 0   when both experts assign the same masses to one of 

the singletons between {W} and {F} while the other masses 

remain unassigned. In practice, the two-dimensional conflict 

measure ( , )i jTDCM m m  might lies in different regions of the 

plane, resulting in four typical scenarios with different degrees 

of conflicts, as shown in Fig. 3. 

Case A: When both the average conflict factor i jk   and the 

average Jousselme distance ( , )i jJD m m  have low values, i.e., 

i jk    and ( , )i jJD m m , the two-dimensional conflict 

measure , ( , )i j i jk JD m m  indicates that the two BBAs are 

not in conflict. It means these two experts has a high degree of 

consensus.  

Case B: When the average conflict factor i jk   has a 

relatively high value while the average Jousselme distance 

( , )i jJD m m  has a low value, i.e., i jk    and 

A B

DC
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( , )i jJD m m , the two-dimensional conflict measure 

, ( , )i j i jk JD m m  indicates that the two BBAs are nearly 

distributed evenly on the singletons, i.e., 

(0,0.5,0.5,0)i j m m .  

Case C: When the average conflict factor i jk   has a low 

value while the average Jousselme distance ( , )i jJD m m  has a 

relatively high value, i.e., i jk    and ( , )i jJD m m , the 

two-dimensional conflict measure , ( , )i j i jk JD m m  

indicates that one of the experts provides very limited 

information to the system reliability estimate, i.e., the mass 

assigned to 
{ , }W F

im  or { , }W F

jm  is very high. 

Case D: When both the average conflict factor i jk   and the 

average Jousselme distance ( , )i jJD m m  have high values, the 

two-dimensional conflict measure , ( , )i j i jk JD m m  

indicates that the two BBAs are in conflict. 

In Fig. 3, the two regions, denoted by D and A, corresponds 

to the situation that the two experts are in and not in conflict, 

respectively. The region B shows that even the average conflict 

factor i jk   is high, the two experts are not contradictory to 

each other. It is indeed the region that can be misled when only 

using the average conflict factor. The region C reflects that the 

conflict of two experts is small but the reason is that one of the 

experts provides very few useful information. 

In the literature, Liu [18] introduced to use the supremum 

norm of the difference of betting commitment diffBetP i

j

m

m , to 

compensate for the counterintuitive result of the conflict factor. 

However, we note that diffBetP i

j

m

m  cannot be used in this work 

to compensate for the conflict factor as it is unable to accurately 

quantify the distance of BBAs in some particular cases. 

Let us consider two reliability bounds [0.6, 0.7] and [0.5, 

0.8] induced from two experts’ MSII, the corresponding BBAs 

and betting commitments are given in Table IV. 1

2
diffBetP

m

m  

can be computed as: 
1

2 1 2
diffBetP max (| ( ) ( ) |)

max(| 0.65 0.65 |,| 0.35 0.35 |)

0

A BetP A BetP A= −

= − −

=

m

m m m

. 

The Jousselme distance between 1m  and 2m  can be calculated 

by: 

1 2( , )

1 0 0 0

0 1 0 0.5
0.5 (0,0.1,0.1, 0.2) (0,0.1,0.1, 0.2)

0 0 1 0.5

0 0.5 0.5 1

0.1

T

JD

 
 
 =  − −
 
 
 

=

m m

. 

It is obvious that  1m  and 2m  are not identical and conflict 

should exist. However, 1

2
diffBetP

m

m  tells us these two BBAs are 

consistent. Therefore, 1

2
diffBetP

m

m  is incapable of handling such 

case of BBAs. 

TABLE IV THE INDUCED BBA AND BETTING COMMITMENTS OF 

TWO EXEMPLIFIED RELIABILITY BOUNDS 

Reliability bounds BBAs Betting commitments 

,1 ,1[ , ]= 0.[ ]6,0.7SL SUR R   1 (0,0.6,0.3,0.1)=m  
1

(0,0.65,0.35,0)BetP =m  

,2 ,2[ , ]= 0.[ ]5,0.8SL SUR R   2 (0,0.5,0.2,0.3)=m  
2

(0,0.65,0.35,0)BetP =
m  

Another interesting question is how large should ε be of the 

two-dimensional conflict measure. In the literature, Smets [31] 

used the relation 1 (1 )Kc = − −  to decide the tolerable conflict 

under the open-world assumption, where c is the maximum of 

the mass function of the focal element   in the K number of 

evidences. However, it is noted that ( ) 0m  =  always hold in 

this article as shown in Eq. (23), thereby Smets’ method cannot 

be applied to our specific problem. Under the close-world 

assumption, it is generally acknowledged that there does not 

 
Fig. 4.  The framework of the conflict quantification of experts’ MSII. 

 

exist an “absolute meaningful threshold” of conflict tolerance 

for any pairs of BBAs, the choice of ε is largely subjective and 

application oriented [18]. In the data fusion field by the DRC, 

there exists an important rule to determine whether or not the 

DRC can be applied for two pieces of BBAs based on the 

conflict factor [18]. The rule is illustrated by the following three 

cases: 

Case 1: 2i jk    where 2  is set to 0.8, this case indicates that 

the DRC cannot be used as it may generate counterintuitive 

results. 

Case 2: 1i jk    where 1  is set to 0.3, the DRC is perfectly 

applicable. 

Case 3: 1 2i jk   . It advises that DRC should be used 

cautiously in order not to eliminate the true proposition during 

combination. 

In this article, only a small amount of conflict between two 

experts’ MSII is tolerated, 0.3 =  is, therefore, selected as our 

threshold of conflict tolerance. ε can also be selected between 

0.3 and 0.8, which means more conflict is to be tolerated of any 

two pieces of BBAs. 

IV. QUANTIFYING CONFLICT BASED ON THE TWO-

DIMENSIONAL MEASURE 

In this section, the two-dimensional conflict measure is used 

to quantify and visualize the conflict among experts’ MSII. 

Figure 4 illustrates the framework of the conflict quantification 

of experts’ MSII by the two-dimensional conflict measure. 

First, the reliability bound of the studied system is evaluated by 

using the collected experts’ MSII, as given in Eq. (4). Second, 

the reliability bounds induced by the MSII of each expert are 

converted into the corresponding basic belief assignment 

Collecting experts’ MSII and conducting 

reliability bound assessment using experts’ MSII

Constructing BBAs from the reliability bounds

Mutual Conflict Quantification Total Conflict Quantification

Conflict quantification of MSII

Conflict Factor Jousselme Distance

Two-Dimensional Conflict Measure Total Two-Dimensional Conflict Measure

Conflict Factor Jouseelme Distance

Combining the

other BBAs

i jk  ( , )i jJD m m

( , ) , ( , )mm m m m
i i

i m ii i
TTDCM k JD


 

= ( , ) , ( , )i j i j i jTDCM k JD= m m m m

m mi i

k


 m ,m
i i

JD


( )

k0

1.0

1.0





JD

k0

1.0

1.0





JD
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(BBA) under the DST (See details in Section IV.A). Thereby, 

the conflicts among all the experts’ BBAs are measured from 

two aspects, i.e., the mutual conflict quantification and total 

conflict quantification. The mutual conflict quantification using 

the two-dimensional conflict measure to quantify the conflict 

between any two experts’ BBAs (See details in Section IV.B), 

whereas the total conflict quantification using the total two-

dimensional conflict measure to quantify the conflict of each 

expert’s BBAs with respect to the combined BBAs of the other 

experts via Dempster’s rule of combination (DRC) (See details 

in Section IV.B).  

A. Constructing BBA From Reliability Bounds 

In this section, we formulate a method of constructing BBAs 

from reliability bounds given by experts. Based on the 

developed constrained optimization model in Eq. (4), the 

reliability bound of the system given by a single expert can be 

obtained by fusing the different pieces of MSII from the same 

expert. Let 
, ,[ ( ), ( )]SL k SU kR t R t  represent the reliability bound 

from the kth expert. Under the DST framework, the interval 

value of a probability measure is interpreted as the minimum 

and maximum belief that the expert assigned to the event that 

the system is working. Therefore, the lower and upper bounds 

of system reliability can be considered as the belief and 

plausibility measures of the proposition “The kth expert 

believes that the system is working at time t”, namely, 

, ,[ ( ), ( )]SL k SU kR t R t = , ,[ ( ), ( )]W W

S k S kBel t Pl t . The quantity of 

, ,( ) ( )W W

S k S kPl t Bel t−  represents the ignorance of the kth expert 

on this proposition. Thereby, the BBA associated with the kth 

expert can be formulated by: 

 
{ , }

, , , ,

( ) ( ( ), ( ), ( ), ( ))

(0, ( ),1 ( ), ( ) ( ))

W F W F

k k k k k

SL k SU k SU k SL k

t m t m t m t m t

R t R t R t R t

=

= − −

m
, (23) 

where ( ) 0km t =  stands for the closed-world assumption of the 

mass function; 
,( )= ( )W

k SL km t R t  and 
,( )=1 ( )F

k SU km t R t−  

represent the mass functions of system working and failure at 

time instant t believed by the kth expert, respectively; 
{ , }

, ,( ) ( ) ( )W F

k SU k SL km t R t R t= −  is the mass function of system 

being in either working or failed states at time instant t believed 

by the kth expert. If the MSII is elicited from K experts, 

therefore, K pieces of evidences of the system reliability 

estimate can be obtained, represented as 1 2( ), ( ),..., ( )Kt t tm m m

. Subsequently, the proposed two-dimensional conflict measure 

is to be utilized to quantify the inconsistency among the BBAs 

of the K experts. 

B. Mutual Conflict and Total Conflict Quantification 

As stated previously, we quantify the conflicts among 

experts’ BBAs from the perspective of mutual conflict and total 

conflict. The mutual conflict can be done by applying the two-

dimensional conflict measure on each pair of the experts’ 

BBAs. Let im  and jm  be two BBAs from the ith and jth 

experts calculated by Eq. (23), the two-dimensional conflict 

measure ( , )i jTDCM m m  of these two experts can be 

calculated by Eqs. (19) and (22). The result of the two-

dimensional conflict measure ( , )i jTDCM m m  can be depicted 

in Fig. 4, which illustrates the conflicts between im  and jm . 

Sometimes, we are interested in the total conflict of one 

expert’s BBA with respect to all the other experts’ BBAs. The 

total conflict measure can be defined in a similar way as the 

mutual conflict measure. Let 
i

m  be the combined BBAs via 

DRC without the ith experts’ BBA, that is, 
ji

j i



= m m , the 

total conflict between the ith expert’s BBA im  and 
i

m  can 

be defined as:  

 ( , ) , ( , )
i ii ii i

TTDCM k JD
 

= 
m m

m m m m , (24) 

where the total average conflict factor 
i i

k
m m

 can be 

calculated by: 

 int

int
, ,

1
( )

1
( ) ( )

i ii i

U L t T

A B

i i

A B A BU L t T

k k t dt
T T

m t m t dt
T T

  





 = 

=
−

=
−





m m m m

, (25) 

and the total average Jousselme distance ( , )i i
JD


m m  can be 

calculated by: 

 
int

int

1
( , ) ( ( ), ( ))

1 1
( ( ) ( )) ( ( ) ( ))

2

i ii i

U L t T

T

i ii i

U L t T

JD JD t t dt
T T

t t t t dt
T T

 



 



=
−

= − −
−





m m m m

m m Jac m m

(26) 

where the Jaccard index matrix Jac  is the same as that of in 

Eq. (21) as the FoD of the combined BBA 
i

m  is unchanged. 

Note that the total average conflict factor 
i i

k
m m

 and the total 

average Jousselme distance ( , )i i
JD


m m  also satisfy the 

foregoing properties because 
i

m  is still a normalized BBA 

after the DRC.  

V. INFORMATIVENESS OF MSII 

In reality, experts are not only interested in the conflict 

among their MSII, but also how much information does each 

expert’s MSII provide. The latter is measured by introducing 

informativeness in this paper. More specifically, a Bhattacharya 

distance-based informativeness is proposed to measure the 

informativeness of the ith expert’s BBA. The Bhattacharyya 

distance is a well-known similarity measure for two probability 

distributions that has been widely used in many fields, such as 

feature extraction [33], image processing [34], and speaker 

recognition[35]. In this work, the Bhattacharyya distance is 

used to measure the similarity of the PDFs of the upper and 

lower system lifetime distributions. Let 
, ( )SU kR tq , 

, ( )SL kR tq  be the 

PDFs of the upper and lower system lifetime distributions by 

fusing the MSII of the kth expert, respectively, the 

Bhattacharyya distance 
, ,( ) ( )( , )

SU k SL kB R t R tq q  is mathematically 

defined as: 

 ( ), , , ,( ) ( ) ( ) ( )
0

( , ) ln
SU k SL k SU k SL kB R t R t R t R t

t
q q q q dt

+

=
= −  , (27) 

where 
, ( ) ,= ( ) /

SU kR t SU kq dR t dt−  and 
, ( ) ,= ( ) /

SL kR t SL kq dR t dt− . 

The Bhattacharyya distance ranges from 0 to + . The smaller 

the Bhattacharyya distance is, the more imprecise of the 

reliability bound , ,[ ( ), ( )]SL k SU kR t R t .  

The basic procedures of the Bhattacharyya distance-based 

informativeness are illustrated in Fig. 5. It mainly contains the 

following three steps.  
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Step 1: Evaluate the system reliability bounds 

[ ( ), ( )]SL SUR t R t  by fusing all experts’ MSII using Eq. (5), and 

then, calculating the PDFs of the upper and lower system 

lifetime distributions, denoted as 
( )SUR tq  and 

( )SLR tq : 

( ) ( )
SUR t SUq dR t= − /dt  and 

( ) ( ) /
SLR t SLq dR t dt= − . 

Step 2: Evaluate the system reliability bounds 

, ,
[ ( ), ( )]

SL k SU k
R t R t  by fusing the MSII without the kth experts 

via Eq. (5), and then, calculating the corresponding PDFs of the 

upper and lower system lifetime distributions, denoted as 

,
( )

SU k
R tq  and 

,
( )

SL k
R tq : 

,
( ) ,

( ) /
SU k

R t SU k
q dR t dt= −  and 

,
( )

SL k
R tq =

,
( ) /

SL k
dR t dt− . 

 
Fig. 5.  The basic procedures of the Bhattacharyya distance-based informativeness. 

 

Step 3: Calculate the Bhattacharyya distances of the resulting 

pairs of PDFs from Steps 1 and 2 [26]:  

 ( )( ) ( ) ( ) ( )
0

( , ) ln
SU SL SU SLB R t R t R t R t

t
q q q q dt

+

=
= −  , (28) 

and 

 ( )
, , , ,

( ) ( ) ( ) ( )
0

( , ) ln
SU k SL k SU k SL k

B R t R t R t R t
t

q q q q dt
+

=
= −  . (29) 

Then, the Bhattacharya distance-based informativeness of 

the kth expert’s MSII can be defined as: 

 

, ,

, ,

( ) ( ) ( ) ( )

( ) ( )
0

( ) ( )
0

( ) ( , ) ( , )

ln

SU SLSU k SL k

SU SL

SU k SL k

B k B R t R t B R t R t

R t R t
t

R t R t
t

I q q q q

q q dt

q q dt

 

+

=

+

=

= −

 
 

=
 
 
 





m

. (30) 

Note that 
, ,

( ) ( )( , )
SU k SL k

B R t R tq q  is definitely no less than 

( ) ( )( , )
SU SLB R t R tq q  because the reliability bound by fusing all the 

experts’ MSII is no wider than that by fusing the MSII without 

the kth expert. Therefore, ( )B kI m  is a non-negative measure. 

Particularly, ( )=0B kI m  means the kth expert’s MSII provides 

no information for system reliability estimate, i.e., the BBA of 

the kth expert is vacuous. A greater value of ( )B kI m  indicates 

the MSII from the kth expert contains more new information 

with respect to system reliability estimates.  

VI. APPLICATIONS 

In this section, two applications of the developed methods 

are presented. The first is the flow transmission system 

illustrated in Section II.A to demonstrate the main procedures 

of the developed conflict quantification approaches. The second 

is an engineering case study on a cutter feeding control system 

of CNC lathes. 

A. A Numerical Example 

The flow transmission system, as shown in Fig. 1, is chosen 

for the numerical case study [14]. The reliability function of the 

flow transmission system is defined as Eq. (3). To assess the 

system reliability over time, the MSII is elicited from four 

experts. Expert 1 provided the interval-valued state 

probabilities of all the pipes at time t=100 hours. Expert 2 

provided the interval-valued state probabilities of the system at 

time t=150 hours. Expert 3 gave the interval-valued sojourning 

 
Fig. 6.  Reliability bounds using experts’ MSII. 
 

TABLE V 

THE MSII ELICITED FROM FOUR EXPERTS (TIME UNIT: HOURS) 

Expert ID Experts’ MSII 

1 

1,2 1,10.795 (100) 0.805,0.090 (100) 0.110p p     

1,0 2,20.096 (100) 0.104,0.690 (100) 0.710p p     

2,1 2,00.190 (100) 0.210,0.090 (100) 0.110p p     

3,1 3,00.958 (100) 0.965,0.035 (100) 0.042p p     

2 
,6 ,5 ,4

,3 ,2

0.75 (150) (150) (150)

(150)+ (150) 0.85

S S S

S S

p p p

p p

 + +

+ 
 

3 2,2160 270T   

4 
1500 600MTTF  , 2400 500MTTF  , 

32700 2800MTTF   

 

time of Pipe #2 being in State 2. Expert 4 presented the interval-

valued MTTFs of all the three pipes. The specific experts’ MSII 

are tabulated in Table V. Equation (4) is, then, used to assess 

the reliability bounds by using different experts’ MSII. The 

0

1

t
Informativeness

(Difference of the 

Bhattachayya Distances)

PDFs of Reliability Bound

CDFs of Reliability Bounds

Without the kth Expert Judgement

Bhattachayya Distance

(Overlapping of  the PDFs)

Bhattachayya Distance

(Overlapping of  the PDFs)
PDFs of Reliability Bound 

CDFs of Reliability Bound

With the kth Expert Judgement

-

Reliability Bounds of MSS

t

t t

t

t0

0

0

0

0
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results, as shown in Fig. 6, indicate that the reliability bounds 

assessed by the four experts’ MSII are not consistent. 

The proposed two-dimensional conflict measure is used to 

quantify and visualize the conflict between the four experts’ 

MSII. The pre-defined threshold of conflict tolerance   is set 

to be 0.3. Firstly, we quantify the conflict at two specific time 

instants, t=100 hours and t=500 hours. Equation (23) is used to 

calculate the BBAs of the four experts induced from their 

corresponding reliability bounds at these two time instants, i.e., 

(100)im  and (500)im . The results are given in Table VI. 

Table VI also presents the combined BBAs via DRC without 

the ith expert’s BBA, i.e., (100)
i

m  and (500)
i

m . Then, 

Eqs. 
TABLE VI 

THE INDUCED BBAS FROM DIFFERENT EXPERTS’ RELIABILITY 

BOUNDS AT TIME t=100 AND t=500 HOURS 

Expert 

ID 

The induced BBAs from reliability bounds 

t=100 hours t=500 hours 

1 
1(100) (0,0.9353,0.0500,0.0147)=m  

1(500) (0,0.5306,0.3261,0.1433)=m  

1
(100) (0,0.9955,0.0043,0.0002)


=m  

1
(500) (0,0.5216,0.3820,0.0964)


=m  

2 
2(100) (0,0.9364,0.0519,0.0117)=m  

2
(100) (0,0.9955,0.0043,0.0002)


=m  

2(500) (0,0.3996,0.3014,0.2990)=m  

2
(500) (0,0.5952,0.3548,0.0500)


=m  

3 
3(100) (0,0,0,1)=m  

3
(100) (0,0.9997,0.0003,0)


=m  

3(500) (0,0,0,1)=m  

3
(500) (0,0.6420,0.3360,0.0220)


=m  

4 
4(100) (0,0.9364,0.0505,0.0131)=m  

4
(100) (0,0.9955,0.0044,0.0001)


=m  

4(500) (0,0.4137,0.3490,0.2373)=m  

4
(500) (0,0.6029,0.3367,0.0604)


=m  

(18) and (20) are used to calculate the conflict factor and 

Jousselme distance at these two time instants, respectively. The 

proposed two-dimensional conflict measure is presented in 

Figs. 7(a) and 7(b). As shown in Fig. 7(a), at time t=100 hours, 

the induced BBAs of Experts 1, 2, and 4 are almost the same, 

therefore, the Jousselme distances between these three BBAs 

are close to zero while the conflict factors are still non-negative 

as the three experts’ BBAs have non-negative masses at the 

propositions { }W  and { }F . Moreover, the conflict factor of 

the BBA of Expert 3 with respect to all the other experts’ BBAs 

are zero because the BBA of Expert 3 is vacuous as shown in 

Table VI. This result is also accordance with the fourth property 

of the average conflict factor, that is, the vacuous BBA should 

not conflict with any BBAs. As shown in Fig. 7(b), the two-

dimensional conflict measure between any two experts among 

Experts 1, 2, and 4 all lie in region B. This is because the BBAs 

of Experts 1, 2 and 4 at time t=500 hours are almost evenly 

distributed on the singletons, as shown in Table V. 

Additionally, Eqs. (25) and (26) are used to calculate the total 

average conflict factors and the total average Jousselme 

distances at these two time instants, respectively. The results, 

as presented in Figs. 7(c) and 7(d), show that the total average 

conflict factor of the BBA of Expert 3 with respect to 

3
(100)


m  and 

3
(500)


m are both zero because the BBA of 

Expert 3 is vacuous. Moreover, as shown in Fig. 7(c), the total 

two-dimensional conflict measures of Experts 1, 2, and 4 at 

time t=100 hours are almost the same because 
1
(100)


m , 

2
(100)


m , and 

4
(100)


m  are the same as shown in Table V. It 

indicates that both the combined BBAs via DRC and each 

individual BBA of Experts 1, 2, and 4 provide the same 

information: the system is working at time t=100 hours. As 

shown in Fig. 7(d), the total two-dimensional conflict measures 

of Experts 1, 2, and 4 indicate that the masses of these three 

experts are nearly distributed evenly on the singletons. These 

results substantiate the argument that the proposed two-

dimensional conflict measure can effectively quantify and 

visualize the conflict among the BBAs induced by experts’ 

MSII.  
To demonstrate the superiority of the two-dimensional 

conflict measure in quantify the conflict between BBAs with 
respect to other conflict measures in the DST, the conflict of the 
four experts’ BBAs at both t=100 and t=500 hours are 
calculated by the conflict factor, the Jousselme distance, the 
cosine measure, and the supremum norm of the difference of 
betting commitment via Eqs. (18), (20), (16), and (17), 
respectively. The comparative results of the conflict between 
any pairs of BBAs and the total conflict of each expert’s BBAs 
at both t=100 and t=500 hours are presented in Table VII. As 
shown in Table VII, all these five conflict measures indicate the 
conflicts among the BBAs of Experts 1, 2, and 4 at t=100 hours 
are small as the induced BBAs of Experts 1, 2, and 4 are almost 
the same. However, as for the BBA of Expert 3, the values of 
cosine measure, Jousselme distance, and supremum norm of the 
difference of betting commitment from both the mutual conflict 
and total conflict perspectives are greater than the threshold of 
conflict tolerance 0.3. It is, therefore, concluded that all the 
three distance-based conflict measures are incapable of 
handling the conflict quantification of a vacuous BBA with 
arbitrary BBA. As shown from Table VII, the mutual conflict 
of Expert 3 with any other experts by the proposed two-
dimensional measure is <0, 0.6623>, which is located in region 
C. It means that one of the two experts provided very limited 
information to the reliability assessment. This result is 
accordance with the fact as the BBA of Expert 3 is vacuous. 
Thereby, the two-dimensional measure is superior to the 
conflict factor and the distance-based conflict measures. 

Furthermore, the proposed conflict measure is used to 

quantify the conflict between experts’ MSII in the entire time 

horizon, i.e., int [ , ]=[0, 2000]L UT T T= . We use the average two-

dimensional conflict measure to quantify the total conflict of 

these four experts’ MSII. By Eq. (23), we can obtain the BBAs 

of all the experts during the time interval intT . Then, Eqs. (18) 

and (20) are utilized to calculate the instantaneous conflict 

factor and Jousselme distance, and the results are given in Fig. 

8. As shown in Figs. 8(a) and 8(c), the conflict factors involving 

Experts 1, 2, and 4 all start from zero, reach their maximum 

values, and finally back to zero. This is because all these  
TABLE VII 

COMPARATIVE STUDIES OF THE CONFLICT MEASURES

 t=100 hours t=500 hours 

Experts i jk   ( , )i jJD m m  1 cos( , )i j− m m  diffBetP i

j

m

m  ( , )i jTDCM m m  i jk   ( , )i jJD m m  1 cos( , )i j− m m  diffBetP i

j

m

m  ( , )i jTDCM m m  

1 & 2  0.0953 0.0016 0 0.0005 <0.0953,0.0016> 0.2903 0.0942 0.0522 0.0531 <0.2903, 0.0942> 

1 & 3 0 0.6623 0.9843 0.4427 <0, 0.6623> 0 0.4404 0.7758 0.1022 <0, 0.4404> 

1 & 4 0.0940 0.0008 0 0.0003 <0.0940,0.0008> 0.3201 0.0842 0.0274 0.0699 <0.3201, 0.0842> 
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2 & 3  0 0.6631 0.9876 0.4422 <0,0.6631> 0 0.3539 0.4872 0.0491 <0, 0.3539> 

2 & 4 0.0959 0.0010 0 0.0007 <0.0959,0.0010> 0.2642 0.0350 0.0090 0.0168 <0.2642, 0.0350> 

3 & 4 0 0.6631 0.9856 0.4430 <0,0.6631> 0 0.3827 0.5984 0.0323 <0, 0.3827> 

1 & 1  0.0538 0.0534 0.0013 0.0529 <0.0538,0.0534> 0.3728 0.0400 0.3727 0.0324 <0.3728, 0.0400> 

2 & 2  0.0558 0.0536 0.0014 0.0533 <0.0558,0.0536> 0.3212 0.1434 0.3212 0.0711 <0.3212, 0.1434> 

3 & 3  0 0.7069 1 0.4997 <0,0.7069> 0 0.5124 0 0.1529 <0, 0.5124> 

4 & 4  0.0543 0.0530 0.0013 0.0526 <0.0543,0.0530> 0.3497 0.1341 0.3497 0.1007 <0.3497, 0.1341> 

 
Fig. 7.  The two-dimensional conflict measures of experts’ MSII. (a) Mutual 

conflict quantification at time t=100 hours; (b) Mutual conflict quantification at 

time t=150 hours; (c) Total conflict quantification at time t=100 hours; (d) Total 
conflict quantification at time t=150 hours. 

 

experts believed that the mass of the system failure at t=0 is zero 

and the mass of the system working at time t=2000 hours is 

zero. The conflict factors involving Expert 3 remain zero as the 

BBA of Expert 3 is vacuous over the time horizon 

int [0, 2000]T = . Moreover, as shown in Figs. 8(b) and 8(d), the 

Jousselme distance of the BBA of Expert 3 with respect to that 

of the other experts all start from 1/ 2 . It can be directly 

calculated by the Jousselme distance of a vacuous BBA and a 

categorical BBA, that is: 
((0,0,0,1),(0,1,0,0))

1 0 0 0

0 1 0 0.51
(0, 1,0,1) (0, 1,0,1) 1 / 2

0 0 1 0.52

0 0.5 0.5 1

T

JD =

 
 
 − − =
 
 
 

 

Moreover, the Jousselme distances of the BBA of Expert 3 

with respect to that of the other experts go to 1/ 2  when the 

system becomes very aged. Based on the instantaneous conflict 

factors and Jousselme distances, the average conflict factors 

and average Jousselme distances can be calculated by Eqs. (19) 

and (22), respectively, while the total average conflict factors 

and average Jousselme distances can be calculated by Eqs. (25) 

and (26), respectively. The resulting two-dimensional conflict 

measure ( , )i jTDCM m m  and total two-dimensional conflict 

measure ( , )i i
TTDCM


m m  are illustrated in Fig. 9. The results 

of the two-dimensional conflict measure ( , )i jTDCM m m  

between any two experts in Experts 1, 2, and 4 show that the 

MSII from these three experts are not in conflict. Because there 

is a large region of intersection among their reliability bounds, 

as shown in Fig. 6. On the other hand, the total two-dimensional 

conflict measure results of Experts 1, 2, and 4, i.e., 

1 1
( , )TTDCM


m m , 2 2

( , )TTDCM


m m , and 

4 4
( , )TTDCM


m m  also substantiate that these three experts’ 

MSII are not in conflict. The total two-dimensional conflict 

measure of Expert 3, i.e., 3 3
( , )TTDCM


m m , is located in 

region C. It indicates that even though the BBA of Expert 3 is 

not in conflict with that of the other experts, it provides nothing 

to the system reliability estimate. 

 
Fig. 8.  The instantaneous conflict factor ( )i jk t , instantaneous Jousselme 

distance ( ( ), ( ))i jJD t tm m , instantaneous total conflict factor ( )
i i

k t
m m , and 

instantaneous total Jousselme distance ( ( ), ( ))i i
JD t t


m m . 

 

  
Fig. 9.  The two-dimensional conflict measure over time interval [0, 2000] . (a) 

Mutual conflict quantification. (b) Total conflict quantification. 
 

As concluded from the above analysis, the conflict measures 

only visualize the conflict among the experts’ MSII but are not 

able to quantify the informativeness of experts’ MSII to system 

reliability estimate. Therefore, the Bhattacharyya distance-

based informativeness measure is also calculated. By 

converting all experts’ MSII into constraints of the transition 

intensities of the three components, the narrowest reliability 

bound can be determined by Eq. (5), while the corresponding 

Bhattacharyya distance ( ) ( )( , )
SU SLB R t R tq q  can be evaluated by 

Eq. (28). The result is shown in Table VIII. In the same fashion, 

, ,
( ) ( )( , )

SU k SL k
B R t R tq q  can be also evaluated via Eq. (29) for the 

reliability bounds without the kth (k=1,2,3,4) expert’s MSII. 

(a) (b)

(c) (d) (a) (b)

(c) (d)

(a) (b)
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The results are given in Table VIII. Therefore, the 

Bhattacharyya distance-based informativeness of the kth 

expert’s MSII ( )B kI m  can be determined through Eq. (30). The 

results are tabulated in Table IX. As indicated in Table IX, 

although the conflict factor of Expert 3 is lower than the others, 

it is not very useful, as it provides the least information as 

indicated by the informativeness measure. On the contrary, 

Expert 1 has the highest total average conflict factor against the 

others, as shown in Fig. 9(b), but provides the greatest 

information to the system reliability estimate. 

Based on the conflict and informativeness results, the 

consensus on final reliability estimate of the flow transmission 

system can be achieved by calibrate the judgements from 

Expert 3 or get rid of the judgements from Expert 3. This is 

because the judgements from Experts 1, 2, and 4 contribute to 
TABLE VIII 

THE BHATTACHARYYA DISTANCE OF ( ) ( )( , )
SU SLB R t R tq q  AND 

, ,
( ) ( )( , )

SU k SL k
B R t R tq q   

( ) ( )( , )
SU SLB R t R tq q  

,1 ,1
( ) ( )( , )

SU SL
B R t R tq q  

,2 ,2
( ) ( )( , )

SU SL
B R t R tq q  

,3 ,3
( ) ( )( , )

SU SL
B R t R tq q  

,4 ,4
( ) ( )( , )

SU SL
B R t R tq q  

0.0169 0.0840 0.0170 0.0169 0.0189 

TABLE IX 

THE BHATTACHARYYA DISTANCE-BASED INFORMATIVENESS 

OF THE EXPERTS’ MSII. 

 Expert 1 Expert 2 Expert 3 Expert 4 

( )B kI m  0.0671 0.0010 0 0.0020 

the final reliability estimate while they are not in conflict with 

that of the other experts. As for Expert 2, even his/her 

judgement is not conflicting with the others, it has little effect 

on the final reliability estimate because the reliability bound 

from Expert 2 is relatively wide. Therefore, Expert 2 should 

further narrower down his/her judgement so as to contribute to 

the reliability estimate. Expert 3 should express more 

reliability-related information on this system, otherwise, the 

current judgement from Expert 3 can be omitted. 

B. A Cutter Feeding Control System  

We also apply the two-dimensional conflict measure on a real-

world large engineering system, i.e., a cutter feeding control 

system of DL series CNC lathes, as shown in Fig 10. For the 

cutter feeding control system, a signal generated by 611D-type 

servo driven module (MO) is transmitted through electric wire 

(EW) to control the motor (MT), and a speed feedback device 

(SF) is used to return the speed signal to servo driven module 

(MO), while the grating scales (GR) report the straightness to 

MO so as to adjust the feeding speed and direction [11]. The 

components EW, GR, and MO are binary components as they 

are electronic devices. The components MT and SF are regarded 

as four-state components, say States 0, 1, 2, and 3, as they all 

contain electric motors which can work at two intermediate 

states in-between perfectly functioning and completely failed 

states. The components MT and SF are assembled together and 

can be viewed as subsystem 1S . Based on the functional 

relations of all the components to the cutter feeding control 

system, the entire system also possesses four states, say States 

0, 1, 2, and 3. The states of the system with respect to each 

combination of components’ states are tabulated in Table X. A 

complete version of Table X consists of 2 2 2 4 4 128    =  

rows, corresponding to all the possible components’ states 

combinations. Based on Table X, the relation among the 

components’ states and the system states can be completely 

determined. 

The system is deemed as failure if its state being in the 

unacceptable state 0, i.e., {0}=D . Therefore, the system 

reliability can be formulated as the probability that the state of 

the cutter feeding control system is not less than State 1, and it 

can be mathematically written as: 

 
( )

,

,1 ,1 ,1 , ,

0 0

( ) 1 ( ) 1 ( )

( ) ( ) ( ) ( ) ( )

S S S i

i

EW GR MO MT i SF j

i j

R t F t p t

p t p t p t p t p t



 

= − = −

 
=     

 





D

 (31) 

 
Fig. 10  The cutter feeding control system of DL series CNC lathes [10],[11]. 

 
TABLE X 

THE STATES OF THE X FEEDING CONTROL SYSTEM AND ITS 

STATE COMBINATIONS OF COMPONENTS. 

State 

of  
system  

State of 

component 
EW 

State of 

component 
GR 

State of 

component 
MO 

State of 

component 
MT 

State of 

component 
SF 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 0 2 
0 0 0 0 0 3

 
0 0 0 0 1 0 

      

2 1 1 1 2 3 
0 1 1 1 3 0 

1 1 1 1 3 1 

2 1 1 1 3 2 
3 1 1 1 3 3 

TABLE XI 
THE THREE EXPERTS’ MSII OF THE CUTTER FEEDING CONTROL 

SYSTEM (TIME UNIT: MONTHS). 

Expert 

ID 
Experts’ MSII 

1 

,30.60 (10) 0.64SFp  , ,20.12 (10) 0.14SFp  , 

,10.11 (10) 0.15SFp  , ,00.13 (10) 0.17SFp  , 

,30.80 (10) 0.82MTp  , ,20.06 (10) 0.10MTp  ,

,10.04 (10) 0.08MTp  , ,00.06 (10) 0.10MTp  , 

,10.90 (10) 0.93MOp  , ,00.07 (10) 0.10MOp  , 

,10.86 (10) 0.88GRp  , ,00.12 (10) 0.14GRp  ,

,10.95 (10) 0.96EWp  , ,00.04 (10) 0.05EWp   

2 0.70 (15) 0.80SR   

3 
1

15 30SMTTF  , 150 200MOMTTF  , 

150 200GRMTTF  , 180 200EWMTTF   

Three experts are invited to express their judgments on the 

reliability-related information of the system. Their uncertainties 

are expressed as interval values. The collected MSII are 

I/O

X Feeding Z Feeding U1&U2 Feeding

MT

SF

MO

GR

EW
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tabulated in Table XI. Expert 1 presented the interval-valued 

state probabilities of all components at time t=10 months. The 

interval-valued system reliability at time t=15 months is 

provided by Expert 2, while Expert 3 expressed the interval-

valued MTTF of the subsystem 1S  and the components MO, 

GR, and EW. Thereby, the reliability bound induced from each 

expert’s MSII can be evaluated via Eq. (4), and the results are 

shown in Fig. 11. As shown in Fig. 11, the reliability bounds 

induced from Expert 1 are more precise than that of Expert 3, 

whereas the reliability bounds induced from Expert 2 are totally 

inconsistent with these of the other two experts. 

The experts are interested in the conflict of their MSII on the 

entire time horizon, i.e., int [ , ]=[0, 35]L UT T T= months. The 

instantaneous conflict factor and Jousselme distance between 

 
Fig. 11.  Reliability bounds of the cutter feeding control system using the three 

experts’ MSII. 
 

 
Fig. 12.  The instantaneous conflict factor ( )i jk t  and Jousselme distance

( ( ), ( ))i jJD t tm m  

 

 
Fig. 13.  The average two-dimensional conflict measure. (a) Mutual conflict. 

(b) Total conflict. 
 

any two experts’ BBAs are calculated by Eqs. (18) and (20), 

respectively. The results, as shown in Fig. 12, indicate that the 

minimum conflict among experts’ BBAs exists when the 

system is brand new. Moreover, the conflict factor between 

Experts 1 and 2 is always larger than that of Experts 2 and 3 

because the reliability bounds of Expert 1 are more precise than 

these of Expert 3. Such a result also accords with the fourth 

property of the average conflict factor, i.e., imprecision 

monotonicity. Furthermore, the average conflict factors and 

average Jousselme distances can be calculated by Eqs. (19) and 

(22), respectively, while the total average conflict factors and 

average Jousselme distances can be calculated by Eq. (25) and 

(26), respectively. The resulting two-dimensional conflict 

measure ( , )i jTDCM m m  and total two-dimensional conflict 

measure ( , )i i
TTDCM


m m  are illustrated in Fig. 13. As 

shown in Fig. 13(a), the two-dimensional conflict measure 

involving Expert 2, i.e., 1 2( , )TDCM m m  and 2 3( , )TDCM m m

indicate that the judgement of Expert 2 is conflicting with the 

other two experts, while the judgement of Expert 1 is not 

conflicting with Expert 3. Moreover, from the perspective of 

total conflict, it also substantiates that only the judgement of 

Expert 2 is conflicting with the other two experts. Therefore, 

the proposed two-dimensional conflict measure can effectively 

quantify and visualize the conflict of the three experts’ MSII. 

Based on both the mutual conflict and total conflict results, 

further calibration of the experts’ MSII can be done by 

adjusting the judgement of Expert 2. Specifically, as Expert 2 

takes an optimistic attitude on the system reliability at time t=15 

months, the calibration of the judgement of Expert 2 should 

shift toward a more conservative reliability estimate which is 

oftentimes preferable in engineering practices. 
From the above analysis of two illustrative examples, the 

distinguishing characteristics of our proposed method are listed 
as follows: 
(1) The novel framework of the conflict quantification of 

experts’ MSII allows experts to provide the imprecise 
reliability-related judgements from multiple physical 
hierarchies of an MSS at different times instants. 

(2) The proposed two-dimensional conflict measure is an 
effective tool to manipulate the conflict quantification of 
any pairs of BBAs under the DST framework. 

(3) Via the Bhattacharyya distance-based informativeness 
method, the individual contribution of an expert’s 
judgement to the system reliability assessment is evaluated, 
which is critical for the further calibration of experts’ 
judgements and the refinement of the experts. 

VII. CONCLUSIONS AND FUTURE WORKS 

In this article, a two-dimensional conflict measure was 
proposed to quantify the conflict between experts’ MSII for 
system reliability assessment. The two dimensions of the 
conflict measure were characterized by the average conflict 
factor and the average Jousselme distance, respectively. To 
apply the conflict measure, first, the reliability estimate induced 
from each expert’s MSII was used to construct the 
corresponding basic belief assignment (BBA) under the DST. 
Then, the average conflict factor and average Jousselme 
distance in DST were calculated to characterize the two 
dimensions of conflict, respectively. The conflict quantification 
by the two-dimensional conflict measure involved mutual 
conflict quantification and total conflict quantification. 
Moreover, a Bhattacharyya distance-based informativeness 
method was developed to further quantify the informativeness 
of a specific expert’s MSII to the system reliability estimate. As 
concluded from the two illustrative examples, the proposed 
two-dimensional conflict measure is superior to the separate 
one, i.e., the conflict factor or the Jousselme distance, in 
quantifying the conflict among experts’ MSII.  

(a) (b)

(a) (b)
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It bears noting that the proposed method is still a preliminary 
work for system reliability assessment by utilizing experts’ 
MSII. Further research is needed on how to achieve the 
consensus on reliability estimate by experts’ MSII based on the 
developed conflict measures. This could be done by 
formulating an optimization model in which the objective is to 
minimize the two-dimensional conflict measure while the 
decision variables are the range of the experts’ MSII. In that 
way, the final reliability estimate with the minimum conflict of 
experts’ MSII can be achieved and viewed as a rational 
consensus on system reliability estimate. Moreover, the 
threshold of conflict tolerance is fixed in this work, it is 
interesting to find the relation of this threshold with the conflict 
factor, the Jousselme distance, and also the number of experts 
under the close-world assumption. Therefore, the threshold of 
conflict tolerance can be determined by the BBAs induced from 
experts’ MSII rather in a subjective manner. Lastly, both the 
conflict measures and the Bhattacharyya distance-based 
informativeness method can be further used as criteria for the 
calibration of experts’ judgements and the refinement of 
experts. 

APPENDIX A 

The proofs of the four properties of the proposed average 

conflict factor are provided as follows. 

Proof of Property 1: As the conflict factor ( )i jk t  at any time 

t is bounded, i.e., 0 ( ) 1i jk t  , the average conflict factor 

int

 
1

( )
-

i j i j i j

U L t T

k m k t dt
T T



  



= =   is also bounded, i.e., 

0 1i jk   , where the minimum value of i jk   exists when: 

int
, ,

{ } { } { } { }

int

0

1
( ) ( ) 0

-

, ( ) ( )=0 or ( ) ( ) 0

 

=

i j

A B

i j

A B A BU L t T

W W F F

i j i j

k

m t m t dt
T T

t T m t m t m t m t



 = 

=

 =

  = =



  (A.1) 

When { } { }( ) ( )=0W W

i jm t m t= , we have 1 1( )=(0,0, ,1- )i t s sm  

and 2 2( )=(0,0, ,1- )j t s sm  with 1s  and 2s  are two random 

values range from 0 to 1. When { } { }( ) ( )=0F F

i jm t m t= , we have 

1 1( )=(0, ,0,1- )i t s sm  and 2 2( )=(0, ,0,1- )j t s sm . It can be seen 

that in the above two scenarios, both ( )i tm  and ( )j tm  are 

simple BBAs with the same focal elements. The maximum 

value of i jk   exists when: 

 
int

, ,

int

1
1 ( ) ( ) 1

-

, { , },

and ( ) ) 1

 

(

A B

i j i j
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=  =
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= =
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 (A.2) 

where { , }A B W F   means { }, { }A W B F= =  or { }A F= , 

{ }B W= . The proof is completed.      

Proof of Property 2: 0i j j i i j j ik k k k   =  − =  where: 
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(A.3) 

which completes the proof. 

Proof of Property 3: Suppose that the kth expert provides a 

piece of more precise information, then a narrower reliability 

bound, represented by 
, ,[ ( ), ( )]SL k SU kR t R t  , can be achieved via 

Eq. (4), where 
, ,( ) ( )SL k SL kR t R t   and , ,( ) ( )SU k SU kR t R t  . The 

corresponding BBA is 
{ } { }( ) ( ( ), ( ), ( ),W F

k k k kt m t m t m t

   =m  
{ , }

, , , ,( )) (0, ( ),1 ( ), ( ) ( ))W F

k SL k SU k SU k SL km t R t R t R t R t    = − −  with 
{ } { }( ) ( )W W

k km t m t   and 
{ } { }( ) ( )F F

k km t m t  . Let the average 

conflict factor of ( )k tm  with respect to any other BBA ( )i tm  

be i kk  , then one has 0i k i kk k  −  , which is detailed in Eq. 

(A.4) at the bottom of this page. Therefore, we have i k i kk k 

, which completes the proof. 

Proof of Property 4: Let 
{ } { }( ) ( ( ), ( ), ( ),W F

i i i it m t m t m t=m
{ , } ( )) (0,0,0,1)W F

im t =  be a vacuous BBA, the average conflict 

factor of ( )i tm  with respect to any other expert’s BBA is: 

 
( )
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1
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
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

=

= +

=




(A.5) 

which completes the proof. 

APPENDIX B 

The proofs of the four properties of the proposed average 

Jousselme distance are provided as follows. 

Proof of Property 5: As demonstrated in [32], the Jaccard 

matrix Jac  in the Jousselme distance is definiteness. Thereby, 

the quadratic form ( ( ) ( )) ( ( ) ( ))T

i j i jt t t t− −m m Jac m m  is non-

negative. One has ( ( ), ( )) 0i jJD t t m m . As for the maximum 

value of ( , )i jJD m m , Jousselme et al. [25] proved that 

( ( ), ( )) 1i jJD t t m m , therefore, the proposed average 

Jousselme distance is also bounded, i.e., 0 ( , ) 1i jJD m m . 

Proof of Property 6: As the Jaccard matrix Jac  in the 

Jousselme distance is definiteness, ( ( ), ( )) 0i jJD t t =m m  holds 

if and only if ( ) ( ) (0,0,0,0)i jt t− =m m , i.e., ( ) ( )i jt t=m m . 

( ( ), ( )) 1i jJD t t =m m  if and only 
2

( ) ( )i jt t−m m  reaches its 

maximum, i.e., ( ) (0,1,0,0)i t =m , ( ) (0,0,1,0)j t =m , or 

( ) (0,0,1,0)i t =m , ( ) (0,1,0,0)j t =m , which complete the 

proof. 
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Proof of Property 7: The associative property of 

( , )i jJD m m  can be proved by: 
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Proof of Property 8: The average Jousselme distance can be 

extended as: 
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where 
2|| ( ) ||i tm  is the square norm of ( )i tm . Suppose that jm  

is a vacuous BBA, i.e., =(0,0,0,1)jm , then we have 
2|| ( ) || =1j tm  and =B  , Eq. (B.2) can be further expanded as 

( )
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  (B.3) 

The equality of Eq. (B.3) holds if and only if im  is also a 

vacuous BBA, that is 
2 { , }|| ( ) || = ( )=1W F

i it m tm  at all time t. The 

proof is completed.        
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